
R
c
t
m
c
a

F
T
P
C
M
S
C
i
g

a

Journal of the American College of Cardiology Vol. 50, No. 8, 2007
© 2007 by the American College of Cardiology Foundation ISSN 0735-1097/07/$32.00
P

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
PRECLINICAL STUDY

Nitric Oxide Inhalation Improves
Microvascular Flow and Decreases Infarction
Size After Myocardial Ischemia and Reperfusion

Xiaoshun Liu, MD, PHD,* Yanming Huang, MD, PHD,* Peter Pokreisz, PHD,†
Pieter Vermeersch, MD,† Glenn Marsboom, MSC,† Marc Swinnen,* Eric Verbeken, MD, PHD,‡
Jose Santos, MD,* Marijke Pellens,† Hilde Gillijns,† Frans Van de Werf, MD, PHD,*
Kenneth D. Bloch, MD,§ Stefan Janssens, MD, PHD*†

Leuven, Belgium; and Boston, Massachusetts

Objectives The purpose of this study was to test if nitric oxide (NO) could improve microvascular perfusion and decrease
tissue injury in a porcine model of myocardial ischemia and reperfusion (I/R).

Background Inhaled NO is a selective pulmonary vasodilator with biologic effects in remote vascular beds.

Methods In 37 pigs, the midportion of the left anterior descending coronary artery was occluded for 50 min followed by
4 h of reperfusion. Pigs were treated with a saline infusion (control; n � 14), intravenous nitroglycerin (IV-NTG)
at 2 �g/kg/min (n � 11), or inhaled nitric oxide (iNO) at 80 parts per million (n � 12) beginning 10 min before
balloon deflation and continuing throughout reperfusion.

Results Total myocardial oxidized NO species in the infarct core was greater in the iNO pigs than in the control or IV-NTG
pigs (0.60 � 0.05 nmol/mg tissue vs. 0.40 � 0.03 nmol/mg tissue and 0.40 � 0.02 nmol/mg tissue, respec-
tively; p � 0.01 for both). Infarct size, expressed as percentage of left ventricle area at risk (AAR), was smaller
in the iNO pigs than in the control or IV-NTG pigs (31 � 6% AAR vs. 58 � 7% AAR and 46 � 7% AAR, respec-
tively; p � 0.05 for both) and was associated with less creatine phosphokinase-MB release. Inhaled NO im-
proved endocardial and epicardial blood flow in the infarct zone, as measured using colored microspheres (p �

0.001 vs. control and IV-NTG). Moreover, NO inhalation reduced leukocyte infiltration, as reflected by decreased
cardiac myeloperoxidase activity (0.8 � 0.2 U/mg tissue vs. 2.3 � 0.8 U/mg tissue in control and 1.4 � 0.4
U/mg tissue in IV-NTG; p � 0.05 for both) and decreased cardiomyocyte apoptosis in the infarct border zone.

Conclusions Inhalation of NO just before and during coronary reperfusion significantly improves microvascular perfusion,
reduces infarct size, and may offer an attractive and novel treatment of myocardial infarction. (J Am Coll
Cardiol 2007;50:808–17) © 2007 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2007.04.069
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eperfusion of ischemic myocardium after percutaneous
oronary intervention, bypass surgery, and heart transplan-
ation may result in paradoxic myocardial injury compro-
ising left ventricular (LV) function recovery (1,2). In-

reased production of reactive oxygen species, platelet
ggregation, complement activation, neutrophil infiltration,
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yocardial calcium overload, and cardiomyocyte apoptosis
ll contribute to reperfusion injury (3–6). Reperfusion injury
s frequently associated with impaired myocardial tissue
erfusion despite restoration of epicardial coronary flow,
nd microvascular obstruction (MVO) represents an impor-
ant obstacle hindering recovery of LV systolic function and
ompromising long-term clinical outcome (7). Although
xperimental studies using antineutrophil antibodies and
mall early clinical trials using adenosine and nicorandil
howed a beneficial effect on reperfusion injury (8,9), larger
andomized clinical trials have, thus far, not identified an
ffective therapy for preventing MVO or salvaging heart
uscle at risk of necrosis after reperfusion therapy for acute
yocardial infarction (2,9–11).
Nitric oxide (NO) modulates many of the processes
ontributing to ischemia-reperfusion (I/R) injury. Nitric
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xide regulates vasomotor tone, platelet activation, interac-
ion of platelets and leukocytes with the vessel wall, immune
nd inflammatory responses, and apoptosis. Administration
f subvasodilator concentrations of NO-donor compounds
n dogs (12) preserved coronary vasodilation, inhibited
eutrophil accumulation, and reduced myocardial necrosis
ssociated with transient coronary artery occlusion. In con-
rast, systematic administration of transdermal glyceryl trini-
rate did not improve survival or left ventricular function in
atients with acute myocardial infarction (13). However, sys-
emic hypotension associated with the administration of NO-
onor compounds remains a major shortcoming in the setting
f reperfusion therapy for acute myocardial infarction (14).

Although initially best known for its selective pulmonary
asodilator action, inhaled nitric oxide (iNO) has more
ecently been shown to have effects in the systemic circula-
ion. For example, breathing 80 parts per million (ppm) NO
ncreased brachial artery blood flow during blockade of
egional NO synthesis (15). Inhaled NO also increased
lood flow in cat mesenteric venules subjected to I/R (16)
nd decreased infarction size in a murine myocardial I/R
njury model (17). Whether or not iNO can improve

yocardial microvascular perfusion after recanalization of
n occluded coronary artery and thereby limit myocardial
/R injury remains to be determined. We report here that in
clinically representative porcine model of transient coro-

ary artery occlusion, iNO increased microvascular flow in
ostischemic myocardium and decreased infarct size, sug-
esting a potential new strategy to target myocardial I/R in
atients.

ethods

nimal preparation. The study was approved by the An-
mal Care and Use Committee of the University of Leuven.
uvenile domestic pigs of both genders weighing 25 to 30 kg
ere used. Pigs were pretreated for 10 days with amioda-

one to reduce life-threatening arrhythmias upon acute
essel occlusion (600 mg/day). Clopidogrel (150 mg/day)
nd aspirin (300 mg/day) were administered 1 day before
nd on the day of the procedure. Pigs were sedated using 3
g/kg IM azaperone (Stresnil, Janssen Pharmaceutics,
eerse, Belgium) and anaesthetized using an IV bolus of
etamine (1 mg/kg Anesketin, Eurovet, Heusden-Zolder,
elgium) followed by a 10 mg/kg/h continuous infusion of
% propofol (AstraZeneca, Brussels, Belgium). Pigs were
echanically ventilated using a 50% oxygen gas mixture.
entilation was adjusted to maintain physiologic PaCO2

nd pH. Continuous electrocardiographic monitoring of heart
ate, rhythm, and ST-segment changes was performed.

An 8-F catheter was introduced into the right carotid
rtery to measure blood pressure and to access the coronary
rteries for angiography. At selected time points, a 6-F

ikro-Tip pressure transducer catheter (Millar Instru-
ents, Houston, Texas) or a pigtail catheter was inserted via
he left carotid artery into the LV to measure maximum and t
inimum rates of LV pressure
evelopment or to inject colored
icrospheres, respectively. All

emodynamic recordings were
ade for 1 minute at a sampling

ate of 2,000/s before ischemia,
fter 40 min of cardiac ischemia,
nd at 30, 60, and 240 min of
eperfusion. Data were processed
sing PowerLab recording and
nalysis software (AD Instru-
ents, Oxfordshire, United
ingdom). A third 8-F catheter
as inserted into the descending

orta via the left femoral artery
nd was used for blood sampling and reference blood flow
easurements (using microspheres).
Transient ischemia of the anterior wall was induced by

nflating a properly sized balloon-mounted stent for 50 min
n the left anterior descending coronary artery (LAD) distal
o the first diagonal branch. Coronary artery occlusion was
onfirmed by contrast injection and by electrocardiographic
T-segment elevation. After 50 min, the LAD balloon was
eflated and restoration of normal coronary flow was doc-
mented by angiography.
After reperfusion for 240 min, the pigs were killed using

n overdose of pentobarbital, and the hearts were excised.
he LV was sectioned into 5 slices perpendicular to the
eart base-apex axis, tissue sections were prepared for
riphenyl tetrazolium chloride staining and histology, and
iopsy specimens were obtained for myeloperoxidase
MPO) activity, total oxidized nitric oxide species (NOx),
nd microsphere analysis.
xperimental protocols. Pigs were randomly assigned to

eceive saline (control; n � 14), iNO (n � 12), or intrave-
ous nitroglycerin (IV-NTG) (n � 11) beginning 10 min
efore reperfusion. For the iNO group, NO (80 ppm) was
dded to the gas mixture used for ventilation using the
NOvent delivery system (INO Therapeutics, Clinton, New
ersey). For the IV-NTG group, nitroglycerin was admin-
stered intravenously at the rate of 2 �g/kg/min. All
herapies were continued throughout the reperfusion period.

etermination of myocardial area at risk and infarct
ize. After euthanasia, the LAD was reoccluded by infla-
ion of a balloon in the stent, and 2% Evan’s blue (2%) was
njected into the left atrium to outline the area at risk
AAR). A transversely sectioned midventricular slice of the
xplanted heart was then incubated in 2,3,5-
riphenyltetrazolium chloride (1.4%) at 37°C to evaluate
iability. The extent of the infarct size (percentage of AAR)
as determined by planimetry on a Zeiss KS300 microscope
sing National Institutes of Health image software inde-
endently by 3 experienced investigators blinded to the
reatment group.

yocardial myeloperoxidase activity. Myocardial samples

Abbreviations
and Acronyms

AAR � area at risk

iNO � inhaled nitric oxide

LV � left
ventricle/ventricular

MPO � myeloperoxidase

MVO � microvascular
obstruction

NO � nitric oxide

NOx � oxidized nitric oxide
species

NTG � nitroglycerin
aken from the infarct zone, border
 zone, and remote areas
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ere frozen in liquid nitrogen. The MPO activity was
etermined as described previously (18). The MPO activity
n the supernatant was determined by measuring the
hanges in absorbance (450 nm) at 0.5, 1.5, 5, 7, 10, 20, 30,
nd 40 min (ELx 808 Ulytra microplate reader, Bio-Tek
nstruments, Winooski, Vermont). MPO activity is ex-
ressed as units/mg protein. Myeloperoxidase activity in
lasma at baseline and at the end of reperfusion was
uantified by measuring the oxidation of guaiacol at A470 at
5°C. One unit is defined as the amount that consumes 1
mol H2O2 per min at 25°C, and results are expressed as
/ml plasma.
ardiac necrosis markers. Arterial blood samples were

ollected at baseline, after 15 and 40 min of ischemia, and
very half hour during reperfusion for cardiac creatine
hosphokinase (CK)-MB measurements, and all samples
ere analyzed at a central core clinical chemistry laboratory

University of Leuven). To quantitate the overall release of
K-MB over the 4-h reperfusion period, CK-MB versus

ime curves were plot fitted, and area under the curve
AUC) was derived, using the method reported by Vollmer
t al. (19)
egional blood flow measurements. To measure regional
yocardial blood flow, 2 million colored microspheres

15-�m diameter; Triton Technologies, San Diego, Cali-
ornia) were diluted in 10 ml saline, and different colors
ere injected into the LV at baseline, 40 min after occlu-

ion, and at 4 h after reperfusion in 24 pigs (8 per group)
20). After killing, myocardial samples were obtained from
ndocardial and epicardial layers of the infarct and border
ones, digested in 4 mol/l KOH with 1% Tween-80, and
ltered. Microspheres were eluted using di-(ethylene glycol)
thyl ether acetate and analyzed using a luminescence
pectrophotometer (8453E UV-visible spectroscopy system,
gilent, Santa Clara, California).
istologic markers of neutrophil infiltration and cardi-

myocyte apoptosis. Myocardial 5-�m sections from
araffin-embedded biopsy specimens of the infarct, border,
nd remote zones were stained with hematoxylin-eosin and
n antiserum specific for MPO. Hemorrhage and the
umber of infiltrating neutrophils were semiquantitatively
valuated by an experienced pathologist (E.V.), blinded to
he treatment groups, using a scoring system where 0
ndicated reaction absent, 0.5 minimal reaction, 1 mild
eaction observed only at high-power magnification, 2
oderate reaction observed at low power, and 3 severe

eaction.
Apoptosis in the border zone was evaluated using termi-

al dUTP nick-end labeling (TUNEL) with an in situ cell
eath detection kit (Roche Diagnostics, Vilvoorde, Bel-
ium) according to the manufacturer’s instructions. Apo-
totic rate was expressed as the percentage of TUNEL-
ositive nuclei divided by total number of nuclei, calculated
n 10 randomly selected high-power fields of the border

one. o
issue and plasma NOx and nitrite measurements. Myo-
ardial transmural biopsies taken from the infarct, border,
nd remote zones were weighted and homogenized in 400
l 0.5 mol/l NaOH using a Ribolyzer (Hybaid, Ashford,
nited Kingdom). Samples kept on ice for 15 min were
eproteinized with an equal volume of 10% zinc sulfate,
recipitates were centrifuged at 14,000 g, and total NOx was
etermined in the supernatant using ozone-based chemilu-
inescence after injection in vanadium (III)-chloride reduc-

ants in line with the Sievers Model 280 NO analyzer
Boulder, Colorado) (21,22). Arterial blood samples were
ollected at baseline, 45 min after occlusion, and at 30, 120,
nd 240 min of reperfusion into lithium-heparin tubes and
rocessed immediately to determine plasma total NOx and
lasma nitrite levels using triiodide-based gas phase chemi-

uminescence (Sievers 280) (22,23).
tatistical analysis. Statistical analyses were performed
sing SAS statistical software (version 9.12, SAS Institute,
ary, North Carolina). Data are expressed as mean �
EM. Analysis of variance followed by a Bonferroni or
isher correction was used to analyze differences between
roups with normally distributed data. Repeated measure-
ent analysis of variance was used to test serial hemody-

amic values obtained at different time points during the
xperimental protocol. Because MPO activity in myocardial
issue did not follow a normal distribution, Kruskal-Wallis
onparametric statistics were reported, and differences be-
ween groups were identified using a Mann-Whitney or

ilcoxon test. A p value of �0.05 was considered to be
tatistically significant.

esults

linical course and ischemic complications. Of the 37
igs subjected to coronary artery occlusion and randomized,
animal in the control group and 1 in the IV-NTG group

ied because of ventricular fibrillation during the ischemia.
entricular fibrillation also occurred during reperfusion in 3

ontrol, 2 IV-NTG, and 1 iNO pig, but all were successfully
ardioverted. Blood gas analysis performed at baseline and
uring reperfusion confirmed normal oxygenation and ven-
ilatory parameters, and no increase in methemoglobin
evels was observed with NO inhalation (data not shown),
uggesting effective methemoglobin reductase activity (24).

emodynamic measurements and left ventricular func-
ion. There were no differences between the groups at
aseline in heart rate, mean arterial blood pressure (MAP),
r maximal and minimal rates of pressure development
dP/dtmax and dP/dtmin, respectively). Heart rate increased
odestly in all groups during I/R (Table 1), and MAP

ecreased 40 min after ischemia in all 3 groups. The MAP
urther decreased during the early reperfusion period only in
he IV-NTG group. The LV dP/dtmax and dP/dtmax cor-
ected for instantaneous pressure (dP/dtmax/IP) decreased
0 min after balloon occlusion in all groups, but by the end

f reperfusion only IV-NTG pigs showed a further reduc-
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ion in both systolic and diastolic function (Table 1). In
ontrast, this progressive decline in LV function was not
bserved in iNO pigs, suggesting that NO inhalation is safe
nd may have a favorable effect on LV contractile function
Table 1).
valuation of myocardial infarction. To investigate
hether or not IV-NTG or iNO reduces cardiac injury
pon reperfusion, infarct size as a fraction of AAR was
easured using planimetry (Fig. 1). In addition, release of
K-MB in serum was followed over time. The IV-NTG

reatment did not significantly decrease myocardial infarc-
ion (MI) size as a fraction of AAR. Compared with control
igs, iNO reduced MI size by 47% (Fig. 1). Serum CK-MB

evels were less in iNO pigs than in control and IV-NTG
igs beginning 90 min after reperfusion (p � 0.05) (Fig. 2),
nd the AUC for CK-MB showed a trend in favor of
NO-treated pigs (p � 0.06 vs. control; p � 0.07 vs.
V-NTG).
egional myocardial blood flow during I/R. To investi-
ate whether or not NTG infusion or NO breathing during
eperfusion was associated with improved microvascular
ow, we compared colored microsphere distribution in
ndocardial and epicardial regions at baseline and at the end
f reperfusion in the 3 groups of pigs (Fig. 3). In control
igs after I/R, endocardial blood flow was absent in the
nfarct core and severely reduced in the border zone (7 �
1% of baseline blood flow), and epicardial flow was
arkedly reduced in the infarct core and in the border zone

Hemodynamic Data at Baseline, End of Ischemi

Table 1 Hemodynamic Data at Baseline, En

Baseline Ischemia 40 m

HR (beats/min)

Control 95 � 9 115 � 7*

iNO 108 � 13 113 � 10

IV-NTG 91 � 10 100 � 10

MAP (mm Hg)

Control 80 � 4 75 � 6

iNO 79 � 5 69 � 4

IV-NTG 84 � 5 75 � 3

dP/dtmax (mm Hg/s)

Control 2,089 � 170 1,791 � 179

iNO 2,045 � 154 1,546 � 131

IV-NTG 2,219 � 226 1,726 � 216

dP/dtmin (mm Hg/s)

Control �1,254 � 153 �1,105 � 145

iNO �1,530 � 206 �933 � 121

IV-NTG �1,417 � 141 �962 � 81*

dP/dtmax/IP

Control 45.2 � 3.8 40.2 � 3.3

iNO 44.7 � 4.6 34.1 � 3.0*

IV-NTG 44.1 � 5.4 34.8 � 4.6*

Values are presented as mean � SEM; n � 13 in control; n � 12 in iNO
compared with ischemia.

dP/dtmax and dP/dtmin � maximum and minimum rates of left ven
nitric oxide; IP � instantaneous pressure; IV-NTG � intravenous nitrog
6 � 12% and 8 � 10%, respectively). In contrast, in iNO g
igs, regional blood flow was better preserved in the
ndocardial infarct and border zone (18 � 9% and 43 �
2% respectively; p � 0.05 vs. control for both), as well
s in the epicardial infarct and border zones (35 � 11 and
4 � 9%, respectively; p � 0.05 vs. control for both). The
V-NTG did not significantly increase endocardial and
picardial blood flow in the infarct area or border zone
Fig. 3).

istologic analysis and myeloperoxidase activity in myo-
ardium and plasma. After ischemia and reperfusion, se-
ere hemorrhage was detected predominantly in the infarct
rea of control pigs and was less prominent in the IV-NTG
nd iNO pigs (Figs. 4A to 4C). The semiquantitative
emorrhage score was less in iNO than in control pigs (0.1

0.1 vs. 0.9 � 0.3; p � 0.05) (Fig. 5A). To investigate
hether or not differences in reperfusion injury were asso-

iated with altered infiltration of leukocytes, we counted the
umber of infiltrating neutrophils and measured MPO
ctivity in the reperfused myocardium. Neutrophil infiltra-
ion in the infarct zone of control and IV-NTG pigs was
ignificantly greater than in iNO pigs (Figs. 4D to 4F). The
eutrophil infiltration score was less in iNO than in control
igs (0.9 � 0.2 vs. 1.8 � 0.2 and 1.0 � 0.2 vs. 1.7 � 0.2 in
he infarct and border areas, respectively; p � 0.05, Kruskal-

allis test) but was unaffected by IV-NTG (1.7 � 0.2 and
.2 � 0.2 in the infarct and border areas, respectively) (Fig.
B). The MPO activity was significantly greater in the
nfarct and border areas than in the remote area in all of the

d at Reperfusion

schemia, and at Reperfusion

Reperfusion

30 min 60 min 240 min

110 � 8 116 � 9* 100 � 7

126 � 10 115 � 11 120 � 13

99 � 8 100 � 12 71 � 7†

75 � 6 76 � 6 69 � 5

71 � 3 69 � 4 72 � 4

68 � 4* 75 � 5 71 � 8

1,802 � 160* 1,774 � 127* 1,431 � 106*

1,708 � 113 1,603 � 156* 1,583 � 173*

1,678 � 224* 1,767 � 220* 1,327 � 138*†

�1,013 � 134 �1,041 � 127 �903 � 118*

�1,067 � 91* �1,030 � 113* �1,089 � 145*

�792 � 85* �894 � 100* �607 � 73*†

40.3 � 3.0 41.3 � 2.4 37.7 � 2.6*

40.4 � 3.0 40.0 � 4 38.7 � 4.3*

36.0 � 5.3* 37.4 � 4.9* 29.5 � 2.9*†

� 10 in IV-NTG groups. *p � 0.05 compared with baseline; †p � 0.05

pressure development, respectively; HR � heart rate; iNO � inhaled
; MAP � mean arterial blood pressure.
a, an

d of I

in

*

*

*

*

; and n
roups (data not shown). There was no difference in MPO
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ctivity in the remote myocardium between the groups.
owever, MPO activity in the infarct area was significantly

ess in the iNO group than in the control group (0.8 � 0.2
/mg vs. 2.3 � 0.8 U/mg protein; p � 0.05), whereas

V-NTG did not reduce MPO (1.4 � 0.4 U/mg protein;
� 0.2 vs. control) (Fig. 5B). In additional animals we also
easured the MPO activity in plasma, as a marker of

Control
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Figure 1 iNO Reduces Infarct Size After Ischemia-Reperfusion I

(Top) Evan’s blue and triphenyl tetrazolium chloride staining of representative tran
artery occlusion (50 min) and reperfusion (4 h) treated with saline (control), inhale
eated by the absence of dark blue staining (indicated by oblique lines); viable myo
Quantitative measurement of left ventricular area at risk (% LV, left) and infarct siz
0.05 versus control.
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Figure 2 CK-MB Isoform Release
During Ischemia and Reperfusion

Creatine phosphokinase-MB isoform (CK-MB) levels measured in plasma sam-
ples obtained at baseline (time 0), during 50 min of ischemia, and 30, 60, 90,
120, 180, and 240 min after reperfusion. Arrow indicates time of reperfusion.
Data are shown as mean � SEM; *p � 0.05 versus control and IV-NTG. Abbre-
viations as in Figure 1.
eutrophil activation, and observed a significant increase in
he control pigs (from 0.27 � 0.04 U/ml at baseline to
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Figure 3 Regional Myocardial Blood
Flow After 4 h of Reperfusion

Endocardial and epicardial regional myocardial blood flow in the infarct area and
border zone of pigs receiving saline infusion (control), iNO, or IV-NTG. Data are
shown as mean � SEM; *p � 0.05 versus control. Abbreviations as in Figure 1.
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NO (from 0.33 � 0.01 at baseline to 0.36 � 0.01 U/ml at
he end of reperfusion).

Cell death rate, expressed as the percentage of nuclei
hich were TUNEL positive, was significantly less in the
order zone of iNO pigs compared with control and
V-NTG pigs (16 � 2 vs. 28 � 1 and 26 � 2, respectively;
� 0.01 for both) (Figs. 4G to 4I, Fig. 5C).

Hemorrhage
(H&E)

Leukocytes
(MPO)

Apoptosis
(TUNEL)

A B

D E

G H

Control

Figure 4 Histologic Analysis of Representative Myocardial Sec

Hematoxylin and eosin (H&E) staining (A to C) shows severe hemorrhage in the in
(MPO) immunostaining in the border zone (D to F) indicates neutrophil infiltration
end labeling (TUNEL) staining for apoptosis (G to I) indicates less apoptosis in the
I). Abbreviations as in Figure 1.
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n the infarcted area of iNO pigs were greater than in
ontrol or IV-NTG pigs. Moreover, IV-NTG did not alter
Ox levels in infarct, border, and remote zones. To

nvestigate whether or not the cytoprotective effect of iNO
s associated with increased myocardial cyclic guanosine

onophosphate (cGMP) levels, we measured myocardial
GMP concentrations in 7 iNO, 8 IV-NTG, and 7 control
igs. The cGMP concentrations in the infarcted myocar-
ium of iNO-treated animals were significantly higher than
n IV-NTG–treated or control animals (0.41 � 0.28
mol/mg protein vs. 0.18 � 0.11 and 0.07 � 0.06; p � 0.02
nd 0.001, respectively).

In additional animals, plasma total NOx and nitrite levels
ere measured at baseline, at 45 min after occlusion, and at
0, 120, and 240 min into reperfusion with and without
NO (n � 4 per group). In the iNO group, but not in
ontrol pigs, plasma NOx levels increased after I/R in a
ime-dependent manner (p � 0.05) (Fig. 6B). In addition,
e did not see a consistent increase in plasma nitrite levels
ith iNO (from 0.57 � 0.25 �mol/l to 0.87 � 0.46 �mol/l
s. from 0.29 � 0.11 �mol/l to 0.15 � 0.05 �mol/l in
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Figure 6 NOx in Myocardial Tissue
and Plasma During Ischemia-Reperfusion Injury

(A) Myocardial oxidized nitric oxide species (NOx) levels in the infarct, border,
and remote zones of the porcine heart after 40 min of ischemia and 4 h of
reperfusion. Data are expressed as mean � SEM. *p � 0.05 compared with
border and remote zone in iNO; p � 0.01 versus infarct zone in IV-NTG pigs;
and p � 0.001 versus infarct zone in control animals. n � 8 per group.
(B) Plasma NOx levels after 45 min of ischemia, and 30, 60, 120, and 240
min of reperfusion. Data are expressed as mean � SEM. *p � 0.05. n � 4
per group. Abbreviations as in Figure 1.
ontrol animals). x
iscussion

n this study, we report that inhalation of 80 ppm NO
tarting just 10 min before restoration of blood flow to an
schemic myocardial territory protects against cardiac reper-
usion injury in pigs. The NO breathing was safe, and the
rotection observed with iNO compared favorably to the
ffects of IV administration of the pharmacologic NO donor
TG. Inhalation of NO did not increase the frequency of

rrhythmias and did not reduce systemic blood pressure,
hereas IV-NTG infusion reduced blood pressure, as well

s systolic and diastolic function, after I/R. Inhalation of
O, but not infusion of NTG, significantly reduced myo-

ardial infarct size and decreased the release of CK-MB, a
arker of cardiac necrosis, while augmenting microvascular

erfusion in the infarct core and border zone. Protection
rom reperfusion injury by iNO was associated with a
eduction in infiltrating neutrophils and MPO activity in
he infarct and border area and by a cytoprotective effect on
ardiomyocytes in the ischemic border region. Inhaled NO,
ut not IV-NTG, significantly increased myocardial NOx
evels and cGMP concentrations in the infarct area during
eperfusion.

Inhaled NO has traditionally been considered to be a
elective pulmonary vasodilator devoid of significant sys-
emic hemodynamic effects, presumably because NO reach-
ng the bloodstream immediately interacts with oxyhemo-
lobin to form methemoglobin and bioinactive nitrate (25).
et, systemic effects of breathing NO have been observed in
nimal models, including reduction of neointimal formation
n balloon-injured rat carotid arteries (26), platelet-

ediated cyclic flow variations in canine coronary arteries
27), platelet activation and aggregation in rats (28), vaso-
onstriction and leukocyte recruitment in feline mesenteric
icrovessels subjected to I/R (29), and myocardial dysfunc-

ion in endotoxemic rats (30). Taken together with our
tudies on cardiac I/R injury in mice (17) and, in the present
tudy, pigs, these data strongly support the concept that
NO can importantly influence systemic vascular beds.

There are several possible mechanisms by which iNO can
licit systemic effects. One possibility is that iNO may
odify circulating cells (including leukocytes and platelets)

s they pass through the lungs, inhibiting their ability to
licit I/R injury. In this respect, we have observed that iNO
an fully prevent the increase in both plasma and tissue
yeloperoxidase levels following I/R injury. Alternatively,

NO may form S-nitrosothiols or NO-heme complexes in
lasma proteins or in circulating cells with regeneration of
O in systemic vascular beds. A third possibility is that

NO may react with superoxide to form peroxynitrite, which
n turn may have dose-dependent cardioprotective effects
gainst I/R (31,32). Finally, iNO may be converted to
itrite, likely via a plasma NO oxidase such as ceruloplasmin
33). Nitrite may be converted back to NO in an acidic/
ypoxic environment present in reperfused myocardium by

anthine oxidase (34,35) or deoxyhemoglobin (36,37). Al-
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ernatively, it may protect myocardium from I/R-induced
njury via NO-independent signaling (38).

The present data do not allow us to conclusively distin-
uish between these mechanisms, and several mechanisms
ay act in concert. We observed a trend toward increased

lasma nitrite levels after NO inhalation in the pigs, which
s in agreement with earlier observations in plasma and red
lood cells of mice breathing NO (17) and with reports that
itrite administration attenuated cardiac I/R injury in mice
39). We also observed that iNO significantly augmented
lood plasma NOx levels and tissue NOx levels, specifically
n the infarct zone of pig hearts subjected to I/R. These
atter findings may support the hypothesis that increased
itrite levels in NO-breathing pigs are converted to NO
electively in ischemic myocardium. However, we cannot
xclude other explanations, including the possibility that
reathing NO induces NO synthesis in ischemic
yocardium.
The beneficial effects of iNO on reperfusion injury may

e attributable to its ability to improve microvascular func-
ion. It has long been recognized that microvascular injury
ypically develops after ischemia (40). We started NO
dministration before restoring myocardial blood flow to
est its efficacy as adjunctive therapy at the onset of
eperfusion, a clinically attractive window for myocardial
rotection. Because porcine hearts lack collateral circulation,
t is unlikely that NO reached the ischemic myocardium
uring coronary occlusion. Confirming earlier observations

n mice (17), the present data clearly demonstrate that iNO
educes neutrophil infiltration and plasma and tissue MPO
ctivity after myocardial I/R. Inhaled NO may attenuate
dherence and activation of leukocytes to injured endothe-
ium, decreasing production of reactive oxygen species in the
eart. Leukocyte extravasation and degranulation, as re-
ected by increased MPO levels, can exacerbate vascular

nflammation, impair endothelium-dependent relaxation,
nd obstruct coronary flow (41). Interestingly, it has recently
een reported that MPO can aggravate this inflammatory
esponse by acting as an NO oxidase and reducing local NO
ioavailability in rodent models of endotoxemia (42) and
yocardial I/R (43). Alternatively, iNO may exert its

ardioprotective effects as a direct scavenger of superoxide
adicals (44) or as downstream mediator of ischemic post-
onditioning (45,46).

Inhaled NO reduced myocardial injury, at least in part, by
ecreasing cardiomyocyte apoptosis. We observed that
UNEL-positive cardiomyocytes were 50% less frequent in

he border zone of iNO pigs than in control and IV-NTG
igs. Low levels of NO can directly prevent apoptosis in
solated cardiac myocytes (47,48). Alternatively, iNO may
ecrease apoptosis by attenuating injurious signals (e.g.,
ctivated neutrophils), scavenging superoxide radicals (49),
r by improving myocardial perfusion.
Importantly, iNO, but not IV-NTG, dramatically de-

reased MVO in the infarct and border zones after cardiac

/R. Although direct infusion of a NO donor significantly h
nd potently decreases platelet activation in vivo and has a
ardioprotective effect (50,51), the greater efficacy of iNO
ay be attributable in part to enhanced bioavailability. We

ave calculated that the total amount of NO that is made
ioavailable during 4-hour inhalation of 80 ppm NO is
bout 14-fold higher than during a continuous NTG
nfusion of 2 �g/kg/min (data not shown). The greater NO
ioavailability is also associated with increased plasma NOx
evels and higher cGMP levels in the reperfused postisch-
mic territory.
linical implications. Despite restoration of brisk epicar-
ial flow in the great majority of patients presenting with
yocardial infarction and following extracorporeal circula-

ion during bypass surgery, myocardial recovery often re-
ains suboptimal, with considerable morbidity and mortal-

ty. Microvascular obstruction after successful coronary
nterventions is associated with a poor prognosis (52,53).
imple assessment of the myocardial microcirculation using
yocardial blush grades allows stratifying the prognosis of

igh-risk coronary patients into excellent, intermediate, or
oor survival (54). Thus far, randomized pharmacologic
herapies targeting the MVO associated with I/R injury
ave failed to further improve myocardial perfusion and
urvival (9). The present findings strongly suggest that iNO
an significantly improve myocardial blood flow upon reper-
usion of occluded epicardial arteries and, thereby, has the
otential to beneficially affect one of the most important
eterminants of clinical outcome and recovery of LV func-
ion in patients with acute coronary syndromes. Although
-arginine and NO-donor compounds may be considered

or the treatment of I/R injury in peripheral vascular disease
where effects on systemic blood pressure are less critical),
he present data in a porcine MI model suggest that iNO
ay be a particularly attractive and safe alternative strategy,

ecause it does not compromise blood pressure.
tudy limitations. We administered only a single dose of
O (80 ppm) for inhalation, based on previous studies in
ice (17) and cannot exclude whether higher or lower doses
ould have been more effective (44). The advantage of

ower doses would be decreased risk of methemoglobin and
ardiac peroxynitrite formation. We also chose a single dose
f IV-NTG to reflect routine clinical practice (55), and we
annot exclude different results with higher doses. The
uration of therapy was maintained for 4 h, but shorter or

onger treatment regimens may be equally or more effective
nd warrant future investigation. Finally, the effect of a
eduction in infarct size observed in this study on the
ubsequent development of heart failure remains to be
etermined.

onclusions

hese results demonstrate that treatment with iNO at 80
pm in pigs during myocardial ischemia and reperfusion is
afe and confers protection against reperfusion injury. In-

aled NO represents an attractive novel strategy for the
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reatment of post-MI reperfusion injury and microvascular
ysfunction.
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