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Abstract

For n > d/2, the Sobolev (Bessel potential) space Hn(Rd ,C) is known to be a Banach algebra with
its standard norm ‖ ‖n and the pointwise product; so, there is a best constant Knd such that ‖fg‖n �
Knd‖f ‖n‖g‖n for all f,g in this space. In this paper we derive upper and lower bounds for these constants,
for any dimension d and any (possibly noninteger) n ∈ (d/2,+∞). Our analysis also includes the limit
cases n → (d/2)+ and n → +∞, for which asymptotic formulas are presented. Both in these limit cases
and for intermediate values of n, the lower bounds are fairly close to the upper bounds. Numerical tables
are given for d = 1,2,3,4, where the lower bounds are always between 75 and 88% of the upper bounds.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of Sobolev spaces contains a lot of inequalities which involve real constants; often,
the classical arguments employed to prove these inequalities allow to infer the existence of such
constants, but are unsuitable to evaluate them accurately. On the other hand, a precise knowledge
of these constants is desirable for several reasons: apart from the intrinsic interest of the problem,
there are many applications where a fully quantitative analysis relies on these numbers.
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The inequality analyzed in this paper refers to the pointwise multiplication in Hn(Rd,C) for
any n > d/2. We are interested in the best constant Knd such that

‖fg‖n � Knd‖f ‖n‖g‖n

for all f,g ∈ Hn(Rd ,C), where ‖ ‖n is the standard norm of this space (see Eqs. (1.2), (1.3) later
on in this Introduction, and Eq. (2.1) in the next section).

The constants Knd are relevant in relation to PDEs with polynomial nonlinearities, since they
allow precise estimates on certain approximation methods and on blow up phenomena. To cite
only one example, we refer to the semilinear heat equation in one space dimension discussed in
[10]; here, an estimate on K11 has been employed to compute the error of the Galerkin approxi-
mate solutions, and the blow up times for certain initial data.

Evaluating Knd for arbitrary n and d is a nontrivial task. For example, let the problem be
formulated in the variational language: maximize ‖fg‖n with the constraints ‖f ‖n = ‖g‖n = 1;
if n is integer one can write the corresponding Euler–Lagrange equations, but these form a cubic
system of PDEs of order 2n for f and g.

Due to the difficulty of the problem, one could be satisfied even if, in spite of the exact value
of Knd , one had sufficiently close lower and upper bounds for it. Such bounds are proposed in
this paper, for any integer d and (possibly noninteger) n ∈ (d/2,+∞). Our upper bounds depend
on an accurate use of the Fourier transform and of the convolution: the conclusion of this analysis
is an inequality

Knd � K+
nd,

where K+
nd is the sup on [0,+∞) of a function of hypergeometric type. This sup is easily evalu-

ated, analytically in certain cases and numerically otherwise.
The lower bounds we propose follow directly from the inequality that defines Knd , choosing

for f and g appropriate trial functions: these often depend on one or two real parameters, so
one gets the highest lower bound from the chosen functions maximizing with respect to the
parameters. In any case, this procedure gives inequalities of the form

K−
nd � Knd,

where K−
nd depends on the trial functions: we will consider two specific choices, giving rise

to what we call the “Bessel” or “Fourier” lower bounds. Both types of bounds are expressible
via special functions of hypergeometric type, or by one-dimensional integrals which are easily
computed numerically. For given values of n and d , the best available estimate from below for
Knd is obtained choosing for K−

nd the highest between the Bessel and the Fourier bounds. For
certain values of n only one kind of lower bound is easily computed, so one must be content with
it. Our investigation also includes the limit cases n → (d/2)+ and n → +∞; the second limit
requires the asymptotic analysis of certain integrals, which is performed via the Laplace method.
To give an idea of our results, we summarize some of them.

(i) For n → (d/2)+,

K+
nd = Md√

[
1 + O

(
n − d

)]
,

n − d/2 2
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where Md is an explicitly given constant (see the next section, Eq. (2.6)); on the other hand,
denoting with K−

nd a conveniently chosen Bessel lower bound, one finds

K−
nd =

√
2

3

Md√
n − d/2

[
1 + O

(
n − d

2

)]
;

so, in this limit K+
nd/K−

nd → √
2/3 > 0.816.

(ii) For n → +∞,

K+
nd = Td

(2/
√

3)n

nd/4

[
1 + O

(
1

n

)]
,

with Td another explicitly given constant (see Eq. (2.7)). On the other hand, denoting with K−
nd

an appropriate Fourier lower bound, one finds

K−
nd = (5/3)1/2

71/4
Td

(2/
√

3)n

nd/4

[
1 + O

(
1

n

)]
;

thus, K+
nd/K−

nd → (5/3)1/27−1/4 > 0.793.
(iii) For d = 1,2,3,4 we have explored the whole interval n ∈ (d/2,+∞), choosing for each

K−
nd the most convenient Bessel or Fourier lower bound and comparing it with the upper bound

K+
nd ; for the sample values of n we have considered, K+

nd/K−
nd ranges between 0.750 and 0.880.

A table of these upper and lower bounds is reported in the paper.
(iv) As previously said, K+

nd is the sup of a hypergeometric-like function. Even though this
is easily computed numerically, to avoid this burden one can use a majorant K++

nd � K+
nd . We

define K++
nd using only elementary functions of n; this bound reproduces correctly the asymptotic

behavior of K+
nd for n → (d/2)+, n → +∞, and for 1 � d � 7 is very close to it on the whole

range (d/2,+∞).
At the end of this Introduction we will give some details on the organization of the paper.

Before presenting this, we insert a few comments on some related literature.

Connections with previous works. In our paper [8], we estimated the constants for more general
inequalities related to multiplication in Sobolev spaces; in particular, we discussed the constants
Knad in the “tame” (or “Nash–Moser”) inequality

‖fg‖n � Knad max
(‖f ‖n‖g‖a,‖f ‖a‖g‖n

)
for d/2 < a � n and f,g ∈ Hn(Rd ,C); here ‖ ‖a is the norm of Ha(Rd,C). (The cited work
is partly related to the previous one [7], and to the subsequent one [9] on the tame functional
calculus in Sobolev spaces.) In the special case n = a, the inequality written above coincides
with the inequality of the present paper.

For arbitrary d, a,n, in [8] we derived upper and lower bounds for Knad . The lower bounds
were of the Bessel and Fourier types also considered here (with no analysis of the limit n →
(d/2)+, and a discussion of the limit a fixed, n → +∞, of course different from the present
limit n → +∞; some explicit formulas of [8] for these lower bounds are replaced here with
equivalent, but simpler versions, and we also give some new formula).
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The upper bounds for Knad were obtained by a different method than the present one for Knd ;
furthermore, if the upper estimates of [8] are applied with n = a they are found to be rougher
than the present ones on Knd .

The method we use here to get the upper bounds refines an idea which appeared in [13] in re-
lation to the multiplication in the space Hn(T,C), where T := R/(2πZ) is the one-dimensional
torus. The author of [13] was not interested in a precise estimate of the constant for multiplica-
tion, so he inserted in his argument some majorization which, although unnecessary, simplified
the proof of the convergence of a series; the upper bound on the constant for the multiplication
in Hn(T,C) arising from this simplification behaves like const.×2n for large n (see p. 294 of the
cited paper). Here we replace the one-dimensional torus with Rd , and the Fourier series with the
d-dimensional Fourier transform. The literal translation of the technique of [13] in our frame-
work would give again an upper bound for Knd behaving like 2n for n → +∞; on the contrary,
here we use only the strictly necessary majorizations and finally obtain the bound K+

nd involving
a hypergeometric function, which as explained behaves like (2/

√
3)nn−d/4 for n → +∞ and is

accurate for small n as well.

Organization of the paper. In Section 2 we state precisely all the results about the previously
mentioned upper and lower bounds for Knd . As a preparation for the proofs, in Section 3 we write
a list of known identities frequently cited in the sequel, on the following subjects: radial integrals,
radial Fourier transforms, hypergeometric functions, integrals with three Bessel functions and the
asymptotics of Laplace integrals (the last two topics are also treated in Appendices A and B). In
Section 4 we prove all statements about the upper bounds K+

nd . In Sections 5 and 6 we prove all
the results about the Bessel and Fourier lower bounds, respectively.

In the remaining part of this Introduction, we fix some notations and definitions employed
throughout the paper.

Basic notations on Rd and Fourier transforms. We consider an arbitrary space dimension d ;
the running variable in Rd is x = (x1, . . . , xd), and k = (k1, . . . , kd) when Rd is interpreted
as the “wave vector” space of the Fourier transform. We write • and | | for the inner product
and the Euclidean norm of Rd (so that |x| = √

x1
2 + · · · + xd

2, |k| =
√

k1
2 + · · · + kd

2, k • x =
k1x1 + · · · + kdxd ).

We denote with F ,F−1 :S′(Rd ,C) → S′(Rd,C) the Fourier transform of tempered distri-
butions and its inverse, choosing normalizations so that (for f in L1(Rd,C)) it is Ff (k) =
(2π)−d/2

∫
Rd dx e−ik•xf (x). The restriction of F to L2(Rd,C), with the standard inner product

and the associated norm ‖ ‖L2 , is a Hilbertian isomorphism.

Sobolev spaces. For real n � 0, let us introduce the operators

S′(Rd ,C
) → S′(Rd,C

)
, g 	→ √

1 − �
n
g := F−1

(√
1 + |k|2

n

Fg
)

(1.1)

where
√

1 + |k|2 n
means the function k ∈ Rd 	→ √

1 + |k|2 n
. The nth order Sobolev (or Bessel

potential [3]) space of L2 type and its norm are

Hn
(
Rd,C

) := {
f ∈ S′(Rd,C

) ∣∣ √
1 − �

n
f ∈ L2(Rd,C

)}
= {

f ∈ S′(Rd,C
) ∣∣ √

1 + |k|2
n

Ff ∈ L2(Rd,C
)}

, (1.2)
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‖f ‖n := ∥∥√
1 − �

n
f

∥∥
L2 =

∥∥∥√
1 + |k|2

n

Ff

∥∥∥
L2

. (1.3)

For n integer, these definitions imply

Hn
(
Rd,C

) = {
f ∈ S′(Rd,C

) ∣∣ ∇mf ∈ L2(Rd,⊗mCd
) ∀m ∈ {0, . . . , n}} (1.4)

where

∇mf := (∂λ1,...,λmf )(λ1,...,λm)∈{1,...,d}m (1.5)

and ∂λi
is the distributional derivative with respect to the coordinate xλi

. The statement ∇mf ∈
L2(Rd,⊗mCd) means that

+∞ >
∑

λ1,...,λm=1,...d

∫
Rd

dx
∣∣(∂λ1,...,λmf )(x)

∣∣2 := ∥∥∇mf
∥∥2

L2 , (1.6)

and the norm (1.3) can be written as

‖f ‖n =
√√√√ n∑

m=0

(
n

m

)∥∥∇mf
∥∥2

L2 . (1.7)

Other notations. Some useful functions. The Pochhammer symbol of a ∈ R, � ∈ N, is

(a)� := a(a + 1) . . . (a + � − 1). (1.8)

The semifactorial of an odd m ∈ N is

m!! := 1.3 . . . (m − 2)m, (1.9)

and we also define (−1)!! := 1. We refer to [1,5,14] as our standards for special functions.
In this paper, we frequently use the Gamma function and its logarithmic derivative ψ(w) :=
Γ ′(w)/Γ (w); for future reference, we write here their properties more frequently employed in
the sequel. These are: the shift formulas

Γ (w + 1) = wΓ (w), (1.10)

ψ(w + 1) = ψ(w) + 1

w
; (1.11)

the special values

Γ (1/2) = √
π, Γ (1) = 1, ψ(1/2) = −γE − 2 log 2, ψ(1) = −γE (1.12)

(with γE the Euler–Mascheroni constant); the duplication formula

Γ (2w) = 22w−1

√ Γ (w + 1/2)Γ (w); (1.13)

π
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the identity

+∞∫
0

du
uσ−1

(1 + u)γ
= Γ (σ)Γ (γ − σ)

Γ (γ )
for γ > σ > 0. (1.14)

Another function of which we make wide use is the Gaussian hypergeometric function
2F1(α,β, γ ;w) ≡ F(α,β, γ ;w). We are especially interested in the function

Fnd : [0,+∞) → (0,+∞), u 	→ Fnd(u) := F

(
2n − d

2
, n,n + 1

2
;−u

)
, (1.15)

d ∈ N \ {0}, n ∈ (d/2,+∞).

This function has the equivalent representation

Fnd(u) = 1

(1 + u)n
F

(
n,

d

2
+ 1

2
− n,n + 1

2
; u

1 + u

)
, (1.16)

following from a familiar Kummer transformation (see Section 3, where we return to some state-
ments appearing here); we also mention the special case

Fnd(u) =
n−d/2−1/2∑

�=0

(n)�(d/2 + 1/2 − n)�

(n + 1/2)��!
u�

(1 + u)n+�
for n − d

2
− 1

2
∈ N. (1.17)

As usual with Sobolev spaces, a central role in our considerations is played by the functions

Gnd : Rd → C, k 	→ Gnd(k) := 1

(1 + |k|2)n ; (1.18)

gnd : Rd → C, gnd := F−1Gnd. (1.19)

It is clear that gnd ∈ Hn(Rd ,C) if n > d/2; explicitly, one has [3,6]

gnd(x) = |x|n−d/2

2n−1Γ (n)
Kn−d/2

(|x|) (1.20)

for x ∈ Rd ; here Kν are the modified Bessel functions of the second kind, or Macdonald func-
tions.

2. Description of the main results

Let d ∈ N \ {0}. For (integer or noninteger) n > d/2, the space Hn(Rd,C) is known to be a
Banach algebra under the pointwise multiplication: see, e.g., [2].
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2.1. Definition. For n > d/2, we put

Knd := min
{
K � 0 | ‖fg‖n � K‖f ‖n‖g‖n for all f,g ∈ Hn

(
Rd,C

)}
(2.1)

and refer to this as the best (or sharp) constant for the multiplication in Hn(Rd ,C).

In the sequel we present our upper and lower bounds on Knd .

Upper bounds on Knd . These are given by the following proposition, to be proved in Section 4.

2.2. Proposition. (i) For all n > d/2,

Knd � K+
nd :=

√
sup

u∈[0,+∞)

Snd(u). (2.2)

Snd : [0,+∞) → (0,+∞), Snd(u) := Γ (2n − d/2)

(4π)d/2Γ (2n)
(1 + 4u)nFnd(u), (2.3)

with Fnd as in Eq. (1.15) or (1.16). Snd is bounded, and its boundary values for u = 0, u → +∞
are

Snd(0) = Γ (2n − d/2)

(4π)d/2Γ (2n)
, Snd(+∞) = Γ (n + 1 − d/2)

2d−1πd/2(n − d/2)Γ (n)
. (2.4)

(ii) For d/2 < n � d/2 + 1/2 the function Snd is increasing, so that

K+
nd = √

Snd(+∞) = 1

2d/2−1/2πd/4

√
Γ (n + 1 − d/2)

(n − d/2)Γ (n)
. (2.5)

For fixed d and n → (d/2)+, this implies

K+
nd = Md√

n − d/2

[
1 + O

(
n − d

2

)]
, Md := 1

2d/2−1/2πd/4
√

Γ (d/2)
. (2.6)

(iii) For fixed d and n → +∞,

K+
nd =

√
Snd

(
1

2

)[
1 + O

(
1

n

)]
= Td

(2/
√

3)n

nd/4

[
1 + O

(
1

n

)]
, Td := 3d/4+1/4

2dπd/4
. (2.7)

Of course, in Eqs. (2.4) and (2.5) we could write Γ (n + 1 − d/2)/(n − d/2) = Γ (n − d/2);
the expression in the left-hand side has been preferred to handle the limit n → (d/2)+. Similar
choices have been made for other formulas in the sequel.
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“Bessel” lower bounds on Knd . The general method to obtain lower bounds on this constant is
based on the obvious inequality

Knd � ‖fg‖n

‖f ‖n‖g‖n

(2.8)

for all nonzero f,g ∈ Hn(Rd,C); this gives a lower bound for any pair of “trial functions” f,g.
Inspired by [8], we choose for f and g the function

gλnd(x) := gnd(λx) (2.9)

where λ ∈ (0,+∞) is a parameter and gnd is defined by Eq. (1.19). By comparison with that
equation, we find

gλnd = F−1Gλnd, Gλnd(k) := 1

λd(1 + |k|2/λ2)n
. (2.10)

To give a lower bound for Knd in terms of these functions simply amounts to compute ‖gλnd‖n,
‖g2

λnd‖n. These norms were already calculated in [8]; here we give them in a more simple and
complete form, and add an analysis of the limit case when n is close to d/2. All these facts are
described by the forthcoming proposition, to be proved in Section 5.

2.3. Proposition. (i) For all n > d/2 and λ > 0,

Knd � KB
nd(λ) := ‖g2

λnd‖n

‖gλnd‖2
n

, (2.11)

whence

Knd � KB
nd := sup

λ>0
KB

nd(λ). (2.12)

The norms in Eq. (2.11) are given by

‖gλnd‖2
n = πd/2Γ (n + 1 − d/2)

(n − d/2)Γ (n)λd
F

(
−n,

d

2
, n;1 − λ2

)
; (2.13)

‖gλnd‖2
n = πd/2

Γ (d/2)Γ (2n)λd

×
n∑

�=0

(
n

�

)
Γ (� + d/2)Γ (2n − d/2 − �)λ2� for n integer; (2.14)

∥∥g2
λnd

∥∥2
n

= πd/2Γ 2(2n − d/2)

Γ (d/2)Γ 2(2n)λd

+∞∫
duud/2−1(1 + 4λ2u

)n
F 2

nd(u), (2.15)
0
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with Fnd as in Eqs. (1.15)–(1.16);

∥∥g2
λnd

∥∥2
n

= πd/2Γ 2(2n − d/2)

Γ (d/2)Γ 2(2n)λd

n−d/2−1/2∑
�,m=0

(n)�(d/2 + 1/2 − n)�

(n + 1/2)��!
(n)m(d/2 + 1/2 − n)m

(n + 1/2)mm!

× Γ (d/2 + � + m)Γ (n − d/2)

Γ (n + � + m)
F

(
−n,

d

2
+ � + m,n + � + m;1 − 4λ2

)

for n − d
2 − 1

2 integer. (2.16)

(ii) Let d/2 < n � d/2 + 1/2. Then, for all λ > 0,

∥∥g2
λnd

∥∥2 � Gnd(λ), (2.17)

so that

KB
nd(λ) � KBB

nd (λ) :=
√

Gnd(λ)

‖gλnd‖2
, (2.18)

KB
nd � KBB

nd := sup
λ>0

KBB
nd (λ). (2.19)

Here:

Gnd(λ) := πd/2Γ 2(2n − d/2)

(n − d/2)3Γ 2(2n)λd

[
P 2

nd

Γ (n + 1 − d/2)

Γ (n)
F

(
−n,

d

2
, n;1 − 4λ2

)

− PndQnd

Γ (2n + 1 − d)

Γ (2n − d/2)
F

(
−n,

d

2
,2n − d

2
;1 − 4λ2

)

+ q2
nd

Γ (3n + 1 − 3d/2)

3Γ (3n − d)
F

(
−n,

d

2
,3n − d;1 − 4λ2

)]
; (2.20)

Pnd := Γ (n + 1/2)Γ (n + 1 − d/2)√
πΓ (2n − d/2)

, (2.21)

Qnd := Γ (n + 1/2)Γ (d/2 + 1 − n)

Γ (n)Γ (1/2 + d/2 − n)
, qnd :=

{
Qnd if Pnd � Qnd,

Pnd − (n − d/2) if Pnd < Qnd.

(In the above definition of Qnd one should intend Γ (0) := ∞, so that Qnd = 0 for n =
d/2 + 1/2.) For any fixed d , λ and for n → (d/2)+,

KBB
nd (λ) =

√
2

3

Md√
n − d/2

[
1 + O

(
n − d

2

)]
, (2.22)

with Md as in the asymptotic expression (2.6) for the upper bound K+
nd (note that

√
2/3 > 0.816).

As clarified in the sequel, the Bessel lower bounds are less interesting for large n; therefore,
it is not worth to determine their asymptotics for n → +∞.
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“Fourier” lower bounds on Knd . Another choice for the trial functions amounts to choose for
f and g the function

fpσd(x) := eipx1e−(σ/2)|x|2 (2.23)

where the “Fourier character” x → eipx1 is regularized at infinity by a Gaussian factor (we take
this hint from [8], but we develop it in a different way).

As we will see, this choice is especially interesting for large n. The Sobolev norm of any order
n of this function can be expressed using the modified Bessel function of the first kind Iν , the
Pochhammer symbol (1.8) and the semifactorial (1.9). Our results on the Fourier lower bounds
are contained in the forthcoming proposition, to be proved in Section 6.

2.4. Proposition. (i) Let n > d/2. For all p,σ > 0,

Knd � KF
nd(p,σ ) := ‖f2p,2σ,d‖n

‖fpσd‖2
n

; (2.24)

hence

Knd � KF
nd := sup

p,σ>0
KF

nd(p,σ ). (2.25)

For all p,σ > 0,

‖fpσd‖2
n = 2πd/2

σd/2+1pd/2−1

+∞∫
0

dρ ρd/2(1 + ρ2)n
e− ρ2+p2

σ Id/2−1

(
2p

σ
ρ

)
; (2.26)

in particular, for n integer,

‖fpσd‖2
n = πd/2

n∑
�=0

�∑
j=0

j∑
g=0

(
n

�

)(
�

j

)(
2j

2g

)
(2g − 1)!!

2g

× (d/2 − 1/2)�−jp
2j−2gσ �+g−j−d/2. (2.27)

(ii) Fix the attention on the “special” lower bound

KFF
nd := KF

nd

(
p = 1

2
√

2
, σ = 3

4n

)
; (2.28)

then

KFF
nd = (5/3)1/2

71/4
Td

(2/
√

3)n

nd/4

[
1 + O

(
1

n

)]
for n → +∞, (2.29)

with Td as in the asymptotic formula (2.7) for the upper bound (note that (5/3)1/2/71/4 > 0.793).
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Remark. The result (2.29) depends on the asymptotic analysis of a Laplace integral. The values
for (p,σ ) in Eq. (2.28) have been chosen because they simplify this analysis, and give rise to the
term (2/

√
3)nn−d/4 also appearing in the asymptotics (2.7) for the upper bound. One could dis-

cuss the asymptotics of KF
nd(p,σ = c/n) for arbitrary choices of p and c in (0,+∞); however,

this generalization complicates the implementation of the Laplace method and, in comparison
with (2.29), yields no sensible increase of the dominant term.

Table of the upper and lower bounds on Knd for d = 1,2,3,4 and some test values of n. This
is Table 1, which has been constructed using the upper bounds K+

nd given by Proposition 2.2,
and choosing conveniently one of the lower bounds KB

nd , KBB
nd , KF

nd , KFF
nd in Propositions 2.3

and 2.4; the chosen lower bound is generally indicated with K−
nd , and its type is specified

within the table. We have chosen the values of n within a very wide range, from d/2 + 10−4

to d/2 + 120; for a better appreciation of the discrepancy between the upper and lower bounds,
instead of K−

nd we have reported the ratio K−
nd/K+

nd .
To compute K+

nd , we must find the sup of the function Snd in Proposition 2.2, which is given
explicitly by item (ii) of the same proposition for d/2 < n � d/2 + 1/2, and must be computed
directly from the function Snd in the other cases; we have done this numerically in most cases,
and sometimes analytically: some examples are given in Section 4. For large n, the numerical
search for the maximum of Snd has been done starting from u = 1/2, as suggested by item (iii)
of Proposition 2.2.

Table 1
Bounds K−

nd
� Knd � K+

nd
for d = 1,2,3,4 and n − d/2 = 10−4, 10−2,10−1,1/4,1/2,1,3/2,3,6,15,30,60,120

(the symbol − stands for one of the types BB, B, F, FF, indicated below)

d = 1

n 1
2 +10−4 1

2 +10−2 1
2 +10−1 3/4 1 3/2 2 7/2 13/2 31/2 61/2 121/2 241/2

K+
nd

56.5 5.69 1.90 1.30 1.00 0.852 0.814 0.834 1.07 3.09 22.4 1410 6.63 × 106

K−
nd

K+
nd

0.816 0.818 0.824 0.834 0.842 0.810 0.777 0.766 0.787 0.794 0.794 0.789 0.791
(BB) (BB) (BB) (B) (B) (B) (B) (F) (F) (F) (F) (FF) (FF)

d = 2

n 1+10−4 1+10−2 1+10−1 5/4 3/2 2 5/2 4 7 16 31 61 121

K+
nd

39.9 3.99 1.27 0.798 0.565 0.428 0.378 0.332 0.361 0.831 5.08 269 1.07 × 106

K−
nd

K+
nd

0.816 0.817 0.826 0.844 0.865 0.842 0.811 0.752 0.772 0.788 0.794 0.786 0.789
(BB) (BB) (BB) (B) (B) (B) (B) (F) (F) (F) (F) (FF) (FF)

d = 3

n 3
2 +10−4 3

2 +10−2 3
2 +10−1 7/4 2 5/2 3 9/2 15/2 33/2 63/2 123/2 243/2

K+
nd

22.6 2.25 0.692 0.421 0.283 0.198 0.164 0.128 0.120 0.223 1.15 51.2 1.71 × 105

K−
nd

K+
nd

0.816 0.817 0.826 0.847 0.875 0.858 0.830 0.763 0.759 0.781 0.788 0.782 0.787
(BB) (BB) (BB) (B) (B) (B) (B) (B) (F) (F) (F) (FF) (FF)

d = 4

n 2+10−4 2+10−2 2+10−1 9/4 5/2 3 7/2 5 8 17 32 62 122

K+
nd

11.3 1.12 0.340 0.202 0.130 0.0857 0.0678 0.0473 0.0389 0.0590 0.259 9.72 2.73 × 104

K−
nd

K+
nd

0.816 0.817 0.826 0.849 0.880 0.867 0.842 0.779 0.750 0.775 0.785 0.778 0.785
(BB) (BB) (BB) (B) (B) (B) (B) (B) (F) (F) (F) (FF) (FF)
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Concerning K−
nd , we have always chosen for it the most convenient between the lower bounds

in Propositions 2.3 and 2.4 (i.e., the highest one or, in some limit cases, the most easily com-
putable).

As for the Bessel lower bounds, for n sufficiently distant from d/2 we have computed numer-
ically the function λ → KB

nd(λ) and its maximum KB
nd . For n very close to d/2, this computation

is very difficult because the integrals in KB
nd converge too slowly; in this case, we have turned

the attention to the function λ → KBB
nd (λ) and estimated numerically its maximum KBB

nd .
Concerning the Fourier lower bounds, for n not very large we have determined KF

nd maximiz-
ing numerically the function (p,σ ) → KF

nd(p,σ ); for very large n, we have turned the attention
to the bound KFF

nd which is easily computed numerically.
The Bessel lower bounds are generally higher than the Fourier ones for small n; the contrary

happens for large n.

A more accurate n → (d/2)+ asymptotics for K+
nd . This is introduced for the reasons explained

in the next paragraph. For the sake of brevity, let us put

nd := n − d

2
; (2.30)

in place of Eq. (2.6), we propose a higher order expansion

K+
nd = Md√

nd

[
1 − Ndnd + O

(
n2

d

)]
, Nd := ψ(d/2) + γE

2
. (2.31)

This is derived from the explicit expression (2.5) of K+
nd , inserting therein the expansions

Γ (1 + nd) = Γ (1) + Γ ′(1)nd + O
(
n2

d

) = 1 − γEnd + O
(
n2

d

)
, (2.32)

Γ (n) = Γ

(
d

2

)
+ Γ ′

(
d

2

)
nd + O

(
n2

d

) = Γ

(
d

2

)[
1 + ψ

(
d

2

)
nd + O

(
n2

d

)]

(recall that Γ ′(w) = Γ (w)ψ(w), and use Eq. (1.12)).

“Elementary” upper bounds K++
nd . The results (2.31), (2.7) on the asymptotics of K+

nd in the
limits n → (d/2)+, n → +∞ suggest a way to build new majorants

K++
nd � K+

nd � Knd, n ∈ (d/2,+∞), (2.33)

that are presented hereafter. Even though less precise than the + upper bounds, the ++ bounds
have the advantage of being elementary functions of n; we will show that they are very close to
the + bounds on the whole interval (d/2,+∞) up to d = 7, and fairly close to them up to d = 10.
For any d , the elementary ++ bounds reproduce the asymptotics (2.31), (2.7) of the + bounds at
the leading order.

In order to construct K++
nd , we first define a function n ∈ (d/2,+∞) 	→ znd through the

equation

K+
nd = (2/

√
3)n

nd/4

[(
3d

8

)d/4
Md√
n

(
1 − nd

n

)3/2

(1 + Vdnd) + Td

(
nd

n

)3/2

+ znd

nd

n2

]
,

d
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Vd := log

(√
3

2

)
+ 1

2
+ 3

d
− Nd, nd as in (2.30). (2.34)

This equation is easily solved for znd . From the explicit expression for znd and from the asymp-
totics (2.31) (2.7), one gets

znd = O(
√

nd) for n → (d/2)+, znd = O(1) for n → +∞; (2.35)

the coefficient Vd is defined as above just in order to give the first one of these relations.
On account of Eqs. (2.35), for fixed d the function n → znd is bounded on the interval

(d/2,+∞); this ensures the finiteness of

Zd := sup
n∈(d/2,+∞)

znd . (2.36)

Now, putting

K++
nd := (2/

√
3)n

nd/4

[(
3d

8

)d/4
Md√
nd

(
1 − nd

n

)3/2

(1 + Vdnd)

+ Td

(
nd

n

)3/2

+ Zd

nd

n2

]
, (2.37)

we see from (2.34) that K+
nd � K++

nd . From Eqs. (2.37) and (2.31), (2.7), we also infer

K++
nd

K+
nd

= 1 + O(nd) for n → (d/2)+,
K++

nd

K+
nd

= 1 + O

(
1

n

)
for n → +∞. (2.38)

The forthcoming Table 2 reports, for 1 � d � 10, the numerical values of the constants Zd in
Eq. (2.36) and of the quantities

Θd := sup
n∈(d/2,+∞)

K++
nd

K+
nd

. (2.39)

The table has been constructed in this way. First of all, for each d in the above range the function
n 	→ znd defined by (2.34) has been plotted (expressing znd in terms of K+

nd and evaluating the
latter numerically); from the graph of n 	→ znd , the sup Zd has been evaluated. Secondly, for the
same values of d the ratio K++

nd /K+
nd has been plotted as a function of n, and its sup Θd has been

evaluated from the graph.

Table 2
Constants Zd and Θd (for the elementary upper bounds K++

nd
)

d 1 2 3 4 5 6 7 8 9 10

Zd 0 0.00925 0.0458 0.0782 0.105 0.122 0.128 0.125 0.115 0.102
Θd 1.041 1.039 1.044 1.044 1.044 1.044 1.049 1.105 1.197 1.363
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3. Some background

In this section we review some known facts, frequently cited in the rest of the paper to prove
the statements of Section 2.

Some d-dimensional integrals. We frequently need to compute integrals of functions on Rd

which depend only on the radius | | (radially symmetric functions), or on the radius and one
angle. In this case, we use the formulas

∫
Rd

dx ϕ
(|x|) = 2πd/2

Γ (d/2)

+∞∫
0

dr rd−1ϕ(r); (3.1)

∫
Rd

dxχ
(|x|, η • x

) = 2πd/2−1/2

Γ (d/2 − 1/2)

×
+∞∫
0

dr rd−1

π∫
0

dθ sin θd−2χ(r, r cos θ)

(
d � 2;η ∈ Rd, |η| = 1

)
, (3.2)

holding for all (sufficiently regular) complex valued functions ϕ on (0,+∞) and χ on (0,+∞)×
(0,π). (When writing the analogous formulas for integrals on the “wave vector” space (Rd , dk),
the radius r will be renamed ρ.)

Radial Fourier transforms. Consider two (sufficiently regular) radially symmetric functions

f : Rd → C, x → f (x) = ϕ
(|x|), F : Rd → C, k → F(k) = Φ

(|k|); (3.3)

the Fourier and inverse Fourier transforms Ff , F−1F are also radially symmetric, and given
by [4]

(Ff )(k) = 1

|k|d/2−1

+∞∫
0

dr rd/2Jd/2−1
(|k|r)ϕ(r), (3.4)

(
F−1F

)
(x) = 1

|x|d/2−1

+∞∫
0

dρ ρd/2Jd/2−1
(|x|ρ)

Φ(ρ), (3.5)

where Jν are the Bessel functions of the first kind. As anticipated, the latter formula allows to
infer Eq. (1.20) of the Introduction; in this case, Eq. (3.5) is applied with Φ(ρ) = 1/(1 + ρ2)n

and the corresponding integral over ρ is given in [14, p. 434].
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Hypergeometric function. As anticipated, in this paper we use extensively the function
F(α,β, γ ;w); we are always interested in real values of the parameters α,β, γ and of the ar-
gument w. For future citation, we report here some properties of F . First of all, we cite: the
symmetry property

F(α,β, γ ;w) = F(β,α, γ ;w); (3.6)

the special values

F(α,β, γ ;0) = 1, (3.7)

F(α,β, γ ;1) = Γ (γ )Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)
for γ > α + β, γ �= 0,−1,−2, . . . ;

the particular cases

F(α,β,β;w) = (1 − w)−α, (3.8)

F(α,−m,γ ;w) =
m∑

�=0

(α)�(−m)�

(γ )�

w�

�! for m ∈ N. (3.9)

Secondly, we recall that

F(α,β, γ ;w) = Γ (γ )

Γ (β)Γ (γ − β)

1∫
0

ds sβ−1(1 − s)γ−β−1(1 − ws)−α > 0 (3.10)

for γ > β > 0, w < 1,

F (α,β, γ ;1 − w) = Γ (γ )

Γ (β)Γ (γ − β)

+∞∫
0

duuβ−1(1 + u)α−γ (1 + wu)−α > 0 (3.11)

for γ > β > 0, w > 0

((3.11) follows from (3.10) with a change of variable s = u/(1 + u)).
Thirdly, we mention the differentiation formula

d

dw
F(α,β, γ ;w) = αβ

γ
F(α + 1, β + 1, γ + 1;w); (3.12)

this formula, combined with the positivity statement in (3.10), implies

d
F(α,β, γ ;w) > 0 for α > 0, γ > β > 0, w < 1. (3.13)
dw
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Finally, we recall the Kummer transformations

F(α,β, γ ;w) = 1

(1 − w)β
F

(
β,γ − α,γ ; w

w − 1

)
, (3.14)

F(α,β, γ ;w) = (1 − w)γ−α−βF (γ − α,γ − β,γ ;w); (3.15)

the first one allows to pass from the form (1.15) to the form (1.16) for Fnd . The positivity of Fnd

is granted by (3.10). The expression (1.17) of Fnd for n − d/2 − 1/2 integer follows from (1.16)
and (3.9).

An integral involving Bessel functions. In Section 4 we will use the integral

Iμν(h) :=
+∞∫
0

dr rμ+ν+1Jμ(hr)K2
ν/2(r) (μ > −1, ν > 0, h > 0), (3.16)

involving a Bessel function of the first kind Jμ and the square of a Macdonald function Kν/2.
This is given by

Iμν(h) =
√

πΓ (μ + ν + 1)Γ (μ + ν/2 + 1)

2μ+2Γ (μ + ν/2 + 3/2)
hμ

× F
(
μ + ν + 1,μ + ν/2 + 1,μ + ν/2 + 3/2;−h2/4

)
. (3.17)

The above result is probably known, but it is not easy to trace it in the most common tables on
integrals of Bessel functions; for this reason, the proof of (3.17) is given in Appendix A.

Laplace integrals. The classical theory of these integrals is widely employed in this paper, to
discuss the n → +∞ asymptotics of our bounds on Knd .

By a standard Laplace integral, we mean an integral depending on a parameter n, of the form

L(n) :=
b∫

0

dt ϑ(t)e−nϕ(t), (3.18)

under the following assumptions:

0 < n0 < n < +∞, 0 < b � +∞; (3.19)

ϕ ∈ C1((0, b),R
)
, ϕ′(t) > 0 ∀t ∈ (0, b), lim

t→0+ ϕ(t) = 0,

ϑ ∈ C
(
(0, b),R

)
,

b∫
dt

∣∣ϑ(t)
∣∣e−nϕ(t) < +∞ for all n as above.
0
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Here and in the sequel, ′ is the derivative; we shall also put

ξ := ϑ

ϕ′ ∈ C
(
(0, b),R

)
. (3.20)

The Laplace method gives the n → +∞ asymptotics of L(n), using the idea that the major
contributions to this integral should come from the regions close to the minimum point of ϕ, i.e.,
to t = 0. (In certain cases, this asymptotics gives a fairly good approximation of L(n) also for
non-large values of n.) The asymptotic behavior of L(n) is described by the following proposition
(see, e.g., [11]; for uniformity of language, the proof is reviewed in Appendix B).

3.1. Proposition. Suppose that conditions (3.19) hold, and that

ξ(t) =
�−1∑
i=0

Piϕ(t)αi−1 + O
(
ϕ(t)α�−1) for t → 0+, (3.21)

where � ∈ {1,2, . . .}, P1, . . . ,P�−1 ∈ R, 0 < α1 < α2 < · · · < α�. Then

L(n) =
�−1∑
i=0

Pi

Γ (αi)

nαi
+ O

(
1

nα�

)
for n → +∞. (3.22)

More on Laplace integrals. By a general Laplace integral, we mean an integral depending on
a parameter n of the form

Λ(n) :=
c∫

a

ds Θ(s)e−nΦ(s), (3.23)

where

0 < n0 < n < +∞, −∞ � a < c � +∞, Φ ∈ C1((a, c),R
)
, (3.24)

Θ ∈ C
(
(a, c),R

)
,

c∫
a

ds
∣∣Θ(s)

∣∣e−nΦ(s) < +∞ for all n as above.

Under suitable conditions on Φ , Λ(n) can be expressed in terms of one or more standard Laplace
integrals. As a first example, suppose

a > −∞, Φ ′(s) > 0 for all s ∈ (a, c), Φ(a) := lim
s→a+ Φ(s) > −∞ (3.25)

(the limit certainly exists by the monotonicity of Φ , but it could be −∞); then

Λ(n) = e−nΦ(a)L(n), (3.26)

L(n) as in (3.18) with b := c − a, ϕ(t) := Φ(a + t) − Φ(a), ϑ(t) := Θ(a + t).
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Similarly, if

c < +∞, Φ ′(s) < 0 for all s ∈ (a, c), Φ(c) := lim
s→c− Φ(s) > −∞, (3.27)

we can write

Λ(n) = e−nΦ(c)L(n), (3.28)

L(n) as in (3.18) with b := c − a, ϕ(t) := Φ(c − t) − Φ(c), ϑ(t) := Θ(c − t).
As a final example, suppose

Φ ′(s) � 0 for s � h
(
h ∈ (a, c)

); (3.29)

then we can write

Λ(n) = e−nΦ(h)
[
L−(n) + L+(n)

]
, (3.30)

L∓(n) :=
b∓∫
0

dt ϑ∓(t)e−nϕ∓(t), b− := h − a, b+ := c − h,

ϕ∓(t) := Φ(h ∓ t) − Φ(h), ϑ∓(t) := Θ(h ∓ t) for t ∈ (0, b∓),

and L∓(n) are standard Laplace integrals.
In all the previous examples, after re-expressing Λ(n) in terms of standard Laplace integrals

one should expand in powers of ϕ or ϕ∓ the functions ξ := θ/ϕ′ or ξ∓ := θ∓/ϕ∓′. Assuming
sufficient smoothness for Θ and Φ , the coefficients of these expansions can be expressed directly
in terms of the derivatives of Θ and Φ at s = a, c or h, respectively [11]. In the third example,
where Φ has its minimum at an inner point h of (a, c), there is typically an alternation of equal
and opposite coefficients in the expansions of ξ− and ξ+; this yields some cancellation effects
in the expansion of L−(n) + L+(n).

4. Proofs for the upper bounds on Knd

Let us write F ∗ G for the convolution of two (sufficiently regular) complex functions F,G

on Rd , given by

(F ∗ G)(k) :=
∫

Rd

dhF (k − h)G(h). (4.1)

We have

F(fg) = 1

(2π)d/2
Ff ∗Fg (4.2)

for all sufficiently regular functions f and g on Rd (and in particular, for f,g as in the forthcom-
ing lemma).
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4.1. Lemma. For all n > d/2,

Knd �
√

sup
k∈Rd

Snd(k), (4.3)

where

Snd(k) := (1 + |k|2)n
(2π)d

(Gnd ∗ Gnd)(k) (4.4)

and Gnd(k) := 1/(1 + |k|2)n for all k ∈ Rd , as in Eq. (1.18).

Proof. Consider any two functions f,g ∈ Hn(Rd ,C). Then

‖fg‖2
n =

∫
Rd

dk
(
1 + k2)n∣∣F(fg)(k)

∣∣2 = 1

(2π)d

∫
Rd

dk
(
1 + k2)n∣∣(Ff ∗Fg)(k)

∣∣2
. (4.5)

On the other hand, by making explicit the convolution we find

(Ff ∗Fg)(k) =
∫

Rd

dhFf (k − h)Fg(h)

=
∫

Rd

dh
1√

1 + |k − h|2 n√
1 + |h|2 n

×
(√

1 + |k − h|2
n

Ff (k − h)

√
1 + |h|2

n

Fg(h)
)
. (4.6)

Now, Hölder’s inequality | ∫ dhU(h)V (h)|2 � (
∫

dh |U(h)|2)(∫ dh |V (h)|2) gives

∣∣(Ff ∗Fg)(k)
∣∣2 � Cnd(k)P (k), (4.7)

Cnd(k) :=
∫

Rd

dh

(1 + |k − h|2)n(1 + |h|2)n = (Gnd ∗ Gnd)(k),

P (k) :=
∫

Rd

dh
(
1 + |k − h|2)n∣∣Ff (k − h)

∣∣2(1 + |h|2)n∣∣Fg(h)
∣∣2

.

Inserting (4.7) into Eq. (4.5) we get

‖fg‖2
n � 1

(2π)d

∫
Rd

dk
(
1 + |k|2)n

Cnd(k)P (k)

�
(

sup
k∈Rd

(1 + |k|2)n
(2π)d

Cnd(k)

)∫
d

dkP (k) =
(

sup
k∈Rd

Snd(k)

)∫
d

dkP (k). (4.8)
R R
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But ∫
Rd

dkP (k)

=
(∫

Rd

dk
(
1 + |k|2)n∣∣Ff (k)

∣∣2
)(∫

Rd

dh
(
1 + |h|2)n∣∣Fg(h)

∣∣2
)

= ‖f ‖2
n‖g‖2

n, (4.9)

so we are led to the thesis. �
4.2. Lemma. For n > d/2 and k ∈ Rd ,

Snd(k) = Snd

( |k|2
4

)
, (4.10)

where Snd is the function in Eq. (2.3) of Proposition 2.2.

Proof. Let us recall that Gnd is the Fourier transform of the function gnd , already considered in
Eqs. (1.19), (1.20). We have

Snd(k) = (1 + |k|2)n
(2π)d

(Fgnd ∗Fgnd)(k) = (1 + |k|2)n
(2π)d/2

(
Fg2

nd

)
(k). (4.11)

But g2
nd is a radially symmetric function, whose explicit expression in terms of the Macdonald

function is given by (1.20). We insert this expression in formula (3.4) for the radially symmetric
Fourier transform and obtain

(
Fg2

nd

)
(k) = 1

22n−2Γ 2(n)|k|d/2−1

+∞∫
0

dr r2n−d/2Jd/2−1
(|k|r)K2

n−d/2(r); (4.12)

the last integral is computed via Eq. (3.17), and the final result is

(
Fg2

nd

)
(k) = Γ (2n − d/2)

2d/2Γ (2n)
Fnd

( |k|2
4

)
, (4.13)

with Fnd as in (1.15) or (1.16) (to obtain this, one also uses Eq. (1.13) for Γ ). Inserting (4.13)
into (4.11) we get the thesis. �
Proof of Proposition 2.2, item (i). Lemmas 4.1 and 4.2 give immediately the bound (2.2) for
Knd , with S as in Eq. (2.3).

We now pass to the boundary values of the function Snd for u = 0 and u → +∞. To determine
Snd(0), use either Eq. (1.15) or Eq. (1.16), together with Eq. (3.7); the result agrees with Eq. (2.4).

To determine limu→+∞ Snd(u) we use Eq. (1.16), the limits

(
1 + 4u

)n

→ 4n,
u → 1 for u → +∞, (4.14)
1 + u u + 1
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and Eq. (3.7); these relations imply

Snd(+∞) = 22n−d

πd/2+1/2

Γ (n + 1/2)Γ (n − d/2)

Γ (2n)
= Γ (n − d/2)

2d−1πd/2Γ (n)
, (4.15)

where the last equality follows from (1.13). This gives the expression in (2.4) after using (1.10)
with w = n − d/2.

Of course, the continuity of Snd on [0,+∞) and the finiteness of its u → +∞ limit ensure
that Snd is bounded on its domain. �
Proof of Proposition 2.2, item (ii).

Step 1. The function Snd is increasing if d/2 < n � d/2 + 1/2.
To prove this, we use Eqs. (2.3), (1.16) and the following remarks:
(a) the functions u ∈ [0,+∞) → (1 + 4u)/(1 + u) ∈ [1,4) and u ∈ [0,+∞) → u/(1 + u) ∈

[0,1) are increasing;
(b) the function w ∈ (−∞,1) → F(n,d/2 + 1/2 − n,n + 1/2;w) is increasing for d/2 <

n < d/2 + 1/2, due to (3.13); in the limit case n = d/2 + 1/2, this function equals 1 everywhere
(by (3.9), with m = 0).

Of course, the fact that Snd is increasing implies sup[0,+∞) Snd = Snd(+∞), and this fact,
with Eq. (2.4), yields Eq. (2.5).

Step 2. The asymptotics (2.6) of K+
nd for n → (d/2)+.

This is evident from (2.5). �
Now we must prove item (iii) of the same proposition, concerning the n → +∞ behavior

of K+
nd ; a fairly long series of lemmas will be established to this purpose. A main point in this

argument is the integral representation, coming from Eqs. (2.3), (1.15) and (3.10),

Snd(u) = Γ (2n − d/2)Γ (n + 1/2)

2dπd/2+1/2Γ (n)Γ (2n)
Cnd(u), (4.16)

Cnd(u) := (1 + 4u)n

1∫
0

ds
sn−1

√
1 − s(1 + us)2n−d/2

.

For future convenience, we write

Cnd(u) = And(u) + Bnd(u), (4.17)

And(u) := (1 + 4u)n

1∫
1/4

ds
sn−1

√
1 − s(1 + us)2n−d/2

, (4.18)

Bnd(u) := (1 + 4u)n

1/4∫
0

ds
sn−1

√
1 − s(1 + us)2n−d/2

.
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4.3. Lemma. Define

Bnd := sup
u∈[0,+∞)

Bnd(u); (4.19)

then, for fixed d and n → +∞,

Bnd = O

(
1√
n

(
9

8

)n)
. (4.20)

Proof. We will estimate Bnd(u) with different methods for u ∈ [0,2] and u ∈ (2,+∞), respec-
tively.

Let 0 � u � 2; we re-express the definition of Bnd(u) as

Bnd(u) = (1 + 4u)n

1/4∫
0

ds
sd/4−1

√
1 − s

( s

(1 + us)2

)n−d/4
. (4.21)

The function s → s/(1 + us)2 is increasing for 0 � s < 1/u; but 1/u > 1/4, so the maximum of
this function for 0 � s � 1/4 is attained at s = 1/4. From here one gets

Bnd(u) � (1 + 4u)n

1/4∫
0

ds
sd/4−1

√
1 − s

(
1/4

(1 + u/4)2

)n−d/4

= (1 + 4u)d/4
(

1 + 4u

(2 + u/2)2

)n−d/4
1/4∫
0

ds
sd/4−1

√
1 − s

. (4.22)

On the other hand, the function u → (1+4u)/(2+u/2)2 is increasing for 0 � u � 2, and equals 1
when u = 2; from here and from (1 + 4u)d/4 � 9d/4 one easily obtains

sup
u∈[0,2]

Bnd(u) � Cd for all n > d/2, Cd := 9d/4

1/4∫
0

ds
sd/4−1

√
1 − s

. (4.23)

We pass to bind Bnd for u ∈ (2,+∞). Returning to Eq. (4.18), we write

Bnd(u) � 2√
3
(1 + 4u)n

1/4∫
0

ds
sn−1

(1 + us)2n−d/2

= 2√
3

(1 + 4u)n

un

u/4∫
dq

qn−1

(1 + q)2n−d/2
, (4.24)
0
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where the first inequality follows from 1/
√

1 − s � 2/
√

3 for 0 � s � 1/4, and the subsequent
equality is obtained putting s = q/u. On the other hand, (1 + 4u)/u < 9/2 for u > 2 and

∫ u/4
0 <∫ +∞

0 on positive functions, so

sup
u∈(2,+∞)

Bnd(u) � 2√
3

(
9

2

)n
+∞∫
0

dq
qn−1

(1 + q)2n−d/2

= 2√
3

(
9

2

)n
Γ (n − d/2)Γ (n)

Γ (2n − d/2)
(4.25)

(recall Eq. (1.14)). We now apply the duplication formula (1.13) with w = n − d/4; this gives

sup
u∈(2,+∞)

Bnd(u) �
√

π

3
22+d/2

(
9

8

)n
Γ (n − d/2)

Γ (n − d/4)

Γ (n)

Γ (n − d/4 + 1/2)
. (4.26)

Putting together Eqs. (4.23), (4.26) we get

Bnd � max

(
Cd,

√
π

3
22+d/2

(
9

8

)n
Γ (n − d/2)

Γ (n − d/4)

Γ (n)

Γ (n − d/4 + 1/2)

)
(4.27)

for all n > d/2. As a final step, we recall that [11, p. 119]

Γ (w + a)

Γ (w + b)
= wa−b

[
1 + O

(
1

w

)]
for fixed a, b ∈ R and w → +∞; (4.28)

this implies, for n → +∞,

Γ (n − d/2)

Γ (n − d/4)

Γ (n)

Γ (n − d/4 + 1/2)
= n−1/2

[
1 + O

(
1

n

)]
(4.29)

and Eqs. (4.27), (4.29) yield the thesis (4.20). �
4.4. Lemma. For all n > d/2 one has

sup
u∈[0,+∞)

And(u) � And, (4.30)

And := 22n−d/2 (1 − d/2n)n−d/2

(1 − d/4n)2n−d/2

1∫
1/4

ds
1

s
√

1 − s(4 − s)n−d/2
.

For fixed d and n → +∞,

And = √
π

3d/2+1/2

2d/2
√

n

(
4

3

)n[
1 + O

(
1

n

)]
. (4.31)
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Proof. Step 1. The bound (4.30).
The definition of And implies

sup
u∈[0,+∞)

And(u) �
1∫

1/4

ds
sn−1

√
1 − s

Hnd(s), (4.32)

Hnd(s) := sup
u∈[0,+∞)

(1 + 4u)n

(1 + su)2n−d/2
.

For s ∈ (1/4,1), the function u ∈ [0,+∞) → (1 + 4u)n/(1 + su)2n−d/2 attains its maximum
when u equals

und(s) := 8n + (d − 4n)s

4(2n − d)s
. (4.33)

Thus

Hnd(s) = (1 + 4u)n

(1 + su)2n−d/2

∣∣∣∣
u=und(s)

= (1 − d
2n

)n−d/2

(1 − d
4n

)2n−d/2

22n−d/2

sn(4 − s)n−d/2
, (4.34)

and inserting this equation into (4.32) one gets the thesis (4.30).

Step 2. The asymptotics (4.31).
We re-express Eq. (4.30) for And as

And = 22n−d/2Und

1∫
1/4

ds Θ(s)e−(n−d/2)Φ(s), (4.35)

Und := (1 − d
2n

)n−d/2

(1 − d
4n

)2n−d/2
, Θ(s) := 1

s
√

1 − s
, Φ(s) := log(4 − s).

In this representation we recognize a Laplace integral in the parameter n − d/2; we have
Φ ′(s) < 0 for all s ∈ (1/4,1), Φ(1) = log 3, and the scheme of Eqs. (3.23)–(3.28) suggests to
rephrase Eq. (4.35) as

And = 22n−d/2Unde−(n−d/2)Φ(1)L

(
n − d

2

)
=

(
3

2

)d/2(4

3

)n

UndL

(
n − d

2

)
,

L(m) :=
3/4∫
0

dtϑ(t)e−mϕ(t), (4.36)

ϑ(t) := Θ(1 − t) = 1√ , ϕ(t) := Φ(1 − t) − Φ(1) = log

(
1 + t

)
.

t(1 − t) 3
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The last integral has the standard Laplace form (3.18), and the framework of Proposition 3.1
prescribes to analyze it introducing the function

ξ(t) := ϑ(t)

ϕ′(t)
= 3 + t

(1 − t)
√

t
. (4.37)

For t → 0+, one has

ϕ(t) = t

3
+ O

(
t2), t = 3ϕ(t) + O

(
ϕ(t)2),

ξ(t) = 3√
t

+ O(
√

t) =
√

3√
ϕ(t)

+ O
(√

ϕ(t)
)
. (4.38)

Now, application of Proposition 3.1 to the last relation (4.38) gives

L(m) =
√

3π√
m

+ O

(
1

m3/2

)
for m → +∞. (4.39)

On the other hand (taking the logarithm and expanding),

Und = 1 + O

(
1

n

)
for n → +∞; (4.40)

inserting Eqs. (4.39), (4.40) into (4.36), one easily derives the thesis (4.31) . �
4.5. Lemma. For fixed d and n → +∞,

Cnd

(
1

2

)
= √

π
3d/2+1/2

2d/2
√

n

(
4

3

)n[
1 + O

(
1

n

)]
(4.41)

(note that the right-hand sides of this equation and (4.31) coincide).

Proof. The definition (4.16) gives

Cnd

(
1

2

)
= 3n

1∫
0

ds
sn−1

√
1 − s(1 + s/2)2n−d/2

= 3n

1∫
0

ds Θd(s)e−(n−d/4)Φ(s), (4.42)

Θd(s) := sd/4−1

√
1 − s

, Φ(s) := 2 log(1 + s/2) − log s.

We have again a Laplace integral, with parameter n − d/4; one finds Φ ′(s) < 0 for all s ∈ (0,1),
Φ(1) = 2 log(3/2) and referring again to the scheme (3.23)–(3.28) we re-express (4.42) as

Cnd

(
1
)

= 3ne−(n−d/4)Φ(1)Ld

(
n − d

)
=

(
3
)d/2(4

)n

Ld

(
n − d

)
, (4.43)
2 4 2 3 4
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Ld(m) :=
1∫

0

dtϑd(t)e−mϕ(t),

ϑd(t) := Θd(1 − t) = (1 − t)d/4−1

√
t

, ϕ(t) := Φ(1 − t) − Φ(1) = 2 log

(
1 − t

3

)
− log(1 − t).

Following again the scheme of Proposition 3.1, we introduce the function

ξd(t) := ϑd(t)

ϕ′(t)
= (3 − t)(1 − t)d/4

(1 + t)
√

t
. (4.44)

Let us keep d fixed. It turns out that Eq. (4.38) are again satisfied with the present choice of ϕ

and with ξ = ξd . Therefore, Proposition 3.1 gives the asymptotics, analogous to (4.39),

Ld(m) =
√

3π√
m

+ O

(
1

m3/2

)
for m → +∞; (4.45)

inserting Eq. (4.45) into (4.43) we obtain the thesis (4.41). �
4.6. Lemma. For fixed d and n → +∞, one has

sup
u∈[0,+∞)

Cnd(u) = √
π

3d/2+1/2

2d/2
√

n

(
4

3

)n[
1 + O

(
1

n

)]
(4.46)

(again, the right-hand side is as in Eq. (4.31)).

Proof. We have

Cnd

(
1

2

)
� sup

u∈[0,+∞)

Cnd(u) � And + Bnd (4.47)

(the upper bound follows from Eqs. (4.17), (4.19) and (4.30)). Both the above bounds on supCnd

have asymptotics as in the right-hand side of Eq. (4.31). For the lower bound, this is granted by
Lemma 4.5. For the upper bound, this follows from Lemmas 4.4 for And and 4.3 for Bnd : the
latter is negligible with respect to the former, since

Bnd = AndO

(
(9/8)n

(4/3)n

)
= AndO

((
27

32

)n)
= AndO

(
1

nσ

)
for any real σ. � (4.48)

Proof of Proposition 2.2, item (iii). Equation (4.16) and the definition of K+
nd in Eq. (2.2) give

√
Snd

(
1

2

)
= 1

2d/2πd/4+1/4

√
Γ (2n − d/2)

Γ (2n)

Γ (n + 1/2)

Γ (n)

√
Cnd

(
1

2

)
, (4.49)

K+
nd = 1

2d/2πd/4+1/4

√
Γ (2n − d/2)

Γ (2n)

Γ (n + 1/2)

Γ (n)

√
sup

u∈(0,+∞)

Cnd(u). (4.50)
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We know that Cnd(1/2) and sup[0,+∞) Cnd have the same asymptotics up to O(1/n), given by
Lemmas 4.5 and 4.6; furthermore, Eq. (4.28) implies

Γ (2n − d/2)

Γ (2n)
= 1

(2n)d/2

[
1 + O

(
1

n

)]
,

Γ (n + 1/2)

Γ (n)
= √

n

[
1 + O

(
1

n

)]
, (4.51)

and inserting these results into Eqs. (4.49), (4.50) we obtain the thesis (2.7). �
Computing the upper bounds K+

nd . (a) For d/2 < n � d/2 + 1/2, we have for K+
nd the explicit

expression (2.5); this was employed to compute the numerical values reported in Table 1 for
these cases.

(b) In all the other cases, to compute K+
nd one has to maximize the function Snd given by

Eq. (2.3), containing the hypergeometric function Fnd of Eqs. (1.15)–(1.16). For n − d/2 − 1/2
integer, Snd has the elementary expression (1.17).

(c) Apart from simple exceptions, the maximization of Snd must be performed numerically. In
all the cases analyzed with n > d/2+1/2, we have found numerical evidence (and sometimes an
analytical proof) that Snd has a unique maximum point u = und > 1/2 in the interval (0,+∞),
so that

K+
nd = √

Snd(und). (4.52)

(d) Let us consider, for example, the case d = 2. For n = 2, Eqs. (2.3), (1.15) give

S22(u) = (1 + 4u)2

12π
F

(
3,2,

5

2
;−u

)
; (4.53)

one finds numerically that S22 attains its maximum at u22 � 6.84. For n = 5/2, using (2.3),
(1.17), one finds

S5/2,2(u) = (1 + 4u)5/2

96π

6 + u

(1 + u)7/2
; (4.54)

the point of absolute maximum of this function is u5/2,2 = 16/5 = 3.2, determined analytically
by solving an algebraic equation of second degree. For larger, half-integer values of n, Sn2 is
again elementary, but the analytic determination of its maximum point involves algebraic equa-
tions of order increasing with n; thus, a numerical attack is necessary.

Table 1 also considers, for d = 2, the values n = 4, 7, 16, 31, 61, 121. In all these cases, one
finds numerically a unique maximum point un2 � 1.46, 0.915, 0.654, 0.576, 0.538, 0.519. Note
the approach of this point to the limit value u = 1/2 for large n, as expected from Eq. (2.7); due
to this behavior, numerical maximization is simple even for very large values of n.

5. Proofs for the Bessel lower bounds on Knd

Proof of Proposition 2.3, item (i). Eqs. (2.11)–(2.12) are obvious; we must justify the expres-
sions (2.13)–(2.14) of ‖gλnd‖n, and (2.15)–(2.16) for ‖g2 ‖n.
λnd
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Step 1. Computation of ‖gλnd‖n.
We have

‖gλnd‖2
n =

∫
Rd

dk
(
1 + |k|2)n|Fgλnd |2 = 1

λ2d

∫
Rd

dk
(1 + |k|2)n

(1 + |k|2/λ2)2n

= 2πd/2

Γ (d/2)λ2d

+∞∫
0

dρ ρd−1 (1 + ρ2)n

(1 + ρ2/λ2)2n

= πd/2

Γ (d/2)λd

+∞∫
0

duud/2−1 (1 + λ2u)n

(1 + u)2n
. (5.1)

In the last two passages we have used Eq. (3.1) for the integral of a radially symmetric function,
depending only on ρ := |k|, and then we have changed the variable to u = ρ2/λ2.

For n arbitrary, the last integral in u is computed using the identity (3.11); this gives the thesis
(2.13) (after using Eq. (1.10) with w = n − d/2).

For n integer, in the integral over u we expand (1 + λ2u)n with the binomial formula, and
integrate term by term; this gives Eq. (2.14) after treating each term by (1.14).

Step 2. Computation of ‖g2
λnd‖n. According to the definition (2.9), the function gλnd is ob-

tained from the gnd of Eq. (1.20) rescaling by λ. From here, and from Eq. (4.13) for Fg2
nd we

infer

(
Fg2

λnd

)
(k) = 1

2d/2λd

Γ (2n − d/2)

Γ (2n)
Fnd

( |k|2
4λ2

)
, (5.2)

with Fnd as in Eqs. (1.15) or (1.16); thus,

‖g2
λnd‖2

n =
∫

Rd

dk
(
1 + |k|2)n∣∣Fg2

λnd(k)
∣∣2

= πd/2Γ 2(2n − d/2)

2d−1Γ (d/2)Γ 2(2n)λ2d

+∞∫
0

dρ ρd−1(1 + ρ2)n
F 2

nd

(
ρ2

4λ2

)
. (5.3)

Now, introducing the scaled variable u := ρ2/(4λ2) we readily obtain the expression (2.15) for
‖g2

λnd‖n.
Finally, let us consider the case n − d/2 − 1/2 integer and show that Eq. (2.15) becomes

Eq. (2.16). In fact, in this case the function Fnd has the elementary expression (1.17); when this
is substituted into the integral over u of Eq. (2.15), we get

+∞∫
duud/2−1(1 + 4λ2u

)n
F 2

nd(u)
0
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=
n−d/2−1/2∑

�,m=0

(n)�(d/2 + 1/2 − n)�

(n + 1/2)��!
(n)m(d/2 + 1/2 − n)m

(n + 1/2)mm!

×
+∞∫
0

duud/2+�+m−1 (1 + 4λ2u)n

(1 + u)2n+�+m
; (5.4)

each of the above integrals can be computed via Eq. (3.11), and the conclusion is the thesis
(2.16). �

To prove the second item in Proposition 2.3 we need an elementary bound for the
hypergeometric-like function Fnd , to be substituted in Eq. (2.15) for ‖g2

λnd‖n; this will require
some lemmas.

5.1. Lemma. Assume

f ∈ C
([0,1],R

) ∩ C2([0,1),R
)
, R ∈ C

([0,1],R
) ∩ C1([0,1),R

)
, ε > 0; (5.5)

f ′(w) = (1 − w)ε−1R(w), R′(w) > 0 for w ∈ [0,1), (5.6)

and consider the C2 function

w ∈ [0,1) 	→ f (1) − f (w)

(1 − w)ε
. (5.7)

Then:

f (1) − f (w)

(1 − w)ε
→ R(1)

ε
for w → 1−, (5.8)

d

dw

f (1) − f (w)

(1 − w)ε
> 0 for w ∈ [0,1). (5.9)

The previous facts imply

f (1) − f (0) <
f (1) − f (w)

(1 − w)ε
<

R(1)

ε
for w ∈ (0,1). (5.10)

Proof. By the generalized Lagrange theorem,

F(1) − F(w)

G(1) − G(w)
= F ′(tw)

G′(tw)
for some tw ∈ (w,1), (5.11)

if F,G ∈ C([0,1],R)∩C1((0,1),R), G′ never vanishes and w ∈ [0,1). We apply this statement
with

f := F, G(w) := −(1 − w)ε, (5.12)
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taking into account Eq. (5.6); this gives

f (1) − f (w)

(1 − w)ε
= R(tw)

ε
for w ∈ [0,1), with tw ∈ (w,1), (5.13)

and in the limit w → 1− we obtain Eq. (5.8).
In order to prove (5.9), we observe that

d

dw

f (1) − f (w)

(1 − w)ε
= ε

(1 − w)ε+1

(
f (1) − f (w)

) − R(w)

1 − w
for w ∈ [0,1). (5.14)

On the other hand (intending
∫ 1
w

as an improper Riemann integral)

ε
(
f (1) − f (w)

) = ε

1∫
w

dtf ′(t) = ε

1∫
w

dt (1 − t)ε−1R(t)

= (1 − w)εR(w) +
1∫

w

dt (1 − t)εR′(t), (5.15)

the last equality following from integration by parts. Inserting (5.15) into (5.14) we obtain

d

dw

f (1) − f (w)

(1 − w)ε
= 1

(1 − w)ε+1

1∫
w

dt (1 − t)εR′(t), (5.16)

and the positivity of R′ gives the thesis (5.9).
Finally the function w ∈ (0,1) 	→ (f (1) − f (w))/(1 − w)ε is increasing, so it is strictly

bounded from below and above by its limits for w → 0+ and w → 1−; this yields Eq. (5.10). �
5.2. Lemma. Let

0 < a,b < +∞; a + b < c < a + b + 1; w ∈ (0,1). (5.17)

Then

0 < P(a, b, c) − 1 <
P(a, b, c) − F(a, b, c;w)

(1 − w)c−a−b
< Q(a,b, c) (5.18)

where

P(a, b, c) := F(a, b, c;1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
, (5.19)

Q(a,b, c) := Γ (c)Γ (a + b + 1 − c)

(c − a − b)Γ (a)Γ (b)
.
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Proof. We apply the previous lemma with

f := F(a, b, c; ·), ε := c − a − b. (5.20)

In this case, the differentiation formula (3.12) and the subsequent application of the Kummer
transformation (3.15) give

f ′(w) = (1 − w)ε−1R(w), R(w) := ab

c
F (c − a, c − b, c + 1;w). (5.21)

On the other hand, the hypergeometric function w 	→ F(c − a, c − b, c + 1;w) has positive
derivative, due to (3.13) and to the assumptions (5.17) for a, b, c; the same assumptions ensure
this function to be continuous also at w = 1, where its value is determined by Eq. (3.7). Thus all
conditions of the previous lemma are fulfilled by f, ε,R, and Eq. (5.10) gives

F(a, b, c;1) − F(a, b, c;0) <
F(a, b, c;1) − F(a, b, c;w)

(1 − w)c−a−b

<
ab

c(c − a − b)
F (c − a, c − b, c + 1;1). (5.22)

But

F(a, b, c;1) = P(a, b, c), F (a, b, c;1) − F(a, b, c;0) = P(a, b, c) − 1 > 0; (5.23)

the last inequality holds because F(a, b, c; ·) is increasing (see again Eq. (3.13)). Finally, the
equality

ab

c(c − a − b)
F (c − a, c − b, c + 1;1) = Q(a,b, c) (5.24)

is easily inferred from Eq. (3.7), using the identity (1.10) with w = a and w = c. Eqs. (5.22)–
(5.24) yield the thesis. �
Remark. The idea of employing (3.15) in the above proof has been suggested by [12], where the
usefulness of this transformation has been pointed out in relation to similar inequalities for F .

5.3. Lemma. Let a, b, c, P(a, b, c),Q(a, b, c) be as in Lemma 5.2, and

q(a, b, c) :=
{

Q(a,b, c) if P(a, b, c) � Q(a,b, c),

P (a, b, c) − 1 if P(a, b, c) < Q(a,b, c).
(5.25)

Then

F(a, b, c;w)2 > P(a, b, c)2 − 2P(a, b, c)Q(a, b, c)(1 − w)c−a−b

+ q(a, b, c)2(1 − w)2(c−a−b) for w ∈ (0,1). (5.26)
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Proof. Step 1. The case P(a, b, c) � Q(a,b, c).
For any w ∈ (0,1), the upper bound in Eq. (5.18) implies

F(a, b, c;w) > P(a, b, c) − Q(a,b, c)(1 − w)c−a−b. (5.27)

The right-hand side in the above equation is positive, so we infer

F(a, b, c;w)2 >
(
P(a, b, c) − Q(a,b, c)(1 − w)c−a−b

)2; (5.28)

expanding the right-hand side we get the thesis (5.26), since in this case Q(a,b, c) = q(a, b, c).

Step 2. The case P(a, b, c) < Q(a,b, c).
We write

F(a, b, c;w)2 = [
P(a, b, c) − (

P(a, b, c) − F(a, b, c;w)
)]2

= P(a, b, c)2 + (
P(a, b, c) − F(a, b, c;w)

)2

− 2P(a, b, c)
(
P(a, b, c) − F(a, b, c;w)

)
. (5.29)

We insert here the bounds on P(a, b, c) − F(a, b, c;w) coming from Eq. (5.18); this gives

F(a, b, c;w)2 > P(a, b, c)2 + (
P(a, b, c) − 1

)2
(1 − w)2(c−a−b)

− 2P(a, b, c)Q(a, b, c)(1 − w)c−a−b, (5.30)

and we have the thesis (5.26) since in this case q(a, b, c) = P(a, b, c) − 1. �
Proof of Proposition 2.3, item (ii). Throughout the proof, d/2 < n � d/2 + 1/2.

Step 1. For w ∈ (0,1) one has

F

(
n,

d

2
+ 1

2
− n,n + 1

2
;w

)2

�
P 2

nd

(n − d/2)2
− 2PndQnd

(n − d/2)2
(1 − w)n−d/2 + q2

nd

(n − d/2)2
(1 − w)2n−d , (5.31)

where Pnd,Qnd and qnd are as in (2.21).
For n < d/2+1/2, this follows from application of Lemma 5.3 with a = n, b = d/2+1/2−n,

c = n + 1/2; comparing the coefficients in this lemma with Eq. (2.21) we see that

P(a, b, c) = Pnd

n − d/2
, Q(a, b, c) = Qnd

n − d/2
, q(a, b, c) = qnd

n − d/2
. (5.32)

Let us pass to the limit case n = d/2 + 1/2; then, (5.31) holds as an equality because Pnd = 1/2,
Qnd = 0, qnd = 0, F(n,d/2 + 1/2 − n,n + 1/2;w) = F(d/2 + 1/2,0, d/2 + 1;w) = 1 (by
(3.9), with m = 0).
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Step 2. Proof of Eq. (2.17): ‖g2
λnd‖2

n � Gnd(λ), with Gnd(λ) as in Eq. (2.20).
We start from the expression (2.15) of ‖g2

λnd‖2
n; the function Fnd therein is expressed as in

(1.16), and its square is bounded via the result of Step 1 (with w = u/(1 + u)). This gives

∥∥g2
λnd

∥∥2
n

� πd/2Γ 2(2n − d/2)

(n − d/2)2Γ (d/2)Γ 2(2n)λd

×
+∞∫
0

duud/2−1 (1 + 4λ2u)n

(1 + u)2n

(
P 2

nd − 2
PndQnd

(1 + u)n−d/2
+ q2

nd

(1 + u)2n−d

)
. (5.33)

The above integral can be written as the sum of three integrals of the form (3.11); after computing
each of them by (3.11), we apply (1.10) with w = n − d/2, 2n − d and 3n − 3d/2, respectively.
The final result is the minorant for ‖g2

λnd‖2
n as in Eq. (2.20).

Step 3. The n → (d/2)+ limit of KBB
nd (λ).

Let d and λ ∈ (0,+∞) be fixed. We start computing the limiting behavior of Gnd(λ). For
n → (d/2)+, the coefficients Pnd,Qnd and qnd therein have the same behavior up to O(n−d/2):

Pnd,Qnd, qnd = Γ (d/2 + 1/2)√
πΓ (d/2)

[
1 + O(n − d/2)

]
. (5.34)

In the same limit, the three hypergeometric functions also have equal behavior:

F

(
−n,

d

2
, n;1 − 4λ2

)
,F

(
−n,

d

2
,2n − d

2
;1 − 4λ2

)
,F

(
−n,

d

2
,3n − d;1 − 4λ2

)

= F

(
−d

2
,
d

2
,
d

2
;1 − 4λ2

)
+ O

(
n − d

2

)
= 2dλd + O

(
n − d

2

)
, (5.35)

where the last equality follows from (3.8). Inserting Eqs. (5.34), (5.35) into (2.20), we find

Gnd(λ) = 2dπd/2−1Γ (d/2 + 1/2)2

3Γ 2(d)Γ (d/2)

1 + O(n − d/2)

(n − d/2)3

= πd/2

32d−2Γ (d/2)3

1 + O(n − d/2)

(n − d/2)3
; (5.36)

the second equality in (5.36) follows from the first one applying the duplication formula (1.13)
with w = d/2.

Let us pass to the n → (d/2)+ behavior of ‖gλnd‖n; from (2.13) and (3.8), we infer

‖gλnd‖2
n = πd/2

Γ (d/2)λd
F

(
−d

2
,
d

2
,
d

2
;1 − λ2

)
1 + O(n − d/2)

n − d/2

= πd/2 1 + O(n − d/2)
. (5.37)
Γ (d/2) n − d/2
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Since KBB
nd (λ) = √

Gnd(λ)/‖gλnd‖2
n, from (5.36) and (5.37) we obtain

KBB
nd (λ) = 1√

3 2d/2−1πd/4
√

Γ (d/2)

1 + O(n − d/2)√
n − d/2

; (5.38)

comparing this with the definition (2.6) of Md , we get the thesis (2.22). �
Computing the Bessel lower bounds. (a) For all n > d/2, the lower bound KB

nd(λ) is the ratio
of ‖g2

λnd‖n and ‖gλnd‖2
n. The norm of gλnd has the analytic expression (2.13) in terms of a

hypergeometric function, that becomes the elementary formula (2.14) for n integer.
The norm of g2

λnd has the integral representation (2.15), involving the hypergeometric-like
function Fnd of Eqs. (1.15), (1.16). For n − d/2 − 1/2 integer, this norm has the explicit ex-
pression (2.16) in terms of hypergeometric functions. For n − d/2 − 1/2 noninteger, the integral
in (2.15) must be computed numerically. As anticipated, this is a difficult task for n very close
to d/2, due to the slow convergence of the integral: the integrand behaves like 1/u1+(n−d/2) for
u → +∞ (as made evident by Eq. (1.16) for Fnd ), and we are interested in situations where
n − d/2 = 10−4. In these cases it is convenient to compute, in place of ‖g2

λnd‖2
n, the minorant

Gnd(λ) of Eq. (2.20), and from this the lower bound KBB
nd (λ) of Eq. (2.19), both of them having

analytic expressions in terms of hypergeometric functions.
(b) Assuming we are able to compute KB

nd(λ) or KBB
nd (λ), for each λ we have a lower bound

for Knd ; the next step is maximization with respect to λ, to get KB
nd or KBB

nd . In general, this is
done numerically (using some package for automatic maximization or for plotting these functions
of λ, so as to read the maximum from the graph).

(c) Let us consider, for example, the case d = 2 and the values of n reported in Table 1. For
n = 3/2, we have the elementary expression

KB
3/2,2(λ) = λ

2
√

2π

√
F(1 − 4λ2)

F (1 − λ2)
,

F (w) := F(−3/2,1,3/2;w) = 5 − 3w

8
+ 3

8
(1 − w)2F (w), (5.39)

F (w) :=
⎧⎨
⎩

arctanh(
√

w)/
√

w if 0 < w < 1,

1 if w = 0,

arctan(
√−w)/

√−w if w < 0.

The function KB
3/2,2 attains its maximum at λ � 1.38. KB

5/2,2 is also elementary, with its
maximum at λ � 1.36. For n = 5/4,2,4,7,16,31,61 the integral in ‖g2

λn2‖n can be com-
puted numerically; from the graph of KB

n2 we have found this function to get its maximum
at λ � 1.40,1.36,1.39,1.45,1.53,1.57,1.58, respectively.

For n = 1 + 10−4,1 + 10−2,1 + 10−1 the numerical computation of KB
n2 and KB

n2 is difficult,
so we have turned the attention to the simpler bound KBB

n2 ; from the analytic expressions of
KBB

n2 (λ) and numerical optimization, we have found the maximum of this function to be attained
at λ � 1.42 in each one of the three cases.

For all the cases in the table from n = 5/4 to n = 61, the previously mentioned Bessel bounds
have been compared with the Fourier lower bounds KF

n2 or KFF
n2 of Proposition 2.4 (for the com-

putation of these Fourier bounds, see the remarks at the end of the following section). In this way,
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we have found that the Fourier lower bounds are below the Bessel bounds up to n = 5/2, while
the contrary happens for n > 3/2 (for example: KF

5/4,2 < 0.610KB
5/4,2 and KB

61,2 < 0.411KFF
61,2).

Extrapolating, the Bessel bound KB
n2 is likely to be smaller than the Fourier bounds for the large

value n = 121. Since the numerical computation of KB
121,2 and KB

121,2 is difficult, in the con-

struction of Table 1 we have chosen directly for K−
121,2 a Fourier bound.

6. Proofs for the Fourier lower bounds on Knd

We refer to the trial functions fpσd of Eq. (2.23). Our aim is to prove all statements contained
in Proposition 2.4; we will proceed in several steps.

6.1. Lemma. For all p,σ > 0 and n > d/2, ‖fpσd‖n is given by Eq. (2.26).

Proof. The Fourier transform of fpσd is elementary, and given by

(Ffpσd)(k) = 1

σd/2
e− 1

2σ
|k−pη|2 , η := (1,0, . . . ,0); (6.1)

thus

‖fpσd‖2
n = 1

σd

∫
Rd

dk
(
1 + |k|2)n

e− 1
σ

|k−pη|2

= 1

σd

∫
Rd

dk
(
1 + |k|2)n

e− |k|2+p2

σ
+ 2p

σ
η•k. (6.2)

To go on, let us first consider the case d = 1. Equation (6.2) gives

‖fpσ1‖2
n = 1

σ

∫
R

dk
(
1 + k2)n

e− k2+p2

σ
+ 2p

σ
k

= 1

σ

+∞∫
0

dρ
(
1 + ρ2)n

e− ρ2+p2

σ
(
e

2p
σ

ρ + e− 2p
σ

ρ
)

(6.3)

(in the last passage, we have used the variable ρ = |k|); this gives Eq. (2.26) for d = 1, since [14,
p. 80]

es + e−s = √
2πsI−1/2(s) ∀s ∈ (0,+∞). (6.4)

Now, let us pass to the case d � 2. Equation (6.2) contains an integral of the form (3.2), where

the integration variable is now k and χ(|k|, η • k) = (1 + |k|2)ne− 1
σ

(|k|2+p2)+ 2p
σ

η•k ; therefore,

‖fpσd‖2
n = 2πd/2−1/2

Γ (d
2 − 1

2 )σ d

+∞∫
dρ ρd−1(1 + ρ2)n

e− ρ2+p2

σ

π∫
dθ sin θd−2e

2p
σ

ρ cos θ . (6.5)
0 0
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On the other hand [14, p. 79],

π∫
0

dθ sin θ2νes cos θ = √
πΓ

(
ν + 1

2

)(
2

s

)ν

Iν(s); (6.6)

inserting this result into the previous equation, we obtain the thesis (2.26). �
6.2. Lemma. For all p,σ > 0 and integer n > d/2, ‖fpσd‖n is given by Eq. (2.27).

Proof. We return to the first equation (6.2), and expand (1 +|k|2)n by the binomial formula; this
gives

‖fpσd‖2
n = 1

σd

n∑
�=0

(
n

�

)∫
Rd

dk |k|2�e− 1
σ

|k−pη|2 . (6.7)

Now, we write the integration variable as k = (h, q), (h ∈ R, q ∈ Rd−1); so,

‖fpσd‖2
n = 1

σd

n∑
�=0

(
n

�

) ∫
R×Rd−1

dhdq
(
h2 + |q|2)�

e− (h−p)2

σ e− |q|2
σ

= 1

σd

n∑
�=0

(
n

�

) �∑
j=0

(
�

j

)∫
R

dhh2j e− (h−p)2

σ

∫
Rd−1

dq |q|2�−2j e− |q|2
σ , (6.8)

where, in the last passage, we have used again the binomial formula to expand (h2 + |q|2)�. On
the other hand, ∫

R

dhh2j e− (h−p)2

σ =
∫
R

dh (h + p)2j e− h2
σ

=
2j∑

m=0

(
2j

m

)
p2j−m

∫
R

dhhme− h2
σ

=
j∑

g=0

(
2j

2g

)
(2g − 1)!!√π

2g
p2j−2gσ 1/2+g. (6.9)

The last passage above depends on the evaluation of the integrals with hm: these vanish for
m odd, while in the even case m = 2g we have

∫ +∞
∞ dhh2ge−h2/σ = σg+1/2Γ (g + 1/2) =

σg+1/22−g(2g − 1)!!√π . Concerning the integrals over q , due to Eq. (3.1) we have

∫
d−1

dq |q|2�−2j e− |q|2
σ = 2πd/2−1/2

Γ (d/2 − 1/2)

+∞∫
dξ ξd−2+2�−2j e− ξ2

σ

R 0
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= πd/2−1/2σd/2−1/2+�−j Γ (d/2 − 1/2 + � − j)

Γ (d/2 − 1/2)

= πd/2−1/2σd/2−1/2+�−j (d/2 − 1/2)�−j . (6.10)

Inserting Eqs. (6.9), (6.10) into (6.8), we finally get the thesis (2.27). �
Proof of Proposition 2.4, item (i). This is given by the two previous lemmas. �

We pass to item (ii) of the same proposition, whose proof is more lengthy. The initial step
concerns the expression of ‖fpσd‖n when p is arbitrary and σ = c/n (c > 0); in this case, the
already proved equation (2.26) becomes

‖fp,c/n,d‖2
n = 2πd/2nd/2+1

cd/2+1pd/2−1

+∞∫
0

dρ ρd/2(1 + ρ2)n
e−n

ρ2+p2

c Id/2−1

(
2np

c
ρ

)
. (6.11)

We will analyze this formula in the limit n → +∞. In the first lemma, p and c will be arbitrary;
in the subsequent ones, based on the theory of Laplace integrals, we will consider a specific
choice, ultimately yielding Eq. (2.29).

6.3. Lemma. Fix p > 0, c > 0 and d ; for n → +∞,

‖fp,c/n,d‖2
n = πd/2−1/2nd/2+1/2

cd/2+1/2pd/2−1/2

[
Xpc,d/2−1/2(n)

+ O

(
Xpc,d/2−3/2(n)

n

)
+ O

((
1 + p2)n)]

, (6.12)

Xpcα(n) :=
+∞∫
p

dρ ρα
(
1 + ρ2)n

e−n
(ρ−p)2

c for all α ∈ R. (6.13)

Proof. We start from the relations

Id/2−1(s) = es

√
2πs

hd(s) = es

√
2πs

(
1 + bd(s)

s

)
for all s ∈ (0,+∞),

bd, hd ∈ L∞(
(0,+∞),R

)
, (6.14)

reflecting the asymptotic behavior of the Bessel functions Iν(s) for s → 0+ and s → +∞
(see [14]).

To go on, in Eq. (6.11) we write
∫ +∞

0 = ∫ +∞
p

+ ∫ p

0 ; in these two integrals, we substitute the
representations (6.14) of Id/2−1 involving, respectively, bd and hd . This gives

‖fp,c/n,d‖2
n = πd/2−1/2nd/2+1/2

d/2+1/2 d/2−1/2

[
Xpc,d/2−1/2(n) + Ypcd(n) + Zpcd(n)

]
, (6.15)
c p
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where the X term is defined following Eq. (6.13), and

Ypcd(n) := c

2pn

+∞∫
p

dρ ρd/2−3/2(1 + ρ2)n
e−n

(ρ−p)2

c bd

(
2pn

c
ρ

)
, (6.16)

Zpcd(n) :=
p∫

0

dρ ρd/2−1/2(1 + ρ2)n
e−n

(ρ−p)2

c hd

(
2np

c
ρ

)
.

We estimate these two integrals. Let Bd := sup(0,+∞) |bd |, Hd := sup(0,+∞) |hd |; then

∣∣Ypcd(n)
∣∣ � Bdc

2pn
Xpc,d/2−3/2(n), (6.17)

∣∣Zpcd(n)
∣∣ � Hd

(
1 + p2)n

p∫
0

dρ ρd/2−1/2 = Hd

(
1 + p2)n pd/2+1/2

d/2 + 1/2
,

whence

Ypcd(n) = O

(
Xpc,d/2−3/2(n)

n

)
, Zpcd(n) = O

((
1 + p2)n) for n → +∞. (6.18)

Substituting Eq. (6.18) into (6.15) we obtain the thesis (6.12). �
To go on, we observe that Eq. (6.13) can be rephrased as

Xpcα(n) =
+∞∫
p

dρ ραe−nΦpc(ρ), Φpc(ρ) := (ρ − p)2

c
− log

(
1 + ρ2). (6.19)

In the sequel, we apply the Laplace analysis to the integral (6.19). We will consider the special
choice

p := 1

2
√

2
, c = 3

4
(6.20)

and its double (2p,2c): this makes easy to compute the minimum point of Φpc and Φ2p,2c .
We repeat here the remark made in Section 2, after stating Proposition 2.4: different choices of
(p, c) complicate the computations, with no sensible increase in the dominant term of the Fourier
bound KF (p, c/n). (This conclusion is the result of a tedious analysis, that is not worthy to be
reported here.)

6.4. Lemma. Let p, c be as in (6.20). For fixed α ∈ R and n → +∞,

Xpcα(n) = 3
√

π/5
α/2+1/2

(3/2)n

n/6
√

[
1 + O

(
1
)]

, (6.21)

2 e n n
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X2p,2c,α(n) = 3
√

π/7 2α/2 3n

en/3
√

n

[
1 + O

(
1

n

)]
. (6.22)

Proof. Step 1. Proof of Eq. (6.21).
We put for brevity

Xα(n) := Xpcα(n), Φ := Φpc. (6.23)

Explicitly

Φ(ρ) = 4

3

(
ρ − 1

2
√

2

)2

− log
(
1 + ρ2); (6.24)

it is easily checked that

Φ ′(ρ) = 2

3

(
ρ − 1√

2

)
4ρ2 + √

2ρ + 2

1 + ρ2
� 0 for ρ � 1√

2
,

Φ

(
1√
2

)
= 1

6
− log

(
3

2

)
. (6.25)

Now, following the scheme of (3.30) we re-express the integral under examination as

Xα(n) = e−nΦ(1/
√

2)
[
L−

α (n) + L+
α (n)

] = (3/2)n

en/6

[
L−

α (n) + L+
α (n)

]
, (6.26)

L−
α (n) :=

1/(2
√

2)∫
0

dt ϑ−
α (t)e−nϕ−(t), L+

α (n) :=
+∞∫
0

dt ϑ+
α (t)e−nϕ+(t);

ϑ∓
α (t) :=

(
1√
2

∓ t

)α

, (6.27)

ϕ∓(t) := Φ

(
1√
2

∓ t

)
− Φ

(
1√
2

)
= ∓2

√
2

3
t + 4

3
t2 − log

(
1 ∓ 2

√
2

3
t + 2

3
t2

)
.

The above two integrals have the standard Laplace form discussed in Proposition 3.1. Following
the usual scheme, we fix the attention on the functions

ξ∓
α (t) := ϑ∓

α (t)

ϕ∓′(t)
= 3

4t

3 ∓ 2
√

2t + 2t2

5 ∓ 5
√

2t + 4t2

(
1√
2

∓ t

)α

. (6.28)

For t → 0+, one easily checks that

ϕ∓(t) = 10
t2 ∓ 20

√
2
t3 + O

(
t4), (6.29)
9 81
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t = 3√
10

√
ϕ∓(t) ±

√
2

10
ϕ∓(t) + O

(
ϕ∓(t)3/2);

ξ∓
α (t) = 1

2α/2

[
9

20t
∓ 1√

2

(
9α

10
− 3

10

)]
+ O(t)

= 1

2α/2+1/2

[
3

2
√

5
√

ϕ∓(t)
∓

(
9α

10
− 1

5

)]
+ O

(√
ϕ∓(t)

)
. (6.30)

We can now apply Proposition 3.1 to both integrals L∓
α (n); this gives

L∓
α (n) = 1

2α/2+1/2

[
3
√

π

2
√

5
√

n
∓

(
9α

10
− 1

5

)
1

n

]
+ O

(
1

n3/2

)
for n → +∞, (6.31)

and substituting these expansions into Eq. (6.26) we get the thesis (6.21). (Note the mutual can-
cellation of the terms ∓(9α/10−1/5)(1/n), in agreement with the remark concluding Section 3.)

Step 2. Proof of Eq. (6.22).
In this case, we put

Xα(n) := X2p,2c,α(n), Φ := Φ2p,2c. (6.32)

One has

Φ(ρ) = 2

3

(
ρ − 1√

2

)2

− log
(
1 + ρ2); (6.33)

Φ ′(ρ) = 2

3

(
ρ − √

2
)2ρ2 + √

2ρ + 1

1 + ρ2
� 0 for ρ �

√
2,

Φ
(√

2
) = 1

3
− log 3.

We can write

Xα(n) = e−nΦ(
√

2)
[
L−

α (n) + L+
α (n)

] = 3n

en/3

[
L−

α (n) + L+
α (n)

]
, (6.34)

L−
α (n) :=

1/
√

2∫
0

dt ϑ−
α (t)e−nϕ−(t), L+

α (n) :=
+∞∫
0

dt ϑ+
α (t)e−nϕ+(t);

ϑ∓
α (t) := (√

2 ∓ t
)α

, (6.35)

ϕ∓(t) := Φ
(√

2 ∓ t
) − Φ

(√
2
) = ∓2

√
2
t + 2

t2 − log

(
1 ∓ 2

√
2
t + 1

t2
)

.

3 3 3 3
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We introduce the functions

ξ∓
α (t) := ϑ∓

α (t)

ϕ∓′(t)
= 3

2t

3 ∓ 2
√

2t + t2

7 ∓ 5
√

2t + 2t2

(√
2 ∓ t

)α
. (6.36)

For t → 0+, comparing the expansions of ϕ∓, ξ∓
α in powers of t we get

ξ∓
α (t) = 2α/2

[
3

2
√

7
√

ϕ∓(t)
∓ 1√

2

(
9α

14
− 2

49

)]
+ O

(√
ϕ∓(t)

)
. (6.37)

Applying Proposition 3.1 to L∓
α (n) we obtain

L∓
α (n) = 2α/2

[
3
√

π

2
√

7
√

n
∓ 1√

2

(
9α

14
− 2

49

)
1

n

]
+ O

(
1

n3/2

)
for n → +∞, (6.38)

and substituting these expansions into Eq. (6.34) we get the thesis (6.22). �
6.5. Lemma. Let p, c be as in (6.20). For fixed d and n → +∞,

‖fp,c/n,d‖2
n = 23d/2πd/2

3d/2−1/2
√

5

(3/2)n

en/6
nd/2

[
1 + O

(
1

n

)]
, (6.39)

‖f2p,2c/n,d‖2
n = 2dπd/2

3d/2−1/2
√

7

3n

en/3
nd/2

[
1 + O

(
1

n

)]
. (6.40)

Proof. To prove Eq. (6.39), we note that (6.21) implies

Xpc,d/2−1/2(n) = 3
√

π/5

2d/4+1/4

(3/2)n

en/6
√

n

[
1 + O

(
1

n

)]
, (6.41)

Xpc,d/2−3/2(n)

n
= (3/2)n

en/6
√

n
O

(
1

n

)
.

We insert these results into Eq. (6.12) for ‖fp,c/n,d‖2
n, taking into account that the present choices

of p, c imply

cd/2+1/2pd/2−1/2 = 3d/2+1/2

27d/4+1/4
; 1 + p2 = 9

8
= 3/2

e1/6
θ, 0.8 < θ < 0.9;

(
1 + p2)n = (3/2)n

en/6
θn = (3/2)n

en/6
√

n
O

(
1

n

)
. (6.42)

The proof of Eq. (6.40) is very similar, depending on Eqs. (6.22), (6.12). �
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Proof of Proposition 2.4, item (ii). This item concerns the n → +∞ limit for the special Fourier
lower bound KFF

nd ; comparing the definition (2.28) of this bound with the notations of this sec-
tion, we see that

KFF
nd = ‖f2p,2c/n,d‖n

‖fp,c/n,d‖2
n

, (p, c) as in (6.20). (6.43)

From Eqs. (6.39), (6.40) we infer, for n → +∞,

KFF
nd =

√
5

71/4

3d/4−1/4

2dπd/4

(2/
√

3)n

nd/4

√
1 + O( 1

n
)

1 + O( 1
n
)

= (5/3)1/2

71/4
Td

(2/
√

3)n

nd/4

[
1 + O

(
1

n

)]
. (6.44)

In the last passage we have used the definition (2.7) of Td ; our result is just the thesis (2.29). �
Computing the Fourier lower bounds. (a) For any n and d , the function (p,σ ) → KF

nd(p,σ ) in
Eq. (2.24) is determined by the function (p,σ ) → ‖fpσd‖n. For n noninteger and given (p,σ ),
this can be computed via Eq. (2.26), evaluating numerically the integral therein; for n integer, we
have the elementary expression (2.27).

The bound KF
nd is obtained maximizing KF

nd(p,σ ) with respect to (p,σ ) ∈ (0,+∞)2; in
typical situations this must be done numerically, even for integer n (in any case, the maximization
problem is not dramatic because KF

nd(p,σ ) is a lower bound for all choices of (p,σ ), even not
close to the maximizing pair).

For very large values of n, instead of maximizing KF
nd(p,σ ) one can evaluate it at (p,σ ) =

(1/(2
√

2),3/(4n)); this yields the bound KFF
nd of Eq. (2.28), that we know to be effective in this

limit.
(b) Let us consider, for example, the case d = 2 and the values of n in Table 1. For the

integer values n = 2,4,7,16,31 we have determined the analytic expression of KF
n2 using

Eq. (2.27), and then maximized this function numerically; the maxima occur, respectively, at
(p,σ ) � (0.511,1.05), (0.417,0.309), (0.371,0.148), (0.331,0.0582), (0.316,0.0290). For the
large values n = 61,121, we have used directly the lower bound KFF

n2 = KF
n2(1/(2

√
2),3/(4n));

since n is integer, in principle this could be obtained again from Eq. (2.27), but in these two cases
it is more convenient to compute it numerically, starting from the integral representation (2.26)
of ‖fpσ2‖n (note that this contains the non-elementary function I0).

For n = 5/4,3/2,5/2, KF
n2(p,σ ) has been computed numerically for many sample values of

(p,σ ), starting again from (2.26); in this case, approximate maximization has been performed
choosing the best value in the sample. The maxima are attained at p � 0.354 in the three cases,
and σ � 5.22,2.41,0.696, respectively.

The numerical computation of KF
n2 and KF

nd is difficult for the small values n = 1 + 10−4,
1 + 10−3 and 1 + 10−1. On the other hand, for the reasons already explained at the end of the
previous section the Fourier bounds should be below the Bessel bounds for these extreme values
of n; therefore to construct Table 1 in these cases we have given up computing KF

n2, and we have
chosen directly for K− a Bessel lower bound.
n2
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Appendix A. The integral Iμν(h)

This integral is defined by Eq. (3.16); we want to prove Eq. (3.17). We start from the identity
[14, p. 440]

K2
ν/2(r) = 2

+∞∫
0

dtKν(2r cosh t), (A.1)

and insert it into (3.16); this gives

Iμν(h) = 2

+∞∫
0

dt

+∞∫
0

drrμ+ν+1Jμ(hr)Kν(2r cosh t). (A.2)

On the other hand [14, p. 410],

+∞∫
0

drrμ+ν+1Jμ(hr)Kν(2r cosh t)

= Γ (μ + ν + 1)hμ

2μ+2 cosh2μ+ν+2 t
F

(
μ + ν + 1,μ + 1,μ + 1;− h2

4 cosh2 t

)

= Γ (μ + ν + 1)hμ

2μ+2 cosh2μ+ν+2 t

(
1 + h2

4 cosh2 t

)−μ−ν−1

, (A.3)

where the last passage depends on (3.8). Returning to Eq. (A.2) we obtain

Iμν(h) = Γ (μ + ν + 1)hμ

2μ+1

+∞∫
0

dt
1

cosh2μ+ν+2 t

(
1 + h2

4 cosh2 t

)−μ−ν−1

= Γ (μ + ν + 1)hμ

2μ+2

1∫
0

ds sμ+ν/2(1 − s)−1/2
(

1 + h2

4
s

)−μ−ν−1

, (A.4)

the last passage following with the change of variable s = 1/ cosh2 t . Now, comparison with
(3.10) gives the thesis (3.17).
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Appendix B. Proof of Proposition 3.1 on Laplace integrals

We recall the notations and assumptions (3.18)–(3.21), and point out some consequences of
our hypotheses.

First of all, by the monotonicity of ϕ, ϕ(b) := limt→b− ϕ(t) exists in (0,+∞], and ϕ is a C1

diffeomorphism between (0, b) and (0, ϕ(b)).
Moreover, by Eq. (3.21), there are a constant ε ∈ (0, b) and a bounded function β ∈

C((0, ε),R) such that

ξ(t) =
�−1∑
i=0

Piϕ(t)αi−1 + β(t)ϕ(t)α�−1 for all t ∈ (0, ε). (B.1)

Putting the attention to Eq. (3.18) and dividing integration in two parts, we get

L(n) = M(n) + N(n), (B.2)

M(n) :=
ε∫

0

dt ϑ(t)e−nϕ(t), N(n) :=
b∫

ε

dt ϑ(t)e−nϕ(t).

Let us estimate M(n). Introducing the new variable s = ϕ(t) and then using (B.1) we obtain

M(n) =
ϕ(ε)∫
0

ds ξ
(
ϕ−1(s)

)
e−ns =

�−1∑
i=0

PiMi(n) + δM�(n), (B.3)

Mi(n) :=
ϕ(ε)∫
0

ds sαi−1e−ns, δM�(n) :=
ϕ(ε)∫
0

ds sα�−1β
(
ϕ−1(s)

)
e−ns .

The above integrals are related to the incomplete Gamma function

γ (α,u) :=
u∫

0

dv vα−1e−v = Γ (α) −
+∞∫
u

dv vα−1e−v

= Γ (α) + O
(
uα−1e−u

)
for u → +∞ (α > 0) (B.4)

(concerning the asymptotics of γ for u → +∞, see [11]). As for Mi , with a variable change
s = v/n we get

Mi(n) = γ (αi, nϕ(ε))

αi
= Γ (αi)

αi
+ O

(
e−nϕ(ε)

)
for n → +∞; (B.5)
n n n
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furthermore,

∣∣δM�(n)
∣∣ �

(
sup
(0,ε)

|β|)
ϕ(ε)∫
0

ds sα�−1e−ns = (
sup
(0,ε)

|β|)γ (α�,nϕ(ε))

nα�

= (
sup
(0,ε)

|β|)[Γ (α�)

nα�
+ O

(
e−nϕ(ε)

n

)]
= O

(
1

nα�

)
for n → +∞. (B.6)

To estimate N(n), we fix n1 > n0 and write N(n) = ∫ b

ε
dt ϑ(t)e−(n−n1)ϕ(t)e−n1ϕ(t); for all n ∈

[n1,+∞), this implies

∣∣N(n)
∣∣ � e−(n−n1)ϕ(ε)

b∫
ε

dt
∣∣ϑ(t)

∣∣e−n1ϕ(t) = O
(
e−nϕ(ε)

)
for n → +∞ (B.7)

(recall that 0 < ϕ(ε) � ϕ(t) for t ∈ [ε, b)).
From Eqs. (B.2), (B.5), (B.6) and (B.7) we get the thesis (3.22). �
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