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Abstract

Given a complete graph Kn = (V, E) with edge weight ce on each edge, we consider the problem of partitioning the vertices of
graph Kn into subcliques that have at least S vertices, so as to minimize the total weight of the edges that have both endpoints in the
same subclique. In this paper, we consider using the branch-and-price method to solve the problem. We demonstrate the necessity
of cutting planes for this problem and suggest effective ways of adding cutting planes in the branch-and-price framework. The NP
hard pricing problem is solved as an integer programming problem. We present computational results on large randomly generated
problems.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we solve the Clique Partitioning Problem with minimum clique size constraints (CPPMIN): given an
undirected complete graph G = (V, E) with node weight av = 1, v ∈ V , edge cost ce, e ∈ E , and an integer S, the
CPPMIN problem is to find a partition Π = {P1, P2, . . . , Pk} of V that solves:

min
k∑

i=1

∑
e∈E(Pi )

ce

s.t.
∑

v∈Pi

av ≥ S i = 1, . . . , k. (1)

Each partition Pi is called a cluster. A cluster with edges connecting every pair of vertices in the cluster is a clique.
Since all the clusters in this complete graph are also cliques, we call this problem clique partitioning problem [10].
We consider the complete graph here because problems on a non-complete graph can be easily converted to a problem
on a complete graph with some zero edge weights. We also only consider the case when ce is nonnegative. Notice the
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total number of clusters k is not fixed in the problem, rather the minimum size for each cluster is given as S. E(Pi )

denotes the edges with both endpoints in Pi .
We can generalize CPPMIN by changing the node weight av to values other than 1. It is then called Generalized

Clique Partition Problem with Minimum Size Requirement (GCPPMIN). In this paper, we restrict ourselves to
CPPMIN, but the analysis and algorithm can be readily applied to GCPPMIN.

If we change the minimization into maximization and the lower bound on the size constraint into an upper
bound, we get the opposite problem, min-cut clustering problem [16], also called clustering problem with knapsack
constraints [20]:

max
k∑

i=1

∑
e∈E(Pi )

ce

s.t.
∑

v∈Pi

av ≤ S i = 1, . . . , k. (2)

Johnson, Mehrotra and Nemhauser [16] considered this problem with k given, and solved it using branch-and-
price, with the column generation subproblem solved as an integer programming problem on the boolean quadratic
polytope. They discussed some strong valid inequalities for their column generation subproblem and described their
solution strategy with computational results. Mehrotra and Trick [20] improved upon the results in [16] by using
a combinatorial method to solve the column generation subproblem. This model is used for a political redistricting
problem by Mehrotra, Johnson and Nemhauser [18]. In this application, the knapsack constraint (2) provides a balance
on the population of each district, and the objective function is set to enforce compactness of each district.

Their successful application of column generation on this problem inspired us to try branch-and-price on CPPMIN.
But the differences in these two problems, i.e. minimization vs maximization in the objective, lower bound vs upper
bound in the constraint, lead to almost opposite properties for the two problems. Therefore what proved useful in their
method, in particular their efficient combinatorial algorithm for solving the pricing problem, is not applicable in our
CPPMIN here.

Another closely related problem is the k-way equipartition problem, which solves:

min
k∑

i=1

∑
e∈E(Pi )

ce

s.t.
∑

v∈Pi

av = S i = 1, . . . , k. (3)

Here each cluster contains exactly S vertices. An integer programming problem in the framework of branch-and-
cut is set up by Mitchell [21]. There, he discussed the corresponding polyhedral structure, facet-defining constraints
in detail. The resulting algorithm is used to solve the NFL team alignment problem in [22]. Ji and Mitchell [15] later
considered the same problem but within a branch-and-price framework. In addition to sports team alignment problems,
they also applied it on micro-aggregation problems that arises in processing public statistical data. This paper is an
extension from [15] in the sense that it is applying the branch-and-price framework on a more general problem.

When the number of vertices n is not a multiple of k, a k-way equipartition is not possible. One way to relax the
problem is to solve the k-way partition problem, which requires to divide the graph into no more than k clusters.
Chopra and Rao [7] investigated this problem on a general graph. A recent application is on the multiple disposal
facilities and multiple inventory locations rollon–rolloff vehicle routing problem by Baldacci, Bodin and Mingozzi [1].
They proposed a very effective exact method based on a bounding procedure that combines different relaxations of
the problem.

The other way to solve the problem when n is not a multiple of k is to relax the constraint on the size of the clusters
and only require that each cluster size is not smaller than S = bn/kc. This leads to our CPMMIN problem. We have
also investigated the branch-and-cut method for solving the CPPMIN problem. The result is summarized in [14]. By
applying two different methods on the same problem, we hope to provide a comparison of the two and gain some
insight into the pros and cons for each method.

Column generation is a classic method that was originally used to solve Linear Programming problems with large
number of variables. Since its adaptation to integer programming more than a decade ago, it has been reported as a
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success on many difficult IP problems, such as the generalized assignment problem [27], crew scheduling [29], bin
packing and cutting stock problems [30], edge colouring problems [23], graph colouring problems [19], etc. For a
general introduction, one can refer to Barnhart et al. [3]. Wilhelm [31] gave a review with emphasis on formulation
issues. Lübbecke and Desrosiers [17] surveyed column generation with emphasis on the dual point of view.

2. An integer programming formulation for column generation

Now we give the integer programming formulation of CPPMIN in a form that is suitable for column generation.
We consider CPPMIN on graph G = (V, E) with minimum size S. A cluster P ⊆ V is feasible if there are at least S
vertices in this cluster, i.e. |P| ≥ S. For each feasible cluster P , we define a binary variable xP

xP =

{
1 if cluster P is used in the solution of CPPMIN
0 otherwise.

Let wP =
∑

e∈E(P) we, then CPPMIN can be formulated as the following IP problem, denoted as (MIP),

min
∑

P

wP xP

s.t.
∑

P:v∈P

xP = 1 ∀v ∈ V

xP ∈ {0, 1}

P ∈ 2V , |P| ≥ S.

Here 2V
= {P : P ⊆ V } represents the set of all subsets of V . The equality constraint says that every node v

must be covered in exactly one of the chosen clusters. In this paper, we consider only nonnegative edge weights, so
we automatically have xP ≤ 1. We then relax the integrality constraint, to get the linear relaxation (MLP):

min
∑

P

wP xP

s.t.
∑

P:v∈P

xP = 1, ∀v ∈ V (4)

xP ≥ 0 (5)

P ∈ 2V , |P| ≥ S. (6)

There are
∑n

i=S
( n

i

)
Ps that satisfy (6), thus the same number of variables xP . But it is not possible, nor necessary

to include all these variables in the initial formulation, since most of them take the value zero in the optimal solution
anyway. Instead, we can start with a subset of clusters, then add in the needed ones later using a pricing algorithm.
This pricing step is also called column generation since it is similar to the column generation method for solving LPs
with large number of variables. Starting with a subset of feasible clusters T ⊆ 2V , we solve a restricted (MLP), called
(RMLP), where P ∈ T . The optimal solution of (RMLP) is a feasible solution to MLP. The dual values πv for each
constraint in (RMLP) are used to decide whether we need to expand T .

We demonstrate how to price in a new variable by a trivial example. A graph of three vertices is required to be
partitioned into clusters containing no less than two vertices. There is obviously only one feasible solution to this
problem, which is to put all three vertices in one cluster. But there are four feasible clusters to consider, P1 = {v1, v2},
P2 = {v2, v3}, P3 = {v1, v3} and P4 = {v1, v2, v3}. Suppose we have considered three clusters P1, P2 and P3,
i.e., T = {P1, P2, P3}. Now we need to decide if we should expand T into T ′

= {P1, P2, P3, P4}. The LP relaxation
of (MIP) on T ′ can be written as the following:

min w1x1 +w2x2 +w3x3 +w4x4 dual variables
s.t. x1 +x2 +x4 = 1 → π1

+x2 +x3 +x4 = 1 → π2
x1 +x3 +x4 = 1 → π3
xi ≥ 0.

(7)
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Fig. 1. Optimal solution for a CPPMIN problem of type I with n = 14, S = 4.

Let πv be the dual variables corresponding to the equality constraint. The dual problem is:

max π1 +π2 +π3 primal variables
s.t. π1 +π3 ≤ w1 → x1

π1 +π2 ≤ w2 → x2
π2 +π3 ≤ w3 → x3

π1 +π2 +π3 ≤ w4 → x4.

(8)

Let (x̄1, x̄2, x̄3) and π̄ be the optimal solution to the primal and dual pair, when x4 was not introduced. (x̄1, x̄2, x̄3, 0)

is also a feasible solution to (7). Only when the reduced cost of x4, w4 − (π̄1 + π̄2 + π̄3), is negative, do we need to
add in cluster P4.

The above example demonstrates that we can decide whether to expand T or not by solving a minimum node-edge-
weighted cluster problem (MINNEWCP) with minimum size constraints: given a graph G = (V, E) with node weight
−πv and edge weight wi j , find a feasible cluster whose total weight (edge weights and node weights all together) is
minimized. If the optimal value is non-negative, then there exist no improving clusters. Otherwise, any feasible cluster
with a negative objective value provides an improving cluster. A feasible cluster in the case of CPPMIN needs to satisfy
the minimum size constraint, i.e. it has to have at least S vertices.

This process should be repeated until there are no improving clusters. If the optimal solution to the final linear
relaxation, (MLP), is an integer solution, then we are done, otherwise we need to use either a cutting plane method or
branching to force integrality.

3. Cutting planes

The LP relaxation (MLP), however, is not a very good approximation of the original IP problem (MIP). In fact,
whenever the number of vertices n is not a multiple of S, there exists a fractional solution to (MLP) that has a
better objective value than the optimal integer solution. And the difference is usually very big, resulting in a bad
approximation, consequently a large branch-and-bound tree, if we only use branching to enforce integrality.

This can be illustrated in the example in Figs. 1 and 2. A problem of size n = 14, S = 4 is shown, the edge
weights are the Euclidean distance between the vertices on the two ends of the edge. The optimal solution is shown
in Fig. 1 with an objective value of 628, but the best LP objective value of the LP relaxation (MLP) is 462, with the
corresponding LP solution shown in Fig. 2. The huge difference between these two solutions comes from the fractional
value of the clusters in vertices {7, 8, 9, 10, 11, 14}, namely from the factional value on clusters: x7,8,9,11 = 0.5,
x7,9,10,14 = 0.5, x8,10,11,14 = 0.5. This happens in every cluster with more than S vertices, since it can always be
replaced by a fractional combination of clusters of size S with a lower objective value.
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Fig. 2. (MLP) solution for a CPPMIN problem of type I with n = 14, S = 4.

We would like to mention here that a similar gap between the MIP and its LP relaxation is also present in the case
of k-way equipartition, although it may not happen in every instance as it does here. For an example and more details
on the case of k-way equipartition, see Ji and Mitchell [15].

A weak LP relaxation at the root node seldom leads to a successful branch-and-bound process, especially in the
context of branch-and-price, because one of the major motivations for considering a formulation with a huge number
of variables lies in the hope that this new formulation gives a tight LP relaxation.

To tighten up the relaxation, we make use of the following observation. The fractional LP solution in Fig. 2 can be
easily cut off if we add in the constraint

∑
P⊆7,8,9,10,11,14 xP ≤ 1 = b6/4c, which is implied by the requirement that

each cluster has to contain at least S = 4 vertices. Generalizing this example, we get the following theorem:

Theorem 1. Given Q ⊆ V, |Q| < q S, inequality (9) is a valid constraint for (MIP) on Q.∑
P:P⊆Q

xP ≤ q − 1. (9)

The proof is straightforward since when |Q| < q S, we can partition Q into at most q − 1 clusters that contain at
least S vertices.

This constraint relates to the Pigeon constraint in Ji and Mitchell [14] for the branch-and-cut formulation of the
CPPMIN problem.

To find a violated constraint from a fractional solution, we first observe that a possible candidate Q must have the
following property: Q ⊆ Q̄ = {v| ∃P s.t. v ∈ P and 0 < x p < 1}. This property significantly reduces the searching
space for violated constraints, but it is still inefficient to enumerate and check all possible subsets of Q̄. In stead, we
use a simply heuristic, Algorithm 1, to check only those subsets generated by combining the corresponding columns
of two fractional variables in the current optimal (MLP) solution. Since the clusters corresponding to each column
are between size S and 2S − 1, the combined subsets are between size S + 1 and 4S − 2. Therefore our constraint is
relatively small. Our empirical results show that this subset of clusters captures most of the important cutting planes
of this type. A much better LP bound in the root node is achieved with these cutting planes added, so we didn’t try
more sophisticated cutting plane generation methods. When no more cutting planes can be found, if we still have a
fractional optimal solution, we resort to branching without cutting planes added in the lower nodes.

With these new cutting planes, we write out our restricted (MLP) as (RMLP),

min
∑

P

wP xP

s.t.
∑

P:v∈P

xP = 1 ∀v ∈ V (10)
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P

xP ≤ k (11)∑
P⊆Qi

xP ≤ b|Qi |/Sc i = 1..q (12)

xP ≥ 0 (13)

P ∈ T ⊆ 2V , |P| ≥ S. (14)

Algorithm 1 Algorithm for finding violated constraints of type (9) for MLP
Input:

xlp - MLP solution
Output:

QSET - subsets of vertices violating constraint (9)
Steps:

QSET = ∅

for each pair of (i, j) s.t. 0 < xlpi < 1 and 0 < xlp j < 1 do
Let P i be the cluster corresponding to xlpi .
Let P j be the cluster corresponding to xlp j .
Let Q = P i

∪ P j .
if (9) is violated on Q then

QSET = {QSET } ∪ {Q}

end if
end for

We separate constraint (11) from (12) because the former is included in the initial formulation, while the latter is
added in dynamically when Qi is identified using Algorithm 1 during the computation. Let πν , σ and σi be the dual
variables corresponding to Eqs. (10)–(12). We write down the corresponding dual problem:

max
n∑

v=1

πv +kσ +

q∑
i=1

⌊
|Qi |

S

⌋
σi

s.t.
∑
v∈P

πv +σ +

∑
i :P⊆Qi

σi ≤ wP for every P ∈ T

σ ≤ 0
σi ≤ 0 i = 1..q.

(15)

In general cutting planes are difficult to fit into a column generation framework without complicating the pricing
subproblem too much. But it is possible in our situation because the empirical results show that we don’t need to add
in a lot of cutting planes to achieve a good approximation of the IP. We have two issues to consider here. One is how
to update affected cutting planes after adding in new columns. The other is how to generate new columns with these
new cutting planes.

The first can be achieved in the following way. We associate a flag with every cutting plane added, and mark it on
the vertices affected by this cutting plane. For example, if a subset Qq ⊆ V is associated with the qth cutting plane,
then every vertex in Qq has a mark q . When new columns are added, we take an intersection of the marks on all the
vertices affected by this new column, the result is the constraints that should include this new column.

The second issue is solved in the following way. In the column generation subproblem, we need to either find a
cluster P s.t.

∑
v∈P πv + σ +

∑
i :P⊆Qi

σi > wP , to price into the master problem (MLP), or prove that such a cluster
doesn’t exist, therefore we are at optimality. Complication arises with the last term

∑
i :P⊆Qi

σi : its value depends on
the cluster P we found. If P 6⊆ Qi , ∀i = 1..q , then

∑
i :P⊆Qi

σi = 0; otherwise,
∑

i :P⊆Qi
σi may be negative.

Accordingly we separate the process into two steps. First we consider the case when P ⊆ Qi , since Qi is small,
we can enumerate all feasible subsets of Qi , and check if any of them can be priced out into the master problem.
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If no such clusters can be found, we continue to the second step: ignore the cutting planes in the column generation
process, and only look at the clusters P that are not subsets of any Qi and check if wP −

∑
v∈P πv −σ < 0. Checking

this is the subject of the next section. If no such clusters exist, no columns can be generated, thus we have proved the
optimality of the current best solution. Otherwise, we have found a cluster to price in. We should emphasize that this
strategy is applicable because in our case, the number of added constraints q is relatively small, and their sizes are
small too, so we can enumerate all the feasible subsets in Qi , i = 1, . . . , q, fairly quickly.

4. Generate improving clusters

In the second step of the previous discussion, we need to solve the following pricing subproblem, the Minimum
Node-Edge-Weighted Cluster Problem (MINNEWCP) with minimum size constraints. Finding a fast and good
algorithm to solve this problem is an essential part of the branch-and-price scheme. In this section, we will explain
our approach.

4.1. Problem definition and quadratic formulation

The MINNEWCP problem is stated formally as the following: given a graph G = (V, E), a vertex weight πv

associated with each vertex v ∈ V , and an edge cost ci j associated with each edge (i, j) ∈ E . The MINNEWCP
problem is to select a subset of the vertices P ⊆ V that minimize the difference between the cost of the edges in E(P)

and the weight of the vertices in P . In other words, the objective is to minimize the quantity
∑

i, j∈P ci j −
∑

v∈P πv .
In our pricing problem we have an additional cardinality constraint |P| ≥ S.

We can change the objective function in MINNEWCP into maximizing
∑

v∈P πv −
∑

i, j∈P ci j . In this equivalent
form, the problem is also called the generalized independent set problem, first defined by Hochbaum and Pathria
in [11]. Given a graph G = (V, E) and a node weight πv associated with each vertex v ∈ V , recall the independent
set problem is to find a subset of the vertices P ⊆ V of maximum weight

∑
v∈P πv , such that no edges e ∈ E has both

of its endpoints in P . In the generalized independent set problem, we can regard the cost on the edges as a penalty for
two adjacent vertices to be included in P . The standard independent set problem has an edge penalty of infinity for
every edge in E , and 0 for edges not in E , while here we have a finite value for the penalties. When the underlying
graph is bipartite, the generalized independent set problem can be solved efficiently by reducing to a minimum s−t cut
in a network. Hochbaum and Pathria used this property to solve a forest harvesting optimization problem efficiently
in [11]. But in general, the generalized independent set problem is NP hard, since the independent set problem is
NP-hard and a polynomial algorithm of the generalized independent set problem is a polynomial algorithm for the
independent set problem. It is easy to see that the generalized independent set problem with cardinality constraint
|P| ≥ S is also NP hard when S value is nontrivial comparing with n. So our pricing subproblem, MINNEWCP with
cardinality constraints, is an NP-hard problem.

We start by formulating the problem as a quadratic programming problem. Define variable yv for each vertex
v ∈ V ,

yv =

{
1 if v ∈ P
0 otherwise.

Suppose the current RMLP has πi , i = 1, 2, . . . n, and σ as the dual variables to (10) and (11) respectively. To
incorporate the column generation step into a branch-and-bound framework later, we also suppose each vertex v has
a cardinality av . At the root node, we assume av = 1. We can formulate our pricing problem as a binary quadratic
problem with linear constraints, called MINNEWCPQP,

min
1
2

yT Cy − πT y

s.t. aT y ≥ S (16)∑
v 6∈Qi

av yv ≥ 1 i = 1, . . . , q (17)

yv ∈ {0, 1} (18)
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where each entry ci j in C is the edge weight for edge (i, j), and ci i = 0 for i = 1 . . . n. Constraint (16) imposes
the size constraint of feasible clusters. Constraint (17) is from the discussion in the last section, to enforce that the
selected cluster can not be a subset of any Qi , i = 1 . . . q. As discussed in the previous section, if the optimal value
of this pricing problem is smaller than σ , then we can generate new columns, otherwise, we have achieved optimality
in the master problem.

Even if we relax the binary constraint y ∈ {0, 1} into a linear constraint y ∈ [0, 1], the resulting optimization
problem with quadratic objective and linear constraints is still not convex, since the edge cost matrix C in the quadratic
term is not positive semidefinite. Extensive research has been done on constrained or unconstrained binary quadratic
programming. See for example, Barahona, Jünger and Reinelt [2], who solve the unconstrained quadratic 0-1 program
by converting it to a max-cut problem and solving it using branch-and-cut. Beasley [4] gives a comparison on heuristic
algorithms for unconstrained quadratic 0-1 program.

4.2. Related problems

The pricing problem that Mehrotra and Trick solved in [20] for their knapsack clustering problem has a similar
structure as MINNEWCP. The difference is that they did a maximization of the same objective function with a
knapsack upper bound constraint while we have a minimization problem with a lower bound constraint on the size.
They proposed an effective combinatorial method to solve the pricing problem, which leads to the success of the main
branch-and-price scheme. The strength of their method lies in a shifting of weight from edges to vertices to give a
close upper bound. This way they can get a good upper bound from a combinatorial analysis rather than solving a LP.
Johnson, Mehrotra and Nemhauser [16] worked on the same problem as in [20]: min-cut clustering with capacity lower
bound. They looked at the subproblem as a integer programming problem and gave some strong valid inequalities for
the subproblem.

Just as the max-cut and min-cut problems differs from NP to P, the change of the objective from maximization
to minimization in our pricing problem prevented us from using any results from the above literature. In addition,
constraints (16) and (17) impose further difficulties in adopting a combinatorial approach.

The pricing problem in [20] and [16] is a special case of Quadratic Knapsack Problem, (QKP), which has attracted
great interest recently, see [8,5], etc.

max yT Ly

s.t. aT y ≤ b

y ∈ {0, 1}
n .

By the change of z = 1 − y, we can formulate the MINNEWCPQP as a QKP with an additional constraint. But
in the formulation, most of the entries in L would be negative. In the most general form of QKP, the entries in L
can be either positive or negative, but the current QKP research mostly focuses on the case when the entries in L are
nonnegative. We could not find computational results on QKP with negative entries in the literature.

4.3. IP formulation and boolean polytope

We followed the standard “linearization” method in quadratic programming literature to convert the quadratic
programming problem MINNEWCPQP into an IP problem.

Introduce a new variable zi j = yi y j for every edge (i, j) ∈ E .

zi j =

{
1 if (i, j) ∈ E(P)

0 otherwise.

We reformulate MINNEWCPQP as the following IP problem, referred to as MINNEWCPIP,

min −

∑
i∈V

πi yi +

∑
(i, j)∈E

ci j zi j

s.t.
n∑

i=1

ai yi ≥ S (19)
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i 6∈Qk

ai yi ≥ 1 k = 1..q (20)

zi j ≤ yi (21)
zi j ≤ y j (22)
zi j ≥ yi + y j − 1 (23)
zi j ≥ 0 (24)

yi ∈ {0, 1}, zi j ∈ {0, 1}. (25)

Eqs. (21) and (22) ensure that zi j must be zero if either one of yi or y j is zero. Eq. (23) ensures that zi j is one if
both yi and y j are one. The convex hull of (21)–(25) is called the Boolean Quadratic Polytope, denoted

Q Pn
= conv{(y, z) ∈ Rn(n+1)/2

| (y, z) satisfy (21)–(25)}.

Padberg [25] discussed this boolean quadratic polytope structure and gave some facet defining constraints. Other
variations on this kind of polytope has also been discussed in the literature, for more details see Ji [13].

Since ci j is always nonnegative, we don’t need constraints (21) and (22). Also we don’t need to require zi j to be a
binary variable explicitly. Because ai ≥ 1, i = 1, . . . , n, we can drop the ai in constraint (20). So we can reformulate
the problem as the following (PRICEIP),

min −

∑
i∈V

πi yi +

∑
(i, j)∈E

ci j zi j

s.t. zi j ≥ yi + y j − 1 (26)
n∑

i=1

ai yi ≥ S (27)

∑
i 6∈Qk

yi ≥ 1 k = 1, . . . , q (28)

zi j ≥ 0 (i, j) ∈ E (29)
yv ∈ {0, 1} v ∈ V . (30)

4.4. Other constraints

We can tighten up the linear relaxation of PRICEIP by generating constraints using the Reformulation-
Linearization Technique (RLT) introduced by Sherali and Adams [28]. They are similar to the constraints generated
for the linear relaxation of Quadratic Knapsack Problem in Caprara, Pisinger and Toth [6].

For i = 1..n, we multiply the size constraint (27) by yi and replace y2
i by yi , yi y j by zi j , getting the following

valid constraint:∑
j 6=i

a j zi j ≥ (S − ai )yi i = 1, . . . , n. (31)

This is also called the star inequality in Hunting, Faigle and Kern [12].
We can also multiply (27) by 1 − yi , and get

Syi +

∑
j 6=i

a j y j −

∑
j 6=i

a j zi j ≥ S i = 1, . . . , n. (32)

However, our computational results show that these additional constraints, as well as the general constraints for
QKP mentioned in Padberg [25], do not improve the speed of the branch-and-bound process in solving the pricing
problems. They do reduce the number of nodes in the branch-and-bound tree, but the total computation time often
increases when these constraints are included either in the initial formulation or as cutting planes. So we just use a
pure branch-and-bound procedure to solve PRICEIP directly. Since it is not necessary to generate the column with
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the most negative reduced cost each time, we stop solving the IP as soon as a column with a negative reduced cost is
found. But if such a column does not exist, we have to solve the pricing problem to optimality to make sure.

4.5. Heuristic algorithms

Since solving the pricing problem as an IP problem is an expensive operation, we first use some heuristic algorithms
to try to generate columns before calling the IP solver. Algorithms 2–4 give the three heuristics that we employed.
They are applied in the order of 2–4. Only when the previous algorithms do not generate any columns to be priced
in, would we try the next algorithm. These heuristic algorithms are similar to those in Ji and Mitchell [15] for k-way
equipartition problems with minor changes of the size of the cliques we pick. For completeness, we list them below.

Algorithm 2 Heuristic Pricing Algorithm I: Enumerate from 2S closest vertices
for i = 1 to n do

Find the closest 2S − 1 vertices to vertex i .
Enumerate all clusters of size S to 2S − 1 from these 2S vertices.
Put the violating clusters into a column pool.

end for
Add the 10 most violating columns from the column pool, with no more than 10 columns on the same vertex added.

Algorithm 3 Heuristic Pricing Algorithm II: Enumerate from constraint clusters
for i = 1 to q do

Enumerate all subsets of Qi between size S and 2S − 1.
Put the violating clusters into a column pool.

end for
Add the 10 most violating columns from the column pool, with no more than 10 columns on the same vertex added.

Algorithm 4 Heuristic Pricing Algorithm III: Greedily find a small node-edge-weighted clique of size at least S
Input:

1: S - minimum cluster size
2: ci j - edge weight
3: πi - node weight
4: ai - node capacity

Steps:
5: for i = 1 to N do
6: CLIQ = {i}
7: Find vertex v s.t. w(CLIQ, v) = πv −

∑
e∈δ(v,CLIQ) ce is minimum for v 6∈ CLIQ.

8: if |CLIQ| < S or w(CLIQ, v) > 0 then
9: CLIQ = CLIQ + v

10: GOTO 7
11: else
12: GOTO 14
13: end if
14: Check if CLIQ can be put into the violating column pool.
15: Do local search near CLIQ, see if any columns can be put into violating column pool.
16: end for
17: Add the 10 most violating columns from the column pool, with no more than 5 columns on the same vertex added.
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5. Branching

It is well known that the simple 0-1 branching rule in a branch-and-cut framework does not work in a branch-
and-price algorithm. Therefore we have adopted the commonly used Ryan–Foster branching rule [26] for set partition
models. In a fractional solution for MLP, we can identify two fractional variable xP1 and xP2 , and two vertices i and
j , such that both vertices are in P1 but only one of them is in P2. So we can divide the problem into two branches.
In one, vertex i and vertex j must be covered by the same cluster, which can be enforced by just collapsing i and j
into a single node in the graph. In the other, vertex i and j must be in different clusters, which can be enforced by
changing the weight on edge (i, j) to a very large value. This way, we can impose the branching choices on the pricing
subproblems directly rather than adding in additional constraints on the master problem.

This branching strategy actually corresponds to the branching strategy on xi j in the compact branch-and-cut
formulation of the problem in Ji and Mitchell [14]. This conforms with the observation in Lübbecke and Desrosiers
[17], “to branch on meaningful variable sets”. Our most valuable source of information are the original edge variables
of the compact formulation; they must be integer, so these are what we branch on. Similarly, the cutting planes that
we introduced earlier, correspond to the pigeon constraint for the compact formulation in Ji and Mitchell [14].

After branching, our CPPMIN problem changed into a GCPPMIN problem, for each combined vertex v now has
a vertex weight av bigger than one, representing the number of original vertices it corresponds to. Consequently, av

in the pricing subproblem for some vertices are not one any more. So we are in fact solving a GCPPMIN problem at
every branch-and-bound node except the root node.

Even though we didn’t add cutting planes in the sub-nodes in our computational results, the constraints can be
easily modified to accommodate this change on the cardinality on the vertices, by changing to the following form:∑

i :Pi ⊆Q

xi ≤ k − 1 (33)

for Q with
∑

j : j∈Q a j < kS.

6. Stabilization

Another complication arises from the degeneracy of the primal problem. Notice the primal problem (7) is very
degenerate, since there are |V | rows, but in a feasible integer solution, only |V |/S = k number of x ′s would be
nonzero. Primal degeneracy is well known to cause slow convergence, see Gilmore and Gomory [9]. We are bound to
have alternative dual solutions. We need to pick one out to construct the pricing subproblem. One would like to pick
one to reduce useless oscillations in the dual space. Various methods have been proposed on this issue, see Lübbecke
and Desrosiers [17].

Instead of using those more complicated methods in [17], we simply try to avoid oscillations by expanding our
initial problem to include not only the columns of a good heuristic solution but also the clusters consisting of the
closest S − 1 and S vertices to each vertex. It also helps to avoid generating useless columns by checking heuristic
algorithms first to search for violated columns also.

7. Computational results

In this part, we are going to give the framework of our algorithm and the results of our computational experiments.
We first use the heuristic algorithm (Algorithm 4) in Ji and Mitchell [14] to find a good feasible solution. An initial
problem including the clusters in this solution would be a feasible problem. To improve stability of the dual variable
value, we also include the clusters composed of the closest S and S+1 vertices to each vertex in the initial formulation.

The branch-and-price-and-cut code is implemented using MINTO 3.0.2. The algorithm follows the framework as
in MINTO [24] with minor changes. It is illustrated in Algorithm 5. One major difference from the MINTO framework
is in step 4 and 5. Since step 5, solving the pricing problem as an IP, is time consuming, we try to generated cutting
planes before step 5. It is only when we can neither generate new columns using other methods, nor generate cutting
planes, would we start solving the pricing problem as an IP.
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Algorithm 5 Branch and Price and Cut Framework
1: Initialize.
2: Approximately solve the current LP relaxation using CPLEX.
3: Generate columns using heuristic algorithms, if new columns are found goto 2.
4: Check if any cutting planes can be generated, if yes, generate cutting planes and goto 2.
5: Generate columns using an IP solver, if new columns are found goto 2.
6: If the gap between the value of the LP relaxation and the value of the incumbent integer solution is sufficiently

small, STOP with optimality.
7: Try to improve the incumbent solution locally by switching vertices and move extra vertices around.
8: Check if any cutting planes can be generated, if yes, generate cutting planes and goto 2.
9: Branching.

Table 1
Branch-and-price results on CPPMIN Type I problems for S = 4

n 21–23 41–43 61–63 81–83 101–103
k = b

n
S c 5 10 15 20 25

Heuristic Alg.
Gap 5.30% 7.57% 7.46% 9.88% 8.21%
Time 0.0056 0.0114 0.0213 0.0337 0.0490

Root node
Total instances 15 15 13 14 4
Solved exactly 11 14 8 5 0
Better solution 11 14 13 14 4
Gap 0.27% 0.01% 0.98% 1.12% 1.22%
Time 2.41 16.47 188.48 826.04 1791.87
LPs solved 8 15 38 61 72
Total cuts 2 6 19 35 42
Total columns 107 200 320 440 528
Initial columns 65 132 195 260 334
Columns by IP 1 2 8 12 18
Total IP time 2.27 15.80 184.08 798.43 1718.75
Avg IP time 1.09 5.14 20.28 62.15 92.91

B&P run
Total instances 4 1 5 9 4
Solved exactly 4 1 4 3 0
Better solution 1 0 3 7 1
Gap 0% 0% 0.18% 0.36% 0.58%
Time 2.90 17.15 273.50 1529.98 4012.68
Nodes 2 1 3 6 10
Final columns 108 200 327 462 560

7.1. Type I problems

The data used here are the same types of data used in Ji and Mitchell [14]. Type I data are constructed from
uniformly distributed points on a square. The Euclidean distances between each pair of vertices are taken as the edge
weights.

Tables 1 and 3 list the computational results for Type I data with S = 4 and S = 7 respectively. As one can see
from the two tables, although the problem is harder in the case of S = 7, and it requires longer time to solve, the trend
and analysis of S = 7 is similar to the case of S = 4. Therefore in the following discussion, we concentrate on the
case of S = 4.

In Table 1, graph size n ranges from 21 to 103. k = bn/Sc represents the maximum number of clusters possible.
The table is divided into three parts to represent the performance of the heuristic algorithm, the root node of the branch-
and-price-and-cut algorithm, and the branch-and-price tree. They are labelled as “Heuristic Alg”, “Root Node” and
“B&P” respectively. The first block gives the gap and time for the heuristic approach. The second block corresponds
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to the result at the end of the root node before branching. The first three rows in this block give the total number of
instances, and out of these many instances, how many are solved to optimality in the root node, how many get better
solutions than the heuristic solution. The rest of the data in this block are all average performance, including, the gap
at the end of root node, the running time (in seconds), the number of LP’s solved, the number of cuts added, the total
number of columns at the end of the root node, the number of columns in the initial formulation, the total number of
columns found by solving the pricing problem as an IP, the total time spent on solving the pricing problem as an IP
and finally the time for solving one pricing problem as an IP.

For problems not solved to optimality, we start branching. No cutting planes are added any more. The performance
is recorded in the third block, including the total number of instances requiring branching, the number of instances
solved to optimality before reaching an upper bound of 10 for the total number of nodes. (Notice this number does not
include the problems that are already solved at the root node), how many root node solutions get improved during the
branching stage, the final gap between the best IP solution and the LP lower bound, total running time (including the
root node time), the number of branch and bound nodes, and the overall number of columns generated in the whole
tree.

The experiments are done on a Sun Ultra 10 Workstation, with CPU speed at 440 MHz, system clock 110 MHz and
memory 128 MB. The heuristic algorithm is coded in FORTRAN. The branch and price algorithm is implemented
using MINTO 3.0.2 in C and C++. The LP solver is CPLEX 6.1.

Table 1 shows the result for Type I data. The small gap at the end of root node indicates a tight relaxation from
the combination of column generation and row generation. However, note that the time it takes to solve the root node
scales up rather quickly. For problems smaller than 43 vertices, they are solved to optimality within 20 s. But for
problems bigger than 60 vertices, the computation time increases dramatically. This is due to the increasing solution
time for the pricing problem, and the increasing number of pricing problems we need to solve. Even though the
computation time for solving one pricing problem as an IP is not very big, considering that these pricing problems are
NP hard problems, solving them repeatedly sums up to a considerable amount of time.

To compare the branch-and-cut method in Ji and Mitchell [14] with the branch-and-price-and-cut method presented
in this paper, we put together Table 2 with the data from Table 2 in [14] and Table 1. For comparison convenience, we
have adjusted the reported time for “B&C run” to represent the total computation time, i.e. it includes root node time.
The “B&C run” time in Table 2 in [14] does not include the root node time.

By comparing the performance in terms of both gap and time, one can see that branch-and-price-and-cut
outperforms branch-and-cut, on instances with no more than 43 vertices. As the size of the problems get bigger,
branch-and-cut’s ability to stop at any time with a guaranteed bound duality gap became more useful, especially when
it takes a long time for the branch-and-price to finish the root node to provide such a gap bound, even though it almost
always returns a gap much smaller than the one provided by branch-and-cut.

Tables 3 and 4 shows similar results for the case of S = 7. These experiments are done on the same kind of Sun
Ultra 10 Workstation as before but with 512 MB memory. Compared to the case of S = 4, these instances are more
difficult and takes much longer time to solve. We only show the result of the root node here. A comparison with the
branch-and-cut gives us Table 4, confirming our previous observation regarding the advantages and disadvantages of
branch-and-price vs branch-and-cut on this problem.

7.2. Type II problems

In Type II problems, the edge weights are generated directly as uniformly distributed random numbers between 1
and 100. Table 5 shows the results for Type II problems. As observed in Ji and Mitchell [14], these are harder parti-
tioning problems. It’s not surprising to see that these problems take a much longer time to solve than Type I problems
in Table 1. We also put together a comparison Table 6 to evaluate against the branch-and-cut results from [14]. From
this table, we can see branch-and-price-and-cut performs much better than the branch-and-cut method. We think this
is because the edge weights here do not satisfy triangle inequalities, resulting in a large number of triangle constraints
being added in the branch-and-cut method. The branch-and-price algorithm does not use triangle constraints to enforce
feasibility of the solutions, so it does not run into such problems. However this type of problem is still harder than
Type I problems, because the heuristics for generating columns do not work as well as in Type I problem. A lot more
columns are generated using IP solver, which is much more time-consuming. Despite this, we can still conclude that
branch-and-price method fits better than branch-and-cut method for problems that violate a lot of triangle constraints.
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Table 2
Comparison of branch-and-cut and branch-and-price results on CPPMIN Type I problems for S = 4

n 21–23 41–43 61–63 81–83 101–103
k = b

n
S c 5 10 15 20 25

B&C root
Gap 1.87% 2.67% 3.02% 3.65% 3.77%
Time 6.99 23.08 58.42 110.58 175.63
B&C run
Gap 0% 0% 0.30% 2.67% 3.47%
Time 10.24 47.15 215.48 514.28 685.76

B&P root
Gap 0.27% 0.01% 0.98% 1.12% 1.22%
Time 2.41 16.47 188.48 826.04 1791.87
B&P run
Gap 0% 0% 0.18% 0.36% 0.58%
Time 2.90 17.15 273.50 1529.98 4012.68

Table 3
Branch-and-price results on CPPMIN Type I problems for S = 7

n 36–41 71–76
k = b

n
S c 5 10

Heuristic Alg.
Gap 1.90% 6.82%
Time 0.003 0.007

Root node
Total instances 26 20
Solved exactly 25 16
Better solution 16 19
Gap 0.03% 0.28%
Time 43.05 842.92
LPs solved 21 36
Total cuts 0 3.7
Total columns 375 726
Initial columns 208 430
Columns by IP 3 3
Total IP time 38.88 828.70
Avg IP time 11.54 247.37

Table 4
Comparison of branch-and-cut and branch-and-price results on CPPMIN Type I problems for S = 7

n 36–41 71–76
k = b

n
S c 5 10

B&C root
Gap 2.10% 2.32%
Time 67.93 235.65
B&C run
Gap 0.58% 2.04%
Time 150.60 402.68

B&P root
Gap 0.03% 0.28%
Time 43.05 842.92
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Table 5
Branch-and-price results on CPPMIN Type II problems for S = 4

n 21–23 41–43 61–63
k = b

n
S c 5 10 15

Heuristic Alg.
Gap 9.05% 16.80% 35.23%
Time 0.0059 0.0128 0.0222

Root node
Total instances 15 15 6
Solved exactly 6 0 0
Better solution 9 9 5
Gap 3.23% 11.84% 20.85%
Time 27.94 322.75 2936.08
LPs solved 39 121 207
Total cuts 1 3 6
Total columns 195 426 638
Initial columns 111 218 316
By IP 27 92 161
Total IP time 27.33 309.00 2801.17
Avg IP time 0.96 3.33 17.33

B&P run
Total instances 9 15 6
Solved exactly 9 5 0
Better solution 5 15 4
Gap 0.00% 2.09% 13.07%
Time 31.85 617.74 5504.16
Nodes 3 9 10
Final columns 199 460 679

Table 6
Comparison of branch-and-cut and branch-and-price results on CPPMIN Type II problems for S = 4

n 21–23 41–43 61–63
k = b

n
S c 5 10 15

B&C root
Gap 4.74% 13.28% –
Time 75.69 1657.34 –
B&C run
Gap 0% 8.93% –
Time 116.52 2134.04 –

B&P root
Gap 3.23% 11.84% 20.85%
Time 27.94 322.75 2936.08
B&P run
Gap 0% 2.09% 13.07%
Time 31.85 617.74 5504.16

We also conducted experiments using data for micro-aggregation problems. Again the root node gives a very tight
LP approximation for the problem, but it takes a long time to compute. The basic trends and analysis are exactly the
same as those for Type I data. For detailed results, see [13].

8. Conclusions

In this paper, we discussed solving CPPMIN using a branch-and-price scheme. We demonstrated the necessity
of cutting planes in this problem, and suggested an effective way of adding cutting planes in the branch-and-price
framework. We solved the pricing subproblem as an integer programming problem.
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Our computational results showed that branch-and-price performed well on small-size instances (within around
40 vertices), but slows down for larger problems due to the lack of efficient methods for the pricing subproblem.
However, the root algorithm gave a good feasible solution most of the time. After comparing with the results of the
branch-and-cut method on the same problem in Ji and Mitchell [14], we see a better performance from branch-and-
cut-and-price on all types of data, especially for Type II, where a large number of edge weights do not satisfy triangle
constraints. However, on instances of large sizes, if an error bound is needed, branch-and-cut would be preferred. If
the user is only interested in looking for a good solution without an error bound guarantee, branch-and-price might
give a good solution more quickly.

Future work includes more sophisticated heuristics for generating columns. This is particularly important for
larger values of S in order to control the time spent in the exact IP column generation subproblem. Preprocessing
the PRICEIP to exploit our knowledge of the structure of the problem may also be helpful.

We are confident that this method can be extended to GCPPMIN, i.e. partitioning problems with knapsack lower
bound constraints, where each vertex is given a weight, and each cluster in the solution must be bigger than a certain
weight.
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