We discuss inequalities between the rank counts $N(r, m, n)$ and between the crank counts $M(r, m, n)$, for $m = 2, 3, 4$, and state three conjectures.

1. INTRODUCTION

A partition $\pi = (\pi_0, \pi_1, \ldots , \pi_k)$ is a finite (weakly) descending sequence of positive integers (the parts of π). Thus π_0 is the largest part of π. $\# \pi = k$ is the length of π and $w(\pi) = \pi_0 + \pi_1 + \cdots + \pi_k$ is the weight of π. If $w(\pi) = n$, π is a partition of n. In 1944 Dyson [5] defined the rank of a partition, π, by

$$\text{rank}(\pi) := \pi_0 - \# \pi$$

and set

$$N(m, n) := \# \{ \pi : w(\pi) = n, \text{rank}(\pi) = m \}$$

$$N(r, m, n) := \# \{ \pi : w(\pi) = n, \text{rank}(\pi) \equiv r \mod m \}.$$

Noting that $\text{rank}(\pi) = -\text{rank}(\bar{\pi})$ (where $\bar{\pi}$ denotes the conjugate [1, p. 7] of π), it follows that

$$N(m, n) = N(-m, n) \quad \text{and} \quad N(r, m, n) = N(-r, m, n).$$
Dyson observed that several relations appeared to hold among the \(N(r, m, n) \) when \(m = 5 \) and \(7 \), and his observations were shown to be universally valid by Atkin and Swinnerton-Dyer [4]. Some 35 years later, Garvan defined the crank for certain vector partitions and he and Andrews subsequently defined

\[
\text{crank}(\pi) := \begin{cases}
\pi_0, & \text{if } \mu(\pi) = 0, \\
\nu(\pi) - \mu(\pi), & \text{if } \mu(\pi) > 0,
\end{cases}
\]

where \(\mu(\pi) \) denotes the number of ones in \(\pi \) and \(\nu(\pi) \) denotes the number of parts of \(\pi \) larger than \(\mu(\pi) \). Following Dyson’s suggestion [5], they set, for \(n > 1 \),

\[
M(m, n) = \# \{ \pi : w(\pi) = n, \text{crank}(\pi) = m \} \\
M(r, m, n) = \# \{ \pi : w(\pi) = n, \text{crank}(\pi) \equiv r \mod m \}.
\]

We suppose the rank and the crank of the empty partition of 0 are each 0 and that

\[
M(1, 1) = M(-1, 1) = 1, \quad M(0, 1) = -1, \quad \text{and} \quad M(m, 1) = 0, \quad (m \neq \pm 1, 0).
\]

So the numbers \(M(m, n) \) are the numbers \(\mathcal{N}_{v}(m, n) \) defined by Garvan [7–9]. We take \(z \) and \(q \) to be complex variables with \(z \neq 0 \) and \(|q| < 1 \) and we will use the familiar notation

\[
(z; q)_{n} := \prod_{k=0}^{n-1} (1 - zq^{k}) \\
(z; q)_{\infty} := \prod_{k=0}^{\infty} (1 - zq^{k}).
\]

For future reference, we note that

\[
\frac{1}{(-q; q)_{2n}} = \frac{(q; q^{2})_{n}}{(q^{2n+2}; q^{2})_{n}} \quad (1.1)
\]

and

\[
\frac{1}{(-q; q)_{2n+1}} = \frac{(q; q^{2})_{n}}{(q^{2n+2}; q^{3})_{n+1}} \quad (1.2)
\]
It is not difficult to see that the generating function of the numbers $N(m, n)$ is given by

\[
\sum_{n=0}^{\infty} \sum_{m=\infty}^{n} N(m, n) z^m q^n = \sum_{k=0}^{\infty} \frac{q^{k^2}}{(zq; q)_k (z^{-1}q; q)_k}
\]

\[
= 1 + \sum_{k=1}^{\infty} \frac{z^{k-1}q^k}{(z^{-1}q; q)_k},
\]

(1.3)

and we also have

\[
\sum_{n=0}^{\infty} \sum_{m=\infty}^{n} M(m, n) z^m q^n = \sum_{n=0}^{\infty} \sum_{m=\infty}^{n} N_p(m, n) z^m q^n
\]

\[
= \frac{(q; q)_\infty}{(zq; q)_\infty (z^{-1}q; q)_\infty}.
\]

(1.4)

In (1.3), k marks the size of the Durfee square [1, pp. 27, 28] of a partition and, in the alternative expression (1.4), k is the size of the largest part. The generating function for the crank (1.5) was given by Garvan [79].

It is shown in [10] that

\[
N(0, 2n) < N(1, 2n) \quad \text{if} \quad n \geq 1 \quad \text{and}
\]

\[
N(1, 2n + 1) < N(0, 2n + 1) \quad \text{if} \quad n \geq 0.
\]

(1.6)

The proof given in [10] of (1.6) is combinatorial (bijective) in nature and consists of the construction of maps

\[
\{ \text{partitions of } 2n \text{ of even rank} \} \rightarrow \{ \text{partitions of } 2n \text{ of odd rank} \}
\]

\[
\{ \text{partitions of } 2n + 1 \text{ of odd rank} \} \rightarrow \{ \text{partitions of } 2n + 1 \text{ of even rank} \}
\]

that are injective, but not surjective.

Setting $z = -1$ in (1.3), we see that

\[
\sum_{n=0}^{\infty} (N(0, 2, n) - N(1, 2, n)) q^n = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(-q; q)_n^n} =: f(q),
\]

where $f(q)$ is one of the third-order mock theta functions [11]. Thus (1.6) is the statement that the signs of the coefficients of $f(q)$ are $+, +, -, +, -, -,$ (alternating thereafter) or, equivalently, that the signs of the coefficients in $f(-q)$ are $+, -, +, -, -,$ (and thereafter all negative).
In fact, (1.6) has a straightforward algebraic derivation which we include, since it foreshadows our later arguments. Setting \(z = -1 \) in (1.4), we have

\[
f(q) = 1 + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{q^k}{(-q; q)_k}
\]

(1.7)

and so

\[
f(-q) = 1 - \sum_{k=1}^{\infty} \frac{q^k}{(q; -q)_k}
\]

which, by (1.1) and (1.2),

\[
= 1 - \left\{ \sum_{k=1}^{\infty} \frac{q^{2k}(-q; q^2)_k}{(q^{2k+1}; q^4)_k} + \sum_{k=1}^{\infty} \frac{q^{2k-1}(-q; q^2)_k}{(q^{2k-1}; q^4)_k} \right\}.
\]

The coefficients of the terms of each sum in the brackets are clearly positive and this settles 1.6.

A number of inequalities between the \(N(r, m, n) \) and the \(M(r, m, n) \) were found by Garvan [79] when \(m = 5, 7 \), and Ekin [6] gave some inequalities between the \(M(r, 11, n) \). Here we establish some inequalities between the \(M(r, m, n) \) and the \(N(r, m, n) \) when \(m = 2, 3, \) and 4. We also state a number of conjectures.

2. \(M = 2 \)

The numbers \(M(r, 2, n) \) satisfy inequalities that are the reverse of those for the rank (1.6). We prove

Theorem 1. For all \(n \geq 0 \),

\[
M(0, 2, 2n) > M(1, 2, 2n),
\]

\[
M(1, 2, 2n + 1) > M(0, 2, 2n + 1).
\]

Proof. By (1.5), we have

\[
\sum_{n=0}^{\infty} (M(0, 2, n) - M(1, 2, n)) q^n = \frac{(q; q)_{\infty}}{(q^2 q^2; q^2)_{\infty}} =: g(q),
\]

(2.1)
say, and we want to show that the coefficient of q^n in $g(q)$ is positive/negative according to whether n is even or odd. So we need to show that the coefficients of $g(-q)$ are all positive. But

$$g(-q) = \frac{(-q; -q)_\infty}{(q; -q)_\infty^2} = (-q; q^2)_\infty^3 (q^2; q^2)_\infty,$$

which, by Jacobi’s Triple Product Identity,

$$= (-q; q^2)_\infty \sum_{n=-\infty}^{\infty} q^{n^2}.$$

Since every positive integer is the sum of a perfect square and an odd number, the coefficients of $g(-q)$ are all positive.

3. $M = 3$

We have no solid facts about the case $m = 3$ and merely present two conjectures. We first note that setting $z = e^{2\pi i/3}$ in (1.3) gives

$$\sum_{n \neq 0} (N(0, 3, n) - N(1, 3, n)) q^n = \sum_{n \neq 0} \frac{q^{n^2}}{(1 + q + q^2) \cdots (1 + q^n + q^{2n})} = \sum_{n \neq 0} \frac{q^{n^2}(q; q)_n}{(q^3; q^3)_n} = \gamma(q),$$

where $\gamma(q)$ is one of the sixth-order mock theta functions [3]. Also, setting $z = e^{2\pi i/3}$ in (1.2) we have

$$\sum_{n \neq 0} (M(0, 3, n) - M(1, 3, n)) q^n = \frac{(q; q)_\infty^2}{(q^3; q^3)_\infty}.$$

Computer evidence suggests the following:

Conjecture 1. For all $n > 0$

$$N(0, 3, 3n) < N(1, 3, 3n), \quad (3.1)$$
$$N(0, 3, 3n + 1) > N(1, 3, 3n + 1), \quad (3.2)$$
$$N(0, 3, 3n + 2) < N(1, 3, 3n + 2). \quad (3.3)$$
Conjecture 2. For all \(n\),
\[
M(0, 3, 3n) > M(1, 3, 3n),
\]
\[
M(0, 3, 3n + 1) < M(1, 3, 3n + 1),
\]
\[
M(0, 3, 3n + 2) \leq M(1, 3, 3n + 2), \quad \text{if } n \neq 1,
\]
with strict inequality in (3.6) if \(n \neq 4, 5\).

These conjectures (Conjecture 2, in particular) seem to be related to the Borwein conjectures [2]. We have no proofs of any one of (3.1)–(3.6).

4. \(M = 4\)

Setting \(z = i\) in (1.3) gives
\[
\sum_{n=0}^{\infty} (N(0, 4, n) - N(2, 4, n)) q^n = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(-q^2; q^2)_n} = \phi(q),
\]
which is one of the third-order mock theta functions [11]. We will prove

Theorem 2.
\[
N(0, 4, n) = N(2, 4, n), \quad \text{for } n = 2, 8, 10, \text{ and } 26,
\]
while, for other \(n\)
\[
N(0, 4, n) > N(2, 4, n), \quad \text{if } n \equiv 0, 1 \pmod{4},
\]
\[
N(0, 4, n) < N(2, 4, n), \quad \text{if } n \equiv 2, 3 \pmod{4}.
\]

Proof. Set \(\alpha(n) := N(0, 4, n) - N(2, 4, n)\). Then, with \(\phi(q) = \sum_{n=0}^{\infty} \alpha(n) q^n\), we will show that
\[
\alpha(n) = \begin{cases}
0, & n = 2, 8, 10, 26, \\
> 0, & n \equiv 0, 1 \pmod{4}, \ n \neq 8, \\
< 0, & n \equiv 2, 3 \pmod{4}, \ n \neq 2, 10, 26.
\end{cases}
\]
We first note, by expanding the series for \(\phi(q)\), that \(\alpha(n) = 0\) for \(n = 2, 8, 10, 26\), thus verifying (4.2).

The \(q\)-binomial theorem [1, Theorem 3.3, p. 36] states that
\[
[z; q]_n = \sum_{i=0}^{n} \frac{(-1)^i z^i q^{i^2}}{[i]_{q^2}}
\]
and so we have
\[
\phi(q) = \sum_{n=0}^{\infty} \frac{q^{n} q^{n+1}}{(q^{4n+4}; q^{4})_{n}} = \sum_{n=0}^{\infty} \frac{q^{4n+4} q^{4n+1}}{(q^{4n+4}; q^{4})_{n}}
\]
\[
= \sum_{n=0}^{\infty} \frac{q^{4n+4} q^{4n+1}}{(q^{4n+4}; q^{4})_{n}} \sum_{j=0}^{n} (-1)^{j} q^{2j} \left[\begin{array}{c} n \\ j \end{array} \right] q^{j} + \sum_{n=0}^{\infty} \frac{q^{4n+4} q^{4n+1}}{(q^{4n+4}; q^{4})_{n+1}} \sum_{j=0}^{n+1} (-1)^{j} q^{2j} \left[\begin{array}{c} n+1 \\ j \end{array} \right] q^{j}.
\]
(4.5)

But the coefficients of \([n] \) are nonnegative (since \([n] \) is the generating function for partitions into \(n-j \) or fewer parts, all no bigger than \(j \)) and (4.5) shows that \(\alpha(m) \geq 0 \) (\(\leq 0 \)), when \(m \equiv 0, 1 \text{ mod } 4 \) (\(\equiv 2, 3 \text{ mod } 4 \)).

Now the first terms of \(\phi(q) \) are
\[
1 + q(1-q^{2}) + q^{2}(1-q^{2}) + q^{3}(1-q^{2})(1-q^{4}) + q^{4}(1-q^{2})(1-q^{6})
\]
\[
= \frac{q^{25}(1-q^{2})(1-q^{4})(1-q^{10})}{(1-q^{8})(1-q^{12})(1-q^{16})} + \frac{q^{24}(1-q^{2})(1-q^{4})(1-q^{10})}{(1-q^{8})(1-q^{12})(1-q^{16})} + \frac{q^{24}(1-q^{2})(1-q^{4})(1-q^{10})}{(1-q^{8})(1-q^{12})(1-q^{16})} + \frac{q^{24}(1-q^{2})(1-q^{4})(1-q^{10})}{(1-q^{8})(1-q^{12})(1-q^{16})}
\]
We see that the term \(q(1-q^{2})(1-q^{4}) \) guarantees that \(\alpha(m) > 0 \), if \(m \equiv 1 \text{ mod } 4 \), and \(\alpha(m) < 0 \), if \(m \equiv 3 \text{ mod } 4 \). The term \(q^{4}(1-q^{2})(1-q^{4}) \) means that \(\alpha(m) > 0 \) if \(m \equiv 4 \text{ mod } 8 \) and \(q^{16}(1-q^{2})(1-q^{4})(1-q^{12})(1-q^{16}) \) means that \(\alpha(m) > 0 \) if \(m \equiv 0 \text{ mod } 8 \) and \(m \not\equiv 8 \). Hence \(\alpha(m) > 0 \) if \(m \equiv 0 \text{ mod } 4 \) and \(m \not\equiv 8 \). Finally, the term \(q^{4}(1-q^{2})(1-q^{4}) \) guarantees \(\alpha(m) < 0 \) if \(m \equiv 6 \text{ mod } 8 \), the term \(q^{16}(1-q^{2})(1-q^{4})(1-q^{12})(1-q^{16}) \) guarantees \(\alpha(m) < 0 \) if \(m \equiv 2 \text{ mod } 16 \) and \(m \geq 18 \), and the term \(q^{16}(1-q^{2})(1-q^{4})(1-q^{10})(1-q^{16})(1-q^{20})(1-q^{24}) \) guarantees \(\alpha(m) < 0 \) if \(m \equiv 10 \text{ mod } 16 \) and \(m \geq 42 \). So \(\alpha(m) < 0 \) if \(m \equiv 2 \text{ mod } 4 \) and \(m \not\equiv 2, 10, 26 \). This completes the proofs of (4.3) and (4.4).

Setting \(z = i \) in (1.5) we have
\[
\sum_{n=0}^{\infty} (M(0, 4, n) - M(2, 4, n)) q^n = \frac{(q; q)_{\infty}}{(-q^{2}; q^{2})_{\infty}} = \frac{(q; q)_{\infty} (q^{2}; q^{2})_{\infty}}{(q^{4}; q^{4})_{\infty}}.
\]
(4.6)

Again, there seem to be inequalities among the \(M(0, 4, n) \) and \(M(2, 4, n) \) that are periodic mod 4 and computer evidence suggests

Conjecture 3. For \(n \neq 5 \)
\[
M(0, 4, n) \geq M(2, 4, n), \quad \text{if } n \equiv 0, 3 \text{ mod } 4, \quad (4.7)
\]
\[
M(0, 4, n) \leq M(2, 4, n), \quad \text{if } n \equiv 1, 2 \text{ mod } 4, \quad (4.8)
\]
the inequalities being strict if \(n \neq 11, 15, 21 \). We have no proof of either (4.7) or (4.8). (In fact, \(M(0, 4, 5) - M(2, 4, 5) = 1 \), which suggests that this conjecture, if true, may be hard to prove.)

Now we have, by (2.1),

\[
\sum_{n=0}^{\infty} (M(0, 4, n) + M(2, 4, n) - 2M(1, 4, n)) q^n
= \sum_{n=0}^{\infty} (M(0, 4, n) - M(1, 2, n)) q^n = \frac{(q; q)_{\infty}}{(-q; q)_{\infty}}
\]

and, with (4.6), we have

\[
2 \sum_{n=0}^{\infty} (M(0, 4, n) - M(1, 4, n)) q^n
= \sum_{n=0}^{\infty} (M(0, 4, n) + M(2, 4, n) - 2M(1, 4, n))
+ (M(0, 4, n) - M(2, 4, n))
= (q; q)_{\infty} \left\{ \frac{1}{(q; q^2)_{\infty}^2} + \frac{1}{(-q^2; q^2)_{\infty}} \right\} =: \pi(q),
\]

say. Now

\[
\pi(-q) = (-q; -q)_{\infty} \left\{ \frac{1}{(q; -q^2)_{\infty}^2} + \frac{1}{(-q^2; q^2)_{\infty}} \right\}
= (-q; q^2)_{\infty} (q^2; q^2)_{\infty} \left\{ (-q; q^2)_{\infty}^2 + (q^2; q^4)_{\infty} \right\}
= (-q; q^2)_{\infty} (q^2; q^2)_{\infty} \left\{ (-q; q^2)_{\infty}^2 + (q^2; q^2)_{\infty} \right\}.
\]

But

\[
(-q; q^2)_{\infty}^2 (q^2; q^2)_{\infty} = \sum_{n=-\infty}^{\infty} q^n
\]

has non-negative coefficients and

\[
(-q; q^2)_{\infty} + (q; q^2)_{\infty} = 2 \sum_{n=0}^{\infty} a(n) q^n,
\]
where \(a(n) \) is the number of partitions of \(n \) into an even number of different odd numbers \((a(0) = 1)\). Thus

\[
a(-q) = \sum_{n=-\infty}^{\infty} q^{2n} \sum_{n=0}^{\infty} a(n) q^n
\]

\[
= (1 + 2q + 2q^4 + \cdots)(1 + q^4 + q^8 + 2q^8 + \cdots)
\]

has non-negative coefficients. It is easy to see that \(a(n) > 0 \) for even \(n > 2 \) and it follows that the coefficient of \(q^n \) in \(a(-q) \) are positive for \(n > 3 \).

In just the same way, we see that, if

\[
\beta(q) := \sum_{n=0}^{\infty} (M(2, 4, n) - M(1, 4, n)) q^n
\]

\[
= \frac{1}{2} (q; q) \frac{1}{(1 - q^2; q^2)} \frac{1}{1 - q^{2n}},
\]

then

\[
\beta(-q) = \frac{1}{2} (-q, q^2) \frac{1}{(1 - q^2; q^2)} \frac{1}{1 - q^{2n}},
\]

where \(b(n) \) is the number of partitions of \(n \) into an odd number of distinct odd parts \((b(0) = 0)\). We see that the coefficients of \(q^n \) in \(\beta(-q) \) are positive for \(n > 0 \) and we have proved

Theorem 3.
(i) \(M(0, 4, 2n) > M(1, 4, 2n) \), for \(n \neq 1 \),

(ii) \(M(0, 4, 2n - 1) < M(1, 4, 2n - 1) \), for \(n \neq 2 \),

(iii) \(M(2, 4, 2n) > M(1, 4, 2n) \), for \(n > 0 \),

(iv) \(M(2, 4, 2n - 1) < M(1, 4, 2n - 1) \), for \(n > 0 \).

If \(f(q) = \sum_{n=0}^{\infty} a_n q^n \) and \(g(q) = \sum_{n=0}^{\infty} b_n q^n \) are power series in \(q \), we write \(f(q) \leq g(q) \) to mean \(a_n \leq b_n \) for all \(n \). We now prove

Theorem 4.

\[
N(0, 4, 2n) < N(1, 4, 2n) \quad \text{for all } n \geq 1,
\]

\[
N(0, 4, 2n - 1) > N(1, 4, 2n - 1) \quad \text{for all } n \geq 1,
\]

\[
N(2, 4, 2n) < N(1, 4, 2n) \quad \text{for all } n \geq 1,
\]

\[
N(2, 4, 2n - 1) > N(1, 4, 2n - 1) \quad \text{for all } n \geq 2.
\]
Proof. We note first that
\[1 + \sum_{k=0}^{\infty} q^{2k+1} (-q; q^2)_k = (-q; q^2)_\infty = \sum_{k=0}^{\infty} \frac{q^{k^2}}{(q^2; q^2)_k}, \] (4.13)
since each of these expressions is the generating function of partitions into distinct odd parts.
We have, by (1.7) and (4.1),
\[2 \sum_{n=1}^{\infty} (N(0, 4, n) - N(1, 4, n)) q^n \]
\[= \sum_{n=1}^{\infty} (N(0, 4, n) + N(2, 4, n) - 2N(1, 4, n)) q^n \\
+ \sum_{n=1}^{\infty} (N(0, 4, n) - N(2, 4, n)) q^n \\
= \sum_{n=1}^{\infty} (N(0, 2, n) - N(1, 2, n)) q^n + \sum_{n=1}^{\infty} (N(0, 4, n) - N(2, 4, n)) q^n \\
= \sum_{k=1}^{\infty} (-1)^k -1 \frac{q^k}{(-q; q)_k} + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(-q^2; q^2)_k} \\
= f_1(q) + \phi_1(q), \]
say (where we have written \(f_1(q) \) and \(\phi_1(q) \) for \(f(q) - 1 \) and \(\phi(q) - 1 \), respectively). To prove (4.9) and (4.10) we must show that the coefficients of \(f_1(-q) + \phi_1(-q) \) are negative for \(n \geq 1 \).
Now
\[\phi_1(-q) = \sum_{k=1}^{\infty} (-1)^k \frac{q^{k^2}}{(-q^2; q^2)_k} \]
\[= \sum_{k=1}^{\infty} \frac{q^{k^2}}{(q^2; q^2)_k} \]
\[= -1 + (-q; q^2)_\infty, \]
by (4.13), and
\[f_1(-q) = - \sum_{k=1}^{\infty} \frac{q^k}{(q; -q)_k} \]
\[= - \left(\sum_{k=1}^{\infty} \frac{q^{2k-1}}{(q; -q)_{2k-1}} + \sum_{k=1}^{\infty} \frac{q^{2k}}{(q; -q)_{2k}} \right). \]
which, by (1.1) and (1.2),

\[\sum_{k=1}^{\infty} q^{2k-1} \frac{(-q; q^2)_k}{(q^{2k}; q^2)_k} + \sum_{k=1}^{\infty} q^{2k} \frac{(-q; q^3)_k}{(q^{2k+2}; q^2)_k} \]

\leq \left(\sum_{k=1}^{\infty} q^{2k-1} (-q; q^2)_{k-1} + \sum_{k=1}^{\infty} q^{2k} (1 + q) \right)

\leq 1 - (-q; q^3)_{\infty} - \sum_{k=1}^{\infty} q^{2k} (1 + q),

by (4.13). So \(f_1(-q) + \frac{1}{2} \phi_1(-q) \leq - \sum_{k \geq 2} q^k \), showing that (4.9) and (4.10) hold for \(n \geq 2 \). But \(N(0, 4, 1) = 1 \) and \(N(1, 4, 1) = 0 \), which completes the proofs of (4.9) and (4.10). Equations (4.11) and (4.12) may be proved in the same way, using

\[2 \sum_{n=1}^{\infty} (N(2, 4, n) - N(1, 4, n)) q^n = 2 \sum_{k=1}^{\infty} (-1)^{k-1} \frac{q^k}{(-q; q)_k} - \sum_{k=1}^{\infty} \frac{q^{2k}}{(-q^2; q^2)_k}. \]

REFERENCES

