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INTRODUCTION

In this paper we develope a Brauer group theory for algebras which are
simultaneously H-modules and H-comodules, where H is a Hopf algebra.
This work generalizes, and also arises naturally from, the work in [4] where
we considered algebras acted on by a group and graded by the same group.

In Section 1 we consider the case where there is only an H-module action.
This generalizes the equivariant Brauer group of Fréhlich and Wall [2] and
at the end of Section 1 we show that some of Fréhlich and Wall’s results
extend to the Hopf algebra situation.

H-comodule action is studied in Section 2, and we show that this is a
straightforward generalization of group grading. The two concepts of module
and comodule action are applied simultaneously in Section 3. When they
commute (in a sense made precise in Section 3) we call the resulting structure
an H-dimodule. This is not the same as an H Hopf module (see [6]) as the
commuting condition is different.

In Section 4 we say when an H-dimodule algebra is H-Azumaya. This
generalizes the usual definition of Azumaya algebra to our situation and
allows us to define “‘the Brauer group of dimodule algebras.”” We then obtain
some of its properties.

We conclude the paper with an example. In Section 5 we consider the
Brauer group of dimodule algebras over a field of characteristic p where the
Hopf algebra is the group ring over that field of the group of p elements.
This covers the outstanding case left from [4].

Throughout, R is a fixed commutative ring with 1, each ®, Hom, etc. is
taken over R and each map is R-linear unless otherwise stated.

1. HopF ALGEBRAS AND MODULE ALGEBRAS

DrrintrioN 1.1, A Hopf Algebra H (over R) is an R-module H together
with the following structure maps,
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multiplication -: H & H — H (written k, - k,)

unit 1: R— H (we also use 1 to represent the unit element)
diagonalization 4: H & H — H (we write A(h) =3 BV & A?)
counit e: H— R

antipode S: H — H

so that H is an R-algebra with product - and unit 1,(1) and an R-coalgebra
under 4 and e. This means that 4, e satisfy axioms dual to those satisfied by
- and 1y . Moreover, 4 and ¢ are algebra homomorphisms, or equivalently -
and 1 are coalgebra homomorphisms. S acts as a sort of inverse for both the
algebra and coalgebra structures.

DrrinNiTION 1.2. A Hopf algebra is said to be commutative if the multi-
plication is commutative and cocommutative if the diagonalization is
commutative, i.e., > ) AV @ 2P =3 £2 & AV,

For more details about Hopf algebras and a more rigorous definition,
see [6]. We will sometimes use elementary results on Hopf algebras without
stating them explicitly beforehand.

A classical example of a Hopf algebra is the group ring R[I'] where I"is
any group. This has the usual algebra structure and

Ady) =y Xy yel and all
e(y) =1 extended by linearity
S{y) = y1 to the whole of R[I'].

In an arbitrary Hopf algebra f, an element g which satisfies A(g) =g ® g
is said to be group-like.

DermNiTioN 1.3. A left H-module M is an R-module together with a map
—ut H® M — M so that the following diagrams commute.

®
HOHOM 2L g M

I®— N
M M
M

HQM M

(ii)
ROMES oM

NE

M
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ProrositioN 1.4. Let M, N be left H modules with actions —p , —p .
Then the map

(@)
4RIQ IRTRI
— S H@M@N 2 R HQMON - HQMQH®N
MO MQN

gives a left H-modules structure to M @ N. Hom(M, N) 45 also a left H-module
by the following action:

(i) (h—f)m) =@ bV —y [f(SH)P) =y m)] ke H, me M,
f & Hom(M, N).

Proof. We will run through the proof of part (ii) in order to show the
techniques involved, although these are quite straightforward. Part (i) is
even more straightforward.

We verify diagram 1.3(i). Let f€ Hom{}M, N), me M, by , h,e H.

(by - hy—fYom) = 3, (hy ) — [F (SO Bp)®) = m)]

(hy-hy) ! by definition of —

= Y Y (0 B0 = [F(SRE - BP) > m)]

() (Rg)

= Y (M- AP) = [f(SHP) - SGP) -~ m)]

() (hy)
— (1) _s (1) _a (N @
- (hl)z(,mhl N {h3 ~ LF(S(HD) — (S(h®) - m))}
‘ by 1.3(i) for - and —

=Y AP —[(hy— fYS(HP) 5> m)]. by definition of —

(ky)
— (hy— (hy— f))(m) by definition of —
hy by f = by — (hy—f)
Aly) =1y ®1y, and  S(ly) =1y,

so 1.3(ii) follows immediately. Q.E.D.

DrerinrrioN 1.5. If M, N are as above, and fe Hom(M, N), then f is
said to be an H-module map if the following diagram commutes.
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HoMZ aeN

5 5

M -——— N

DrrinitioN 1.6. A is a left H-module algebra if it is an R algebra and a
left H~module so that the structure maps

1:R—4 and AR A—~>A

are H-module maps. (R is a left H-module by —;: H ® R~ H-5> R, and
A ® A is a left H-module by 1.4).
These conditions say that z— 1, = e(k) * 1 and
h= (g @) = ¥ (A — @) - (4 — ay)

)
If A is an algebra then let 4P denote the opposite algebra. This is isomorphic
to A as R-module so, if 4 is an H-module then A is automatically an
H-module as well.

PropositioN 1.7. Let H be cocommutative. If A, B are left H-module
algebras then so are A (R B and A%, and A Q B and B ) A are isomorphic
as H-module algebras.

Proof. Straightforward.

ProrosrTion 1.8. Let H be cocommutative. If M is a left H-module then
End(M) is a left H-module algebra. If M, N are left H-modules which are
[finitely generated projective over R, then the natural isomorphism

End(M ) ® End(N) = End(M ® N)

is an H-module map.

Proof. We have that End(M ) = Hom(M, M) is a left H-module by 1.4(ii).
We show that the H-module action respects the algebra structure in End(M).

We have (A—gf)(m) =2 °Y —u [f (S(A®) —y, m)]. Let heH,
me M, f, g € End(M). Then .

[% 0 — ) - (12— g)] (m)

(r)

=Y (A — ) — g)(m)]

(7
= 3 (b — N 2 ((SG) 3 )],

(h)
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(where 3¢ BV ® A® @ h® denotes (I @ 4) A(k))
= ¥ B 2 {FISG®) 53 (4 > [(SED) 3 m)])

(h)

= K = (FSED) - k) > (e[SHD) > m]]}
(h)

= Y BV — [f(e(h®) - Ly 3> [(SER®) 2= m)])]

(R}

= Z) FV(h®) — [f(g[SH®) > m])]
*
(e(A®) € R, so can be “pulled through”)
=Y BV — [f - g(S(®) -~ m)]

(A}

= (h—f-g)m)
So,
heaf g = X (0 = f)- (5 ).
73]
(b — Iny)(m) = (Zh; B 2 [ S(H®) — m)]
=¥ AW (S(h‘z’) — m)
®)
=Y A% - S(A®) om
()
That is, & — Iy, = e(h) - I, . Hence, End(M) is an H-module algebra. The
rest is easy. QED.

Propostrion 1.9. Let H be cocommutative. If A is a left H-module algebra
then the standard map A & AP — End(A4) is an H-module algebra map.

Proof. Straightforward.

We now have all the apparatus necessary to define the Brauer group for
the category of left H-module algebras which are finitely generated projective
faithful Azumaya algebras over R, (with H cocommutative).

We define 4 ~ B (in this category) if 3 finitely generated projective
faithful R-modules M, N which are also left H-modules such that

A @End(M)=< B Q@End(N)  as H-module algebras.
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It is easy to verify that ~ is an equivalence relation and the quotient set is a
group under the operations induced by .

DeriniTiON 1.10. 'We call this group the Brauer group of H-module
algebras and denote it by BM(R, H).

This generalizes the equivariant Brauer group of Frohlich and Wall (see
[2]). We now prove that, for certain Hopf algebras H,

BM(K, H) >~ B(K) x HH, K),

where K is a field and H*(H, K) is the 2-cohomology group as defined in [7]
(H acts trivially on K). This result is an extension of a result of Frohlich
and Wall.

By ignoring the H-structure, it is easy to see that one can get a group
homomorphism from BM (K, H) onto B(K). Let the kernel of this homo-
morphism be denoted by Bo(K, H). So we have a short exact sequence

0 — Bo(K, H) — BM(K, H) — B(K) — 0.

If we have any K-algebra 4 then we can give it the trivial H-module
structure k— @ = ¢(h)a. This construction gives rise to an injective group
homomorphism from B(K) into BM(K, H) which splits the above short
exact sequence.

So we have already BM(K, H) ~ B(K) x Bo(K, H).

Now, Bo(K, H) consists of classes of algebras which become (ordinary)
Brauer trivial when we forget the H-structure. i.e., they are endomorphism
rings over our base field K. So, when calculating Bo(K, H) we had only
consider endomorphism rings.

For the remainder of this section we suppose that H is a cocommutative
Hopf algebra over K whose simple subcoalgebras are of the form Kg for
some grouplike element g. Then [7, Theorem 9.5] applies and any H-action
on a finite dimensional central simple K algebra 4 is A-inner. This means
that there is a map f: H — A such that

h—a =Y f(AV) of H(h®)  VheH, ac A.

(h)

Here, f~1 is the inverse of f under convolution in the algebra Hom(H, 4)
and satisfies

XS0 fHED) = e(l) Ly

(R)

Since A, — (hy — ay) = =k, — a we have

S SOPIE) af YGPAP) = Y FR0)FOKD) af ) FHD),

(Ry)(hy) (Ry)(hy)
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ie.,
T af (AORD) FRD) fh®) = Y IR fR) f(EP)a Vae A.
(hy)(ig) () (1) ) )

Since A4 is central we deduce that YA, , hye H

Y fUEORD) f(RP) f(RD) = clhy R L,

(hy)(hy)

for some c{fy , hy) € K. We can rewrite this as

f(hy) f(Ry) = > c(hD, B2 f(RPRD).

(g} (Ty)
Using associativity in A gives that ¢ satisfies the 2-cocycle identity,

T oA, hO) (AR, h) = Y clhy , BORD) (AP, hD).

(hy)(hg) {Ry)(hy)

It is straightforward to check that if we had started with a different inner
action given by g: H— A then we would have arrived at a 2-cocycle in the
same cohomology class as ¢.

Lemma 1.11. The Azumaya H-module algebra 4 = End(V) is Brauer
trivial (in BM(K, H)) if and only if its associated cocycle ¢ is a coboundary.

Proof. =: A is Brauer trivial so the H-action on A is derived from an
H-action on ¥ as in 1.4(ii). Hence, the inner action on .4 is given by

fh) =f,  where fiy(v) =k—w.

Then f(hy) f(he) = fu fr, = fapn, = F(Bshe). So, the associated cocycle is
trivial, being c(f, , hy) = e(hy) e(hy).

<: Suppose that .4 = End(V') gives rise to the cohomologically trivial
cocycle c.

Ll Ry = Y g(h) g(AY) g RPRY)

() (hy)

for some invertible map g: H — K.

F)flh) = 3, o) g(hg") g~ (PRE) f(APHD), @

(i) (Ry)

where f: H — A gives the inner action £ — a = 3¢ f(h'Y) of "H(A'?). Define
an H-action on V by h— v =3 ;) g HAV) f(AP){(v).
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Then
by (= 0) = by = | ¥ g7 F(2)(0)]

(hy)

= Y &) g P B (RP))

(s} (hy)

= T SO ) (50 g D) f RO e)

(Ry)(hy)
= 3 UHOHD) FRPRINE) by (%)
(hy)hy)

= hh,— 0.
Also, from (*) f(La) f(B) = X £(1x) gBV) g (™) f(A®) = g(1x) f()

... g‘l(lH)f(lH) = ]-A -

Thus, k— v = Y ¢) g HAP) f(A®)(v) is an H-module action on V. Further,
from (*),

> F(®) f(SE®)) = 3 g(hD) g(S(E®)) g X (BDSH?)) f(RDS(R))

(k) (%)

= ¥ g(h™) g(S(h®)) g7(1x) S (L)

(A)

= Y g(hV) g(S(A ™)) 1,

(h)
L TS I) g HS) FSHN = L,

ie.,

2. &7 BM) g (SHD) f(S(E) = (). @

(%)

Now, our action on ¥ gives an action on End(¥V) which we denote by %z — a.
This is
(h— a)(v) = Y, kY — [a(S(H®) — ©)]
@

= ) &7HhW) f(B®)[a(g7H(SR)) f(SH))(2))]

(R)

= Y f(EV)a(f “{(E)(@)] by ()

(n)

= (h— a)(©);
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i.e., the action we have defined via 1 is the same as the original action. So,
out original H-module algebra 4 is Brauer trivial, QED.

This lemma gives us a well defined injective map from Bo(K, H) to
H2(H, K). It is easy to check that it is, in fact, a group homomorphism.

It remains to prove that this homomorphism is onto and we do this by
constructing, for any prescribed cocycle ¢, an H-module algebra 4 whose
associated cocycle 1s ¢.

So, let ¢ be a 2-cocycle from H to K. Let A = End(#) and define f, € 4 by

Salls) = Z c(izil), h;l)) hiz)lzg”.

() (g

Now define an inner action of H on 4 by

fH—>A4, f(h)=Ff.
Then (k) = fg( as is easily checked. Now,

[f (A f(R)](B) = hl(f hz(h))

= ¥ fule®®, i) 1P

(hy)(R)

- W) HRFDY (B FAY) FOF@ 3
= Y o(hD, BERD) (D, BV KRS
() eg) ()

— 1 M (1 2 2 2181 7,(8
= Y (R, RORODY (R, BO) ROHOR®
(R (o) ()

— @ RO o(BDRR. DY FORB]R)
= Y (B, BD) (PR, h) BRSO
(hy) i) ()

= > (i, BD) f(EPRP)R)

(2 lRy)

{(by the cocycle law)

SR f(R) = Y, BV, BD) f(RPR®),

(1)) (hy)

and so A4 has associated with it the given cocycle ¢. This allows us to conclude
with the following theorem.

Taeorem 1.12. If H is a cocommutative Hopf algebra over a field K whose
simple subcoalgebras are of the form Kg for some grouplke element g, then
Bo(K, H) o~ H*(H, K) as groups. Furthermore

BM(K, H) =~ B(K) x HXH, K).
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2. CoMODULE ALGEBRAS

Having dealt with H-modules, we now turn to the dual concept of
H-comodules.

DrrinitioN 2.1. A right H-comodule A is an R-module together with
a map yu: M— M & H, so that the following diagrams commute.
(1)
M MQH

XL lxM®I
MQH 2 MRHQH
(ii)
M ™. MQH
\X I®e
%
M®R

If M, N are right H-comodules with structure maps y,, , yy respectively and
feHom(M, N), then f is said to be an H-comodule map if the following
diagram commutes.

(iii)
M—L N
XMl lXN
MH L NQH

We write yy(m) =Y (m® @ mV, etc. m9'se M, mV'sc H. The next
proposition shows that H-comodules generalize [™-graded modules.

Prorosition 2.2. Let I be a group. Then M is a (right) R[I'] comodule
if and only if M is a I graded R-module.
Proof. <«=:M graded by I, i.e., M = @, M, . Define
Xaa: M — M & R[I']

by mr>Y erm, ®y where m =3 m,, m,cM,. This is obviously
R-linear. Also: x> m, Qy Ym, e M, .

S (XLM ®I) ° XM+ ”ZHZ ., ®'}’ @%

yel'

but (I & 4) o yag: w2 er 1, v & 9 so 2.1(i) is satisfied.
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IR oxu:m> ) m, =1m
vel’
(since e(y) = 1 Vy e I'). This is 2.1(1i). So (M, yu,) 1s a right R{I"] comodule.
>y 2w, Qh; h;e R[] y el give an R basis for R[I'] so we can
write
Xagh W > Z m, & y.
yell

By 2.1(i) m =3 ,rm,. Now, Vyel define p*eHom(R[I'],R) by
¥, vy =1, {y*, 8> =0 y 5= 6. Consider the map 9,: X @ R[I']— X for
any R-module X defined by x & A — x{y™, k). This is R-linear. Also, if
x,eXst. 3,.rx ®y=0, then applying &, shows that x, =0 Vyel.
From 2.1(i) we have 3,cr xu(m,) @ y =2 serm, Qv Qv

Soxm(m) =m, @y Vye T.
Also, Yerm, Qv =3 rm, Ky =>m, =m, Yyel. So M =P, M,
where M, = {m e M s.t. yy(m) = m ® y}. This gives the grading. Q.E.D.

For an R-module X, we shall denote Hom(X, R) by X*. Suppose, just
for the moment, that H is finitely generated projective over R. Then we have
an isomorphism,

A: Hom(M, M ® H) — Hom(H* ® M, M)

given by AM)A* @m) = (I @ b*) f(m). feHom(M, M R H), h*c O,
me M.

ProrostTion 2.3. (i) If H is a Hopf algebra which is finitely generated
projective as R-module then H* is also a Hopf algebra.

¥y x:M->MQ H defines a right H-comodule if and only if — =
My): H* & M — M defines a left H*-module.

(i) If M, N are right H-comodules, and hence left H*-modules, and
feHom(M, N), then f is an H-comodule map if and only if f is an H*-module
map.

Proof. (i) The structure maps for H* are given as follows
et H* @ H* = (H @ H)* 2> H*
g R = R* —< H*

Age: H* -5 (H @ H)* o~ H* ® H*
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et H¥ 25 R* — > R
St H* 525 H*

where, if f: X > ¥ is a morphism of R-modules, then f*: Y* — X* is the
map given by {f*(y¥%), x> = {y*, f(x)). It is straightforward (but tedious)
to show that these new maps satisfy all the conditions for H* to be a Hopf
algebra.

For a proof of part (ii), see [5, Proposition 1]. The last part of the proposi-
tion is straightforward. Q.E.D.

We see from the previous propositions that if H is finitely generated
projective we can go over to H*-modules and study these instead of H-
comodules. Note that, if I" is a finite group, then R[I']* is always a Hopf
algebra although it may not be a group ring. When H is not finitely generated
projective we can proceed as follows.

Prorosition 2.4. Let M, N be right H-comodules with actions yu , xy -
Then the map

@)
xmon MO NN MO HONQH LS MQNQHQH
IRIR.

—— MQRINR®H
gives M @ N a right H-comodule structure.

Proof. Straightforward.

Suppose that M4 is finitely generated projective over R and yu: M—> M ® H
gives M a right H-comodule structure.
Define a map M* — Hom(M, H) by m* — f, .« where

Jurlm) = (m* @ I) x(m) = Y {m* m®) m@,

(in)
Identifying Hom(M, H) with H & AM* gives a map.
Xnee t M*— H Q) M*,
ProrosITION 2.5.  yu4« gives a left H-comodule structure to M*.
Proof. Write yu(m™*) = 3oy ™0 O m* @, Then

Ym0 gy = f, (m) = Y {m*, m®y mD, (i)
(m*) (m)
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Now,
VmeM, Y dm*-0)m*O, my = (2 M* D ) m})
(m*) (m*)
=¢ (Z {m*, moYy m‘l’) by (i) above
{m}

= Y {m¥, m® (mDyy

(m)

= (m*,m> by 2.1(ii)

Som® ==Y ey mH® = (e ® I) o xupdm*). This is the counit law
for M*.

It remains to prove that (4 ®I)o yue = (I & ¥ms) © Xm«. These are
maps M*—-H Q@ H ® M*. Now H® H ® M* ~ Hom(M, H® H) so
we work in Hom(M, H ® H). We are required to show that

Y, AmHDy @m0 = ¥ m*-h @ [ y MO & m*(m(u)].

(m*} (m*) (m+(©)

Vm € M’ z m*(_l) ® [ 2 m*(m (_1)<m*(0) (0), m>]

(m*) (mdo))
= ¥ mx g [z R O mm] by (i)
(m*) (m)

— Z z m*(—1)<m*(0)’ m(0)> ® m

(m) (m*)

=Y {m*, mO mD @ m® by (i) again and 2.1(i)

(m)

Yme M, 2 Am* DY m* O my = A (Z m* D 0 m>)

(m*) (m*)

=4 (Z {m*, m® mm) (i) again

(m)

= Y (m*, m®y m @ m® QE.D.

(#n)

Suppose M, N are right H comodules and M is finitely generated projective
over R. We construct the following map.

Hom(M, N)=2> N @ M* 2, N @ H® H Q@ M*

B NQHOM* QHZE . NQM*QHQH

7%, Hom(M, N) ® H.
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If f<>3; 0, ®m;* in w, then
fr= [Z Y 2 0 @mFO @ad S(mi*‘“”)] (eN Q@ M* ® H).

i (ng) (mq*)
ProposiTiON 2.6. This gives a right H-comodule structure to Hom(M, N).

Proof. It is easy to check that x+>3 ¢y a1 ® 2@ is a left-comodule
structure iff x> () 2@ @ S(x1) is a right comodule structure. Now
use Propositions 2.4 and 2.5. (See also [3, p. 356].) Q.E.D.

Levma 2.7. With the action described above

x(f)Ym) == Z F (O & f(m )V - S(mV) me M, f e Hom(M, N).
(m)(7(m®))
Proof. Let f<3,n, @m* in the isomorphism w: Hom(}, N)
N ® M*,

S flmy =Y nlm;*, m).

XH)=Y Y n®Q@mO@am - Semr-v),

i (nd(m*)

L X(f)(m) = Z Z Tl;0)<7ni*(0), 7ﬂ> ® nz('l) . S(”Z;k(_l))

¢ (ni)(mi¥)

=Y Y n%m* m Qnd - SmV) by 2.5(i).

z (ni)(m)

= Z Z F(m®)O & f(m @)D - Senw), Q.E.D.

(m) (7))

Proposirion 2.8. If H is finitely generated projective over R, then the
above structure is the same as that obtained by going over to H*-modules.

Proof. M is an H*-module by A* —m =3 (,) m'O%*, mV> and
similarly for NV (see Proposition 2.3).

So, regarding M and N as H*-modules, we have that Hom(M, N) is a
left H*-module by

(B* —f)m) = ), B+ = LF(SA* 2 = m)] (see Proposition 1.4(i1))

(m*)
= mz)(: )h*m = [f (O SH*®), m™>)]
Hm
= (h*)(‘m)(zﬂmm)” f(yn(o))(t))(h*(l),f(m(m)u)x;,*(z;’ S(m‘“))
- (m)(f%n(o)))f(m(o’)m’(lz*,f(m(m)u) - S(m).
Lemma 2.7 now gives the result. QED.
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Dermarion 2.9. A is a right H-comodule algebra if it is an R-algebra and
a right H-comodule so that the structure maps

l:R—> A4 and AR A4A—4

are H-comodule maps (R is a right H-comodule by y: R Ho~ R @ H,
and 4 & A is a right H-comodule by 2.4).
In symbols these conditions become y, (1,) =1, 14

ca) = ©) . o . 40
xalay s a) = Y, 4% a0 @ a2l
(ay){ay)

If H is finitely generated projective then A is a right H-comodule algebra iff
it is a left H*-module algebra. Also, if H = R[I'] then 4 is a (right)
H-comodule algebra iff it is a I-graded R-algebra.

ProrositTioN 2.10. Let H be commutaiive. If, A, B are right H-comodule
algebras then so are 4 @ B and A%, and A Q B and B K A are isomorphic
as H-comodule algebras.

Proof. Straightforward.

ProrositioN 2.11. Let H be commutative. Let M, N be right H-comodules
which are finitely generated projective over R. Then End(M) is a right
H-comodule algebra and the natural isomorphism

End(M) ® End(N) ~ End{(M & N)
s an H-comodule map.
Proof. We have that End(}M) = Hom(M, M) is a right H-comodule by
2.6.

We show that the H-comodule action respects the algebra structure in
End(M)

xm) = Y I(m@)® @ I(m @)V - S(m)) by 2.7

() (I{ml0)))

=Y m® @mV - S(m?)
{m)

= ¥ mOm) @ 1y —m ® 1y

(m)

Cox(ag) = Iy ® 1y . This is the first condition. We are required to prove
that

2 (f'g)“” @ (f . g)(l) — Z f(O) .g(O) ®f(1) .gm.

(f-9) (F)g)

481/30/123-37



574 F. W. LONG

Now
Y O gOm) @ fV - g

Ny

— Y fO(em®)0) @V gm®)N - Su®) by 27 for g
(N} (g(m*®))

— Z f(g(m(O))(O))(O) ®f(g(m(0))(0))(1) . S(g(m(()))(l))

(m)tg(m'®))

- g(m©) - S(m(l))(f(g(m(o))(o)” again by 2.7 for f
= ¥ femO)® @f (snO)® - S(m)

(m(7ta(m®))) using properties of S and
= (f - g)(m) by 2.7 yet again.
This completes the first part of the proposition. The second part is similar to

the above, and uses that A is commutative. Q.E.D.

Proprosition 2.12. Let H be commutative, A a right H-comodule algebra,
[finitely generated projective over R. Then the standard map A ) A0 — End(A4)
is an H-comodule map.

Proof. The map isF: 4 Q) A°° — End(4)

F gpoc) =a-c-b

X, gyon)(©) = S (ac® B0 @ (a-c®-HW - SeW)  by2.7

(c)(a-c©.p)

= Y @ ®-pO0 QgD pO - (@)

(@) (o) since 4 is a comodule algebra.
= Z a® - ¢ - b0 Q) g - p

2 H commutative and use properties of S, €
= ) Feuno(c) ® (@® bP)m. Q.E.D.

(a @b°P)

Once again we can define the Brauer group, this time in the category of
right H-comodule algebras which are finitely generated projective faithful
Azumaya algebras over R.

DrrFiniTioN 2.13. We call this group the Brauer group of H-comodule
algebras and denote it by BC(R, H).

If H is finitely generated projective then of course BC(R, H) is isomorphic
to BM(R, H*) as defined in 1.10.
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3. DIMODULES

Throughout this section H is commutative and cocommutative. In general,
H-module actions will be written on the left, and H-comodule action on the
right.

We use — o H®M-—>M, and y,: M—>M & H for these actions
respectively.

DerinttioN 3.1, (i) An H-dimodule is an R-module 3 which is also an
H-module and an H-comodule so that the following diagram commutes.

—

M

— M

HQM

I&xpr lXM
—®I
HIIM®HYE > M®H

(1) If M, N are H-dimodules and f € Hom(M, N), then f is said to be
an H-dimodule map if it is simultaneously an A-module map and an H-como-
dule map.

(i) An H-dimodule algebra is an R-algebra which is an H-dimodule so
that it is an H-module algebra and an H-comodule algebra.

(iv) If 4, B are H-dimodule algebras fe Hom{4, B), then f is an
H-dimodule algebra map if it is an H-dimodule map and an algebra map.

If H is finitely generated projective then we can take the H-comodule
structure over to an H*-module structure. It is then easy to verify that M s
an H-dimodule iff it is an H — H*-bimodule.

If M, N are H-dimodules then M & N is an H-module by 1.4(}) and an
H-comodule by 2.4, Similarly, if A, B are H-dimodule algebras then 4 ® B
is an H-module algebra and an H-comodule algebra by 1.7 and 2.10, respec-
tively.

However, we can put a new multiplication on 4 () B as follows.

ARBRARB I, IQBRHRA®B
1948 4 @BRABE Y, 19 40B®B-222% 4R B.

DermiTioN 3.2, 4 ® B with this multiplication is denoted by 4 # B
and is called the smash product of A and B. A # B has H-action inherited
from the R-module 4 & B.
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In symbols

(a, # b,) * (ay # b)) = Z a, - (b0 3 a,) # b - b, .

(5,)

Note that the multiplication in A # B depends only on the comodule structure
on B and the module structure on 4 (and the algebra structure on A4 and B).
The smash product can be defined under more general circumstances.

TueoreMm 3.3. With the structure described above we have the following
results. M (® N is an H-dimodule. A Q) B and A # B are H-dimodule algebras
and we have an isomorphism of H-dimodule algebras

A#B)H#CxAH#B(BH#CO),
given by
(@#b)H#cra# (b

Proof. Straightforward (but tedious!).

DeriNiTION 3.4. Let 4 be an H-dimodule algebra. Define 4 to be
isomorphic to 4 as R-module with muitiplication defined by

a - h = Z (aV —b) - a®
(a)

and H-actions inherited from A4.

TueoreM 3.5. A is a dimodule algebra. Furthermore, we have tsomorphisms
of H-dimodule algebras

A =~ A given by a — Z a) — gt
(a)

B# A~ A#Bgivenby b#ta—y (bV— a) # b.

(d)

Proof. 'That A is a dimodule algebra is again straightforward. We prove
the isomorphism.
isomorphism of R-modules.

It is easy to see that it respects the H-structures; we show that it is an
algebra map.
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Z (a® — a®) - (B — b

() ()
. . 0
= Y @V —a®)® (Wl O] -z (ath > g®)©
(a)(®) . o . -
(D= gt®)) by definition of multiplication in A
= 3 [(@V— (BW — b -5 (@ — a'®) since 4 is a dimodule
(2)(b)
= 3 (bVa® — g) - (@Vp» —p®) by definition of 4 again
@@
= 3 (aWbV) — g0 - (@@p® — p®)  since H is commutative and
(a)() cocommutative
—_ Z aDp) s 00 — Z abh ~ ghto),
(a)(v) (ab)
The other isomorphism is dealt with similarly. Q.E.D.

By 1.7 and 2.10 4°P is also an H-dimodule algebra.

Let M, N be finitely generated projective over R. If M, N are H-dimodules
then Hom(A, V) is an H-module by 1.4(ii) and an H-comodule by 2.6.
As would be expected we now have the following theorem.

Tueorem 3.6. If M, N are H-dimodules, then so is Hom(M, N). Further-
more, End(M) is an H-dimodule algebra.

Proof. We already have that Hom(M, N) is an H-module and an H-
comodule, so all that remains is to show that the diagram in 3.1(3) is satisfied,
i.e., we have to show thaty(hA—f) =3y A —f® R fV fe Hom(M, N)
#e H. Now

X(h—f)m) = ) [(5 = )N @ [(2 — f)m'™)] - SimD)
() (b =F)(m©)) by Lemma 2.7
= > (B9 = [F(S(h®) <> mO))®
(m) (1)

w —\N[f(S(h(Z)) _AMm(o)])

® (K — [f(S() — mO)P® - Sm®) by L4

— Y A = [(F(S(h@) = ()]
(m) (h) :
(F(SHD) —p m(0)))

R [F(SEE) = m D - S(aD) since N is a dimodule
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= T S [ASE) 5 m )]
(SR = m)
(FUS (WD) — pym)10)))

& [FUSE®) > my D = S(S(E®) —> m))

since M is a dimodule

= Y A — [fOYSHD) = m)] ® fD by 2.7 again
mepn N M

= ¥ (= O)m) @ f.

[&))]

This is true Vme M, hence y(A—f) =X A—f O @ fD as required.
That End() is a dimodule algebra now follows from 1.8 and 2.11. Q.E.D.

Let M be an H-dimodule; and for m € M, & € H define f, by f,(m) = h— m.
Then f;, € End(M). If feEnd(M) then 1.4(ii) gives us that A—f =

2o fuwr * f fsquan - Of course, fy fo, = fun, and fy =1, . By 2.7

X(fm) = 3 fum )0 @ fim )P - Sim™)

(m)(fy (m )

= Y (A= m)O Q (h—m® )D - SmD) by definition f;,

(m) (R ~—m(®)

=Y h—m® Q@mD - Sm>)  as M isa dimodule

(m)
=h—m@ly by properties of S, etc.
= fulm) ® 1x
Sx) =h @1y

The above notation is useful in the next proposition.

Prorosrrion 3.7. Let M be an H-dimodule which is finitely generated
projective over R, and let B be an H-dimodule algebra. The map

¢: End(M) # B~ End(M) ® B

given by S(fHb) =S for R is an isomorphism of H-dimodule
algebras.

Proof. (i) we show that ¢ is an algebra map.
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B #) L #6) =8 (T A GO —~1) #50 - b,)

o)
\]
= Y fifho'k Fsw@)Sow - © b - 50
b,)(b,) t e
= Stk fu g @ BB
(b )(,) t :

by properties of S, ete.

\

= (ZA s @) (Th fip 1)

0y)
= ¢(f1 # by) - (f2 # b2)
S(I # 1) =1 ® 1p trivially.
(if) ¢ is an H-module map.

M= (FHD) =4 (3 (0 —1) # (4~ b))

= Y foffsuo, fo ® - — b0
)

(h){d

= Z fh(1>ffb(1>fsm<2>; ® A3 — p® gince H is commutative
)

= h—=¢(f#Db).

(iii) ¢ is an H-comodule map

XBU#8) = x (3 f+fyo ® bO)

) Y
= 2 JO fo @B @f® bW remember x(f) =f, ® lg
B)(f)
=Y fO-fo @O FD -5 since H is commutative
#b)
= (6 ®)(x(f # 8))
F&b—=>3 ) f fsowu) # b6 is easily seen to be an inverse to ¢, hence ¢
is an isomorphism of dimodule algebras. Q.E.D.

Cororrary 3.8. If M, N are H-dimodules which are finitely generated
projective over R, then we have

End(M) # End(N) ~ End(M @ N)  as dimodule algebras.
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Proof. End(M) # End(N) ~ End(M) @ End(N) by Proposition 3.7.
~ End(M @ N) by 1.8 and 2.11. Q.E.D.
In the above, the function fr f - f, can be regarded as an action of H on
End(M). In order to prove that B # End(M)=~ B & End(M) we must
define the dual action and derive some of its properties.
Let M be an H-dimodule which is finitely generated projective over R,

let f € End(M) and suppose f <>, m; X m;* in the isomorphism End(M) ~~
M ® M*. Then we define a map &: End(M) — H @ End(M) by

&f) =) ) SmY) @ m® & m*).

i (my)

We write &(f) = Xin /19 © 1.

Lemma 3.9. (i) &(/)m) = Zgemn S(f(m)V) & f(m)?, me M.
(i) éh—f)=ZnfCI@h—=f1 heH.

Proof. (i) We have f(m) =), m(m;*, m> where f<>3,m; ® m* as
above

Ef)m) =3, Y, S(m™) @ mOm*, m)

i (mi)

= Y S(f(m™) @ f(m)®.

(f(m))

(it) now follows fairly easily, using (i). Q.E.D.

Proposition 3.10. Let M be an H-dimodule which is finitely generated
projective over R, and let B be an H-dimodule algebra. Then the map p:

B # End(M) — B ® End(M) given by p(b #f) = X (fI1 — b) @ 19 ds
an isomorphism of H-dimodule algebras.

Proof. (i) We show that p is an algebra map.

Pl # 1) (b # T =» [(fZ b(fO —b) O - z]
)

= (fZ) (LR =6, - (f{P = )] & (F1)

1795,
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Acting on m € M this gives

Y. SUFOfm)M) — b, - (FP = b @ (FO ) by 3.9()

G 7yim))

= % SAFm)O)D) = [by s(fi folm) ) g S(folm) ) — by)]
(F{m))
(71 (Fo(m)(0))

® [l fo(m) )@ by 2.7
= % (S fo(m) )W) — b,) -5 (S(folm) V) — by)

(o (m)YF (o))

@ i fa(m) )

= ) (fFU—=b) (S(fm)™) = b,) ® FINf(m)®) by 3.9()
[ESA TR

= ¥ (fIU—=b) - (fIV—b) ®fIUfOm)) by 3.9() again.
[F1105,]

This is p(by # f1) - p(bs # f») acting on m. Hence p(by # f1) - p(by # f2) =
pl(6s # 11) - (bo # 1o)]. p(1p # 1) acting on mis 3¢ (S(m®) — 15) @ m@ =
I @m . p(lg # Iy) = 1 @1 .

(i) p is a comodule map

x(p(d # ) = [Z > (SR — b) ® (m® ® mi*)], where

i(m;)

f""zmz'@mi*
i

= ¥ (Sm®) b @ (m? @ mFO) @ bIm®S(m* 1)

(B)(m ;) (m*)

= (p @ 1) x(b # f)-

(ii)) p is an H-module map

plh— (b # 1)) = p (3 (10— b) # (W — 1))

(R}

= ¥ RS [fIUSB @K —f by 3.9()

w7
— h— p(b #1).
The map b @ fi>Y1s [S(fFH) — b] # f191 is inverse to p, so it is an
isomorphism of dimodule algebras. Q.E.D.

CoroLLarY 3.11. M and B as above, then B # End(M) =~ End(M) # B
as dimodule algebras.
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Proof. B # End(M)~ B & End(M) by 3.10
~ End(M)® B by 1.7 and 2.10
~ End(M)# B by 3.7. Q.E.D.

Prorosrrion 3.12. Let M be an H-dimodule which is finitely generated
projective over R. Then the map

7: End(A) — End(M)oP

given by
o(f)om) = ¥ (= )
(m)
is an isomorphism of dimodule algebras.

Proof. Note 7 can be defined by going via the isomorphism End(M) ~
M & M* to show that it is well defined.
We show that 7 is an algebra map.

F2=Y(fD—gf® by definition of ~
)

LA g)m) = ) mP—[(fM—g) fOm?)

(m){f)

I

T (mOf O s g) - (m® s fOY )

(m) (7}

— W @ _s [ FOS(m3) — m©
3 — g [FO(Sn) 3 m))

= Z {[m(f(S(m*) ﬁ mONDS(m®)] — g}
m)
(F(Stm ((4)) —m)y)

(m® > [F(S(n®) 52 mO) @) by 27

= T S5m0y —g]

{(m)
(F(S(in 2)) = 0)y)
(1) a0 (2) (0)Y1(0)
() < [F(S(n) 53 m®)])

= 7(2) (3 (n =)o)

(m)
= (&) 7(f)(m)
Lr(fr§) =78 7(f) inEndM)
sor(frg) = A(F) - (F) in End(M)°r,



BRAUER GROUP OF DIMODULE ALGEBRAS 583

Obviously 7(I,) = I, . That 7 respect the H actions is fairly straightforward
and is left to the reader. The inverse of = is given by

I form) = . (SEu)— f)m)

{m)

as is easily checked. Hence, 7 is an isomorphism of H-dimodule algebras.

Q.E.D.

Prorosition 3.13. Let M be an H-dimodule which is finitely generated
projective over R, Then

End(M)oP o~ End(M*) as dimodule algebras.

Proof. The map End(M)°P — End(M*) is given by foP > f %,

It is well known that this gives an isomorphism of algebras and it
is straightforward (but tedious) to check that this map preserves the
H-structures. Q.E.D.

4. Tre Brauer Grour BD(R, H)

We are now in a position to be able to define the concept of H-Azumaya.

From now on, all R-modules (except H) will be finitely generated projective
and faithful over R.

Let A be an H-dimodule algebra. We define two maps

F: A # A > End(4)
G: A # A —> End(4)op

by
Fla#b) =F,. where  Fop(c) =) a- (b —¢) - b©®

(b}

Ga#b) =Gz,  where Ggulc) =3 (¢M->a) 9 b
(¢}

Prorosition 4.1. F, G are H-dimodule algebra maps.
Proof. We show this for F, and leave G to the reader.

(a #Db) (a,#b) =3 a,- (bil)_\aZ)#Z(lT). 5,

(vy)

=Y a, - (b® — a,) # (6T = b - b
bl
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o Flaysby) - (agrb)1(€)

= T ap = a)en — b — b)Y

(©y)(b,)
= (b)z(:b ) 4, (b — a)[(B® — (B — c)|(BD — b b
1772

since H is commutative and cocommutative

= Z al[bil) — (az(],én —¢) bg”)] brll))

(07)(by)
= Fla)F ((ay8(0))-
Fy 1, = 14 trivially, so I is an algebra map.

Fluaemi(c) = D, (BY — a)(d® — ¢)(h® — b'0)
D)

— 3 (Y — a)(e(h®) bV — c)(AD — bD)
() ()

= Y (B — @)(RPBOSHD) — c)(AY — )
(n)(b)

= Y AW — [a®® — (S(E®) — ¢)) 5]
) )

— ¥ 5O [Flapa(S(H — )

D)
= (h—Fom)(0),
so F is an H-module map.
Finally
XFagse) = ) [Faps(c )] @ [Fops(c )]V S(¥) by 2.7

(¢}
(Foup ()

= Y GO (3O O - HO @) g - (D - pR) - S(c)
(@)(0)(e)

= Y a® - (B =) O @ a® - bW
(@)

(F®I) x(a# b)),

I

so0 F is a comodule map. Q.E.D.
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DerinirioN 4.2. If A is an H-dimodule algebra (which is finitely
generated projective and faithful over R) such that F and G are isomorphisms,
then A4 is said to be H-Azumaya.

Tueorem 4.3. (1) If M is an H-dimodule, then End{(M) is H-Azumaya.
(i) 4, B H-Azumaya = A # B is H-Azumaya.
(i) A H-Azumaya = A is H-Azumaya.

Proof. (1) End(M) # End(M) ~ End(M) @ End(A{)°? by 3.7and 3.12
~ End(End(M)) as algebra,since End(}M)
is Azumaya (ordinary),

Now suppose that R is a field. Then End(#) # End(}M) is simple as algebra,
and hence F: End(M) # End(M) — End(End(M)) must have zero kernel.
Comparing dimensions gives that it is an isomorphism. The general case is
now done by localization. Similar arguments apply to G.

(i) A#BH#AHB ~A#B#B#A) by3s
A#BHBYH A by3s
AH#End(B) # A as Bis H-Azumaya
A# A #End(B) by3.ll
=~ End(4) # End(B) as 4 is H-Azumaya
=~ End(4 @ B) by 3.8

~ End(d #B) since A#B=AQHB as
H-dimodule.

1R

1l

‘We now prove that F and G are isomorphisms as in (i).
(4 # B) # (4 # B) >~ End(4 # B)°? 1s similar,
(i) This can be seen from the symmetry in the definition of

H-Azumaya. Q.E.D.

DeriNiTiON 4.4, Let 4, B be H-Azumaya. We say A and B are Brauer
equivalent as H-dimodule algebras (denoted 4 ~ B) if 3 H-dimodules M, N
such that

A # End(M)~ B # End(N) as H-dimodule algebras.
TaeOREM 4.5. ~ is an equivalence relation which respects the operation #.

The quotient set is a group under the multiplication induced by #, with inverse
induced by .
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Proof. Straightforward, using 3.3, 3.8, 3.11, 3.12, and 3.13.

DEerINITION 4.6. We denote this group by BID(R, H) and call it the
Brauer group of dimodule algebras.

Let 7' be a commutative ring with 1, and suppose that we have a ring
homomorphism f: R—> 7. Then we can regard T as an R-module via f by
rt=f@), reR, teT. If Mis an R-module define M = M ®p 7. This
gives us a functor from R-modules to 7-modules. Note that M; Qp Ny o<
(M Qg N)r the maps being

(m@t) @ (r& L) (mQn) @ s My ®r Np— (M Qg N)r
(m@@n)@t—>m&Pt) @ Qlr): (M Qg N)y— Mr r Ny

TreEorREM 4.7. Let H be a Hopf Algebra over R. Let M, N be H-dimodules,
A, B H-dimodule algebra. Then
(i) Hyis a Hopf Algebra over T
(i) My is an Hp-dimodule.
(i) Ay is an Hp~dimodule algebra.

(iv) The isomorphism My Qp Ny~ (M Qg N)p is an isomorphism of
Hy-dimodules.

() (4r #r Br) == (4 # B)y is an isomorphism of Hy-dimodule algebras,
as is the natural map (A); ~ (7).

(vi) The natural isomorphism (Endp(M)); ~ End(M7) iés a map of
Hor-dimodule algebras.
Proof. (i) 'The structure maps for H; are given by

# H@x T = Hy,

“tHr QrHr>= HRQrH QT

1581

1: T%R@RT————)H®RT:HT,

4: H@p T2 H ®@g H® T o~ Hy @7 Hr,

e HRx T -5 RQrT =T,

Sg®I

S: HRx T2, H®RT.

That these do define a Hopf algebra structure on H; is straightforward.
(it) My is an H-module by

—®I
Hr @rMr~ HQ@rM Qr T — M@z T = My
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and an Hp-comodule by

xa ®1

.’VL/[T:A1®RT ﬁﬂ(l@RH@RT%]‘JT@THT'

Again we leave the details to the reader.
(iii) and (iv) Straightforward.
(v) The isomorphism Ay #1 Br = (4 # B)r is given by

(@R H#(0Rt)— (a#b) R st s,teT,acd, becB.

We check that this is an algebra map.

[(a; @ s;) # (b; ® t)l[(a @ s2) # (b @ ty)]
= Y (@[, ® 1)V — (a2 @ )] # (b ® 1)V (b, D 1)

16y &ty)

= 2 (&, @s)([b = a,) ® 5] # b7, D 1,1,

(by)

= ), (4,06 = a) @ 5,8,] #57b, @ 111,

o)
= (;) [a,(B\Y — a,) # bb,] @ s,5,t.1,
1

= [(ay # b)) ® s;11][(@2 # bs) @ 5al5].

The rest is equally straightforward.
(vi) The map End(M) ® T — Endy(My) is given by

fRtr>f,  where f{mKt)=f(m)R .
Again, it is easy to check the details. Q.ED.

Cororrary 4.8. (1) A is H-Azumaya = Ay is Hp-Azumaya.

() A, B Brauer equivalent as H-dimodule algebras = Ay , By are Brauer
equivalent as H-dimodule algebras.

Proof. (1) Fy: Ay #:(A7) — End(dr) is given by
. - . FQI )
Ar#tr () Ar #r (Dr = (A # A)r—— (Endg(A))r = Endy(Ar)

as is easily checked. So, if F is an isomotphism then so is Fr. . Similarly for G.
(i1) This is similar, Q.E.D.
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CoroLLarRY 4.9. The functor M My induces a group homomorphism
BD(R, H)— BD(T, Hy) by mapping the class of A to the class of 4; .

We now exhibit some subgroups of BD(R, H).
If M is an R-module then we can give M trivial H-module and comodule
structures by

h om= e(h)m Vhe H, me M,
xu(m) =m @1y  VmeM.

If A is an H-module algebra or an H-comodule algebra, then giving A the
appropriate trivial H structure makes 4 into an H-dimodule algebra.

We then have A = A%, A # B = A B, etc. So, suppose 4 is an
H-module algebra which is Azumaya. Then giving A the trivial comodule
structure makes it an H-dimodule algebra and

AH# A= AR AP ~ End(A),
AH Ao A® @ A~ End(A)op,

.. A4 is H-Azumaya. It is therefore easy to see that we have a map:
©: BM(R, H)— BD(R, H) of groups.
TrEOREM 4.10. O is an injection.

Proof. Suppose that A represents a class in BM(R, H) which is in the
kernel of 6, i.e., 4 (with the trivial comodule structure) is Brauer trivial in
BD(R, H).

.3 H-dimodules M, N such that 4 # End(M) ~ End(N) as H-dimodule
algebras.

Let M’ be isomorphic to I as H-module, but with trivial comodule
structure, and let N’ be similarly related to N. Then, since 4 has trivial
comodule structure, we have

A # End(M’) o~ End(N")
.. 4 is Brauer trivial in BM(R, H). Q.E.D.

This theorem enables us to regard BM (R, H)as a subgroup of BD(R, H).
Similarly, BC(R, H) can be embedded in BD(R, H). Furthermore, by
giving trivial H-actions to R-algebras without any H-structure we can embed

the ordinary Brauer group of R, B(R), is both BM(R, H) and BC(R, H).
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Hence, we have the following arrangement of groups.
BM(R, H)

B(R) BD(R, H)
\

BC(R, H)

5. AN Exampre oF BD(R, H)

In this section we consider the case when R is a field of characteristic p
(we shall denote this by K instead of R), and H is the group algebra K[C,],
where C,, is the cyclic group of order p. Throughout this section y will be a
fixed generator of C,, .

The case H = K[C,], K of characteristic not dividing # has been dealt
with in [4]. There we were concerned only with the group C, and did not
mention the Hopf algebra K[C,]. However, we implicitly used the fact that
the Hopf algebra dual to K[C,] was again K[C,] (under suitable conditions
on K). (See Proposition 2.3(i) of this paper for a definition of the dual Hopf
algebra.)

It is necessary to investigate what happens to the dual Hopf algebra in
our present situation.

ProrositioN 5.1. Let K be of characteristic p, H = K[C,]. Then H*
has basis 1%, d, d%,..., d®* where d satisfies d? = d, 4(d) =1* K d + d @ 1%

Proof. K[C,] has basis 1,y,...,y?* where y =y — 1 and so y? =0.
(Remember, y is our fixed generator of C ).

«(y) =0, S1E 5 =0 Vs >0.

(1* is the identity in H*, see Proposition 2.3(i).)
Now,

Ady) =4y -1 =yRy—1®1
=yRy+tyR®L+-1Ry
LAy =40 = (Y Ry +y 1+ 1Ry

=2Cﬂy®wHU®l+l®w

481/30/123-38
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= t;ﬂ uéo (;) (;) (y @)y @ (1 @)
SEE00eere o

Note that the summation variables must satisfy
O0<<u<t<s 2
Define d e H* by {d,y%) =8, (Kronecker delta). Notice {d, 1> =0
LKA D =<d®d A1)y =d,15{d, 1> =0,
and by induction, {d%, 1> = 0 ¥r > 0. Now,

Arit, gty = (- dry gty = A @ dr, Ay
s 1
=3 3 () by by,

But, {d,y**) =0 unless s —u =1, ie., # =s — 1. Then, (2) requires
t=u=s—lort=s

)

S A (W ISR A RIS

= s({d", y> +<d",y* D) (s=1). (3)
Induction now gives that

@nyy=1 ¥r>0,
dry>=0 for p>s>r>0,
dry >y =7rl#0 forp >r>0.

So, the d”, 7 =0, 1,..., p — 1 are linearly independent and must form a basis
of H* over K.
Now, <A(d), y°* ® ¥*> = {d, ¥* * y*) == {d, y*+*) = Q unless yst* = 1y,
SA(d) =1* @ d+ d @ 1* as required.
AP,y = s{d? y* -y for s>=1by(3)
= d(@)?, T @ (y + 1)
=s(1*®d? +d° Q 1%,y 1 ®(y + 1)) aswearein char p
= (d?, y> 1) for s> 1.
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However, from our recursion formula (3) again.

(P, 3 = s,y s(d%, 70
SosldPvsy =0 for s>1
Sdr s> =0 for p>s>1.

‘We have already proved that {d®, y> = 1 and (d?, 1> = 0 so finally d? =d.
P y

Q.E.D.
Notice that 4(d) = 1* ® d + d & 1* gives that

d(ab) = ad(b) + d(a)b.

So, in characteristic p, C,-graded algebras correspond to algebras on which
acts a derivation d satisfying d¥ = d.

ProposiTiON 5.2. Let K be algebraically closed of characteristic p,
H = K[C,). Then any H-Azumaya algebra over K is Azumaya.

Proof. Let A be an H-Azumaya algebra over K.

Then H is a group ring and we can apply [4, Theorem 1.9(i)]. So, 4 is
semisimple, i.e., a direct sum of matrix rings with orthogonal central idem-
potents ¢, ,..., e,. We have the derivation d on .4 corresponding to the
grading. Let d(e;) = 2;1 a;e; . Then

ae; = d(e;) = d(ee;) = e d(e;) 1 d(e;) e;

1

.
j=
T r
= (2 az‘ie:i) + (z az‘jej) 2
=1 i1
= Qye; + a3e;
Lay=0,i5jand a; = a;; + ay

" a;; =0 also. So, d(e;) =0 Vi = 1,...,r. ie., all the idempotents have
grade 1.

S Fquepc) = ce; = eic = F,q3,(c) Vee A
Sl # e =e; # 1, since Fr A # A— End(A) is an isomorphism
S e = IA .

Hence, there is only one matrix ring and 4 is Azumaya. Q.ED.
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ProprostTiON 5.3. Let K be algebraically closed of char®. p. Then if A is an
Azumaya H-dimodule algebra (over K) Ju, x € A such that u® = 1, , x? = x,
Yqa = uau1Va € A and ais of grade y* < xa — ax = ta. Further, xu — ux = su
for some s F, C K. (F, is the field of p elements.)

Proof. vy is an automorphism of the Azumaya algebra 4, and hence is
inner

.. due A such that Ya = uau' Vae A4.

Then u? is central in 4 and since K is petfect we can choose # such that
uw?=1,.

Now A4 is an H-dimodule algebra and hence an H-comodule algebra,
So, by Proposition 2.3(ii} A is an H*-module algebra. So, the derivation d of
Proposition 5.1 acts on 4. Because A4 is Azumaya, any derivation is inner.

(See [1, Chapter III, Proposition 1.6].)
.. 3x" € 4 such that d(a) = ¥'a — ax’ Vaec A.

Notice that " and x" 4 k1, , k€ K, give the same derivation. A straightfor-
ward induction gives that

s
d*(a) = Eo(—l)f (:) X',
So d?(a) = x'Pa — ax'? as we are in characteristic p. But,
d? =d, Cox'Pq — ax'? =x'a—ax’ VacA
S(@?— e =a(x'? — ') Vacd
Lx'?P=u" 4 k1,, kK ek, since 4 is central.
Hence, (x" + k1 ,)? =« + k?], = &’ + (k? -}- k') 1, . It is always possible

to solve #? — z + & = 0 in K since K is separably closed. Then, if 2 is a
solution of this equation, we have

kB =k
SO

(' + Rl )? = + kl,.

Putting x = x’ 4 k1, we have x? = x as required. Now y =y + 1 (same
notation as in Proposition 5.1).

.'_ys=(y—l—l)3=1+sy—[—“'—l—ys.

.. a € A4 has grade y® < d(a) = sa.
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Since A is a dimodule algebra, the actions of y and d commute

Coxuauwt — wau T = u(xe — ax)ut Vee d

" auawt — uxaw™! = uaytx — waxuw' Vaec 4

" (wteu — x)a = a(uxu — x) Vac A

Lutxw —x =1y, se K, since 4 is central

XU — Ux = SU

. xPu — ux? = sPy = su since x¥ =x

S =5

Sosef,. Q.E.D.
As K is algebraically closed and Azumaya algebra is a matrix ring over K.
So we can take 4 = End(F), and then we can give I” an H-module structure
by *» == u(v) and an H-comodule structure (i.e., a C -grading) by demanding
that v is homogeneous of grade y" <> x(9) = rv. These structures on I induce
the original structure on End(F). Note that V" will be an H-dimodule if and
only if # and x commute, i.e., if and only if s = 0. Proposition 5.3 allows us to
associate to every Azumaya H-dimodule algebra an element se [, and we
have just seen that the algebra is equal to the endomorphism ring of an
H-dimodule (i.e., it is in the trivial class in BD(X, H)) if and only if s = 0.
Suppose now that our 4 is H-Azumaya. Then the map F: 4 # A — End(4)
is an isomorphism.

We show that this implies s = 1.

Assume, in order to get a contradiction, that s = 1. Then # has grade
y (notation as in Proposition 5.3). So

F(lA#ﬁ)(a) = ("a) " u
= uau1 - u
= ua

=Fusag@ Vaed
But F is an isomorphism,
. lA#ﬁ::ll#TA.

So, we must have, # = k1, for some k€ K. This is impossible since # has
grade y 55 1. We conclude that 1 — s is not zero in [, , as required.

Lemwva 5.4. If A is as above and B is any H-dimodule algebra, then
A # B~ AR B as H-module algebra.

Note. 'This isomorphism does not preserve the comodule structure.
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Proof. The isomorphism is given by the map

O:aftbr>a-u @b where b is homogeneous of grade »7,

and # is the element described in Proposition 5.3.

6 is obviously an isomorphism of K-spaces, with inversea @ bt a * u™" # b,
where b is homogeneous of grade 3. We show that 6 is multiplicative.

O((ay # by) * (as # b)) == O0(a;(*"ay) # byby) b of grade y:
= (@t # biby)
— aulag T @ b,
= ayuau’ Q) byb,
= (ayu™* ® by)(au™ & bs)
= O(ay # b,) 6(ay # bs).
Obviously 8(1, # 15) =1, ® 15. Also
60(a # ) — 0a # 7b) — Oua # *b)
= nau'u" Q) ¥b (remember, vb has the same grade as b)
= w(au"ut Qb

= Y(0(a # b)).
So @ preserves the H-action also. Q.E.D.

Now let 4 and B be Azumaya H-dimodule algebras. Let 4 have u with
grade ¢ as above and let B have v with grade y".

Ya Qb)) ="a Qb = uaw @ vbv!
= (#®v)e ® )= ®v)™

So the element corresponding touin 4 @ Bisu @ v. But A Q B~ A # B
as H-module algebras so the corresponding element in 4 # B is

Y u Qo) =u-u"#v (see Lemma 5.4)

=T H o

This has grade ys0-m47 = ystr—sr If 4 has u of grade y* then we say 4 is of
type 1 — 5. We have seen that “type” is 2 map from the set of H-Azumaya
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algebras which are also Azumaya into the nonzero elements of F, . Let 4 be
of type s, B of type r, then by our argument above 4 # B is of type

==+ =)= (=) —r) =0

Furthermore, 4 is Brauer trivial in BD(R, H) if and only if 4 is of type 1.
Hence, “type” lifts to a well defined injective group homomorphism from
BD(K, H) into U(F,) (the nonzero elements of the field F,). We show that
“type” is, in fact, onto by constructing Azumaya algebras of the appropriate
type.

ConstrucTioN 5.5. Let f(Z) = Z? — Z and let V = K[Z]/(f(Z)). Then
V is a p-dimensional K-algebra. Denote the image of Z in V by 2, then
2? = z. Let x be the endomorphism of V' given by x: ¢ > 27, so ¥? = x.
Define an algebra endomorphism of K{Z] by u: Z+>Z — 5, se F,. Then

fWz) =fZ—s)=(Z—=s)P —Z+s
=ZF—7Z  since seF,
= f(2)-

So, uzinduces an algebra endomorphism, also denoted by #, on V.
) =z—s
(xu — ux)(v) = 2 - u(v) — u(zv)
=z u(v) —u(z) - w(v)  since u is an algebra map
= su(v).
SR — ux = Su.

Hence, 4 =End(V) if of type | —s. It remains to prove that 4 is
H-Azumaya, and for this we need the following lemma.

Levvia 5.6. Let End(V) be an H-dimodule algebra of iype 1 — 5. Then
there is an algebra map i End(V)— End(V)P given by +(f)(@) = (" )(z)
where v is homogeneous of grade y". If 1 — s is nonzero tn F, then 7 is an
isowmor phisim.

Proof. Obviously 7(I) == I (I is the identity map on ).

Ff-8= (") -f  wherefis of grade 1%,
] BE) = T(EDNE) (o of grade y7)
— ()
= 7(g) r(f)o) since (*f)(%) is of grade y**.
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So 7 is an algebra map: End(¥) — End(V)°P. Now, v is of grade y" <> x(2) =
rv. (See Proposition 5.3.)

. au(z) = () + su(t) = (r + <) u(z)

C Yo =u(v) s of grade y™ts.

Suppose 1 — sis nonzero in [, with inverse ¢. Then o, defined by o foP)(v) =
(*"f)(v) where © is of grade 3", is the inverse of r.

o(foP)(2) = ("(af °P))(v)
= ""[(of °P)(*""v)] by definition of H-action on End(V)

— Y[ ")v)]  since v is of grade p7t

= [0 0)]
= /@).

Similarly or(f)(v) = f(2). Q.E.D.

Prorosttion 5.7. If End(V) is an H-dimodule algebra of type t 5~ 0, then
End(V) s H-Azumaya.

Proof. 'We have to show that

F: End(V) # End(V) — End(End(V))
and
G: End(V) # End(V) — End(End(V))

are isomorphisms. Now,

End(V) # End(V) =2 End(V) # End(V)or by Lemma 5.6
=~ End(V) ® End(}V)°» by Lemma 54
=~ End(End(})) well known.

So, as algebra, End(V) # End(¥) is isomorphic to End(End(F")). Hence, it is
simple, so F must be injective (F(I # I) =1, so F = 0). Comparing dimen-
sions gives that F is an isomorphism. Similarly one proves that G is an
Q.E.D.

isomorphism.

So, we have constructed H-Azumaya algebras of the appropriate type and
we can conclude with the following theorem.
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Turorem 5.8. Let K be algebraically closed of characteristic p, and let
H = K|[C,]. Then BD(K,H) >~ C,_, .

Proof. ““Type” is a group homomorphism from BD(K, H) onto the group
of nonzero elements of F,, which is isomorphic to the cyclic group of order
p— 1. Q.E.D.

We now describe BD(K, H) when K is not algebraically closed. Proposition
5.1 still holds, but Proposition 5.3 needs some modification. Let K be the
algebraic closure of K, then by Corollary 4.9 we have a group homomorphism

6: BD(K, H)— BD(K, Hp).

Of course, Hy = K[C,] so we know that BD(K, Hg) =~ C,_, . Also, the
algebras constructed in 5.5 did not require their base field to be algebraically
closed. Hence they can be constructed over K and so § above is onto. Let its
kernel be V. Then we have a short exact sequence

1— N — BD(K, H)— BD(K, Hg)— 1.

Now the ordinary Brauer group of K, B(K), can be represented as a subgroup
of BD(K, H) (see the end of Section 4). Any class of algebras in BD(K, H)
which is in fact in B(K) can be represented by an algebra 4 with wivial
H-module and H-comodule structures. This implies that for any H-dimodule
algebra B

A#B2ARBxBRA~B#A4 as H-dimodule algebras.

So, B(K) is a normal subgroup of BD(K, H). B(K) is trivial, and we get the
following diagram of groups.

1 1 i

B(K) N X

1 — B(K) — BD(K, H) ~> BD(K, H)/B(K) — 1

23

v v v
1 —> BD(K, Hg) —> BD(K, Hg) — 1
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Here ¢ is the natural surjection BD(K, H) — BD(K, H)/B(K), and X is the
kernel of the induced map

BD(K, H)/B(K)— BD(K, Hg).
It is easy to see from the above diagram that we have the exact sequence

We will find the group X. Let 4 be an H-dimodule algebra (over K) which is
H-Azumaya and such that¢((4)) € X. (4) denotes the class of 4 in BD(K, H).
Let B be isomorphic to A% as K-algebra and have trivial H-module and
comodule structure. Then

A# B~ A B~ End(d)  as K-algebras.

A # B is an H-dimodule algebra so we can use this isomorphism to give an
H-dimodule structure to End(4). (This will not, in general, be the one
induced by 4.)

Now A is H-Azumaya so Ag is Hg-Azumaya (Corollary 4.8(i)) and hence
Ag is Azumaya as K-algebra (Proposition 5.2). Thus A4 is Azumaya as
K-algebra (see [1, Chapter III, Corollary 2.9]). Furthermore, (B)c B(K)
since B must be Azumaya and has trivial H-structure.

<. (4) - (B) = (End(4)),
S B((A) = H(End(d)  since J(B) = L.

Further, if ¢((4))e X then 6((A)) =1 also, by our definition of X. So,
when studying X we can restrict our attention to H-dimodule algebras which
are endomorphism rings over K and which become Brauer trivial in
BD(K, Hg).

We now try to emulate Proposition 5.3. Let A = End(V') be an H-dimodule
algebra which is H-Azumaya (and hence Azumaya) and which becomes
Brauer trivial in BD(K, Hg). Since 4 is Azumaya and v is an automorphism
of A,

dueds.t. Ya =uau™l Vace A.

However, we can no longer ensure that #? = 1, . Instead we must be satisfied
with #? = & - 1, where & € K*. Of course,  and 2,u (k, € K*) give the same
inner automorphism and (k;#)? = k,Pkl, . Hence, the automorphism y can
be associated with a class in K*/(K*)?. Now, as in Proposition 5.3, the
derivation d acts on 4 and must be inner. So 3x € 4 s.t.

d(a) = xa — ax VaeA.
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However, again we may no longer be able to solve the necessary equation
to ensure that x? = x. Instead we have only that x? =& 4+ I1,, e K. Now
x and x + [;1, give rise to the same inner derivation and (% + [;1,)? =
4+ L1+ (42— 1L +1)1,. So the derivation d can be associated with a
class in the group K/ #/(K), where f(l) =17 — L.

On tensoring up with K, # and x are preserved except that # may become
ku, ke K* and x may become x -+ [1,, /e K. Now A becomes Brauer
trivial in BD(K, Hg) and so # and x must commute over K. This implies
that # and x must commute over K, i.e., u has grade 1 and y acts trivially on x.
{Recall that a has grade y" <> xa — ax = ra.) We have associated with an
algebra whose class has its image under ¢ in X an element of the group
K*[(K*)? % K[ #K). We show in fact that

X == K*¥[(K*)? X K[#K)  as groups.

If u? == 1, and x? = x then we can define an H-module structure on V by
Yy == 4(v) and an H-comodule structure by demanding that » has grade y”
if and only if #(v) = ro. These structures on V induce the original structures
on End(V) as is easily checked and make V into an H-dimodule. Conversely,
if V is an H-dimodule then we have # and x defined in this way and they
satisfy #? = 1, , P == x, respectively. Thus, & == 1 and [ = 0 if and only if
A is Brauer trivial in BD(K, H).

Now let A and B be H-Azumaya algebras such that ¢((4)) € X, $((B)) € X.
Let A have u,, x, as above satisfying w,? = k,1,, 2,7 =x, + [,1, and
corresponding to this let B have wup, xp satisfying wp? = kglp, xp? =
xg -+ lzly . Letae 4, be B, then

Ya #b) = Ya # "b = ujauz' # ugbuz' = (u, # up)(a # b)(uy # ug)™

since up has grade 1 and obviously i, = u, . So

Uygpp = tq # ug, and Uher = Uy FHug’ = kg kgl # 1p
Sokyp =k kg

We next prove that x5 = 1, # x5 + x, # 13 . Remember, x, is defined
by the property that ¢ has grade y* < x,a — ax, = ra. Suppose ae A has
grade 9", b € B has grade y°. Then

(La# xp + x4 1a)a # b) — (a # b)(1 4 # %5 + %4 # 15)
=afxgh+xaHb—aHbeyg—ax Hb
since xg has grade 1 and "4, = x4
= a #f (xgb — bxg) + (x40 —ax,) H#b=a#sb-raffb
(s +r)a#b)

l
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and, of course, @ # b has grade y**". So x5 =1, # x5+ x,# 15 as
required

S xys = Ly xg” +x4" # 1 = Lo # (x5 -+ lplg) + (a4 + Ll ) # 15
=l #xpt o #Hlg+Us+1)14# 18
= %448+ (g + L4) Lugs -

Solagp =14+ 1p.

Thus by associating with the algebra 4 the elements 2, and [, we get a well
defined injective group homomorphism

X — K*[(K*)? X K| {(K).

(K*/(K*)? is a multiplicative group, K[#(K) is additive.) It remains to
construct algebras satisfying the required properties to prove that this map
is onto.

Let V be a p* dimensional K-space with basic v; ; 4, j = 1,..., p. Define u
and x in 4 = End(V) by

_ {pi1s r=1,..,p—1,
u(%‘,s) — %k'vl,s r=p,

Vot oy s=1,

I L2 s=2,.,p—2,
x(‘vns) - __
Tr,1 s=p—1,
\ Ur.2 s = p.

It is straightforward to check that  and x satis{y
u? =kl ,, x? =x - 11, XU = ux.
For p =2, we define x by
(V1) = V1 + lops
%(2r,2) = Vp1,s

instead of the formulae given above.

This gives us an H-dimodule algebra which is H-Azumaya because it is
certainly H-Azumaya when tensored up with K (in fact it becomes Brauer
trivial in BD(K, Hg)) and if either of the maps F, G had a kernel over K
then this would be preserved over K. So we have X ~ K*/(K*)? x K] 4(K).
We sum up with the following theorem.
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TrEOREM 5.9. Let K be a field of characteristic p, K its algebraic closure
and let H = K[C]. Then we have the following exact sequences

1> N— BD(K, H)— BD(K, Hg) — 1
1 - B(K)— N — K*[(K*)? x K| #(K)— 1.
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