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INTRODUCTION 

In this paper we develope a Brauer group theory for algebras which are 
simultaneously H-modules and H-comodules, where H is a Hopf algebra. 
This work generalizes, and also arises naturally from, the work in [4] where 
we considered algebras acted on by a group and graded by the same group. 

In Section 1 we consider the case where there is only an H-module action. 
This generalizes the equivariant Brauer group of Frohlich and Wall [2] and 
at the end of Section 1 we show that some of Frijhlich and Wall’s results 
extend to the Hopf algebra situation. 

H-comodule action is studied in Section 2, and we show that this is a 
straightforward generalization of group grading. The two concepts of module 
and comodule action are applied simultaneously in Section 3. When they 
commute (in a sense made precise in Section 3) we call the resulting structure 
an H-dimodule. This is not the same as an H Hopf module (see [6]) as the 
commuting condition is different. 

In Section 4 we say when an H-dimodule algebra is H-Azumaya. This 
generalizes the usual definition of Azumaya algebra to our situation and 
allows us to define “the Brauer group of dimodule algebras.” We then obtain 
some of its properties. 

We conclude the paper with an example. In Section 5 we consider rhe 
Brauer group of dimodule algebras over a field of characteristic p where the 
Hopf algebra is the group ring over that field of the group of p elements. 
This covers the outstanding case left from [4]. 

Throughout, R is a fixed commutative ring with 1, each 0, Horn, etc. is 
taken over R and each map is R-linear unless otherwise stated. 

1. HOPF ALGEBRAS AND RiIODULE -/GEBRAS 

DFSINITION 1.1. A Hopf -illgelrra H (over R) is an R-module H together 
with the following structure maps, 
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multiplication .: H @ H + H (written h, . JZJ 

unit lH: R 4 H (we also use lH to represent the unit element) 

diagonalization d: H @ H + H (we write d(/z) = x(h) ho) @ h(s)) 

counit E: H+ R 

antipode S: H---f H 

so that H is an R-algebra with product . and unit l,(l) and an R-coalgebra 
under A and E. This means that A, E satisfy axioms dual to those satisfied by 
. and lH . Moreover, A and E are algebra homomorphisms, or equivalently . 
and lH are coalgebra homomorphisms. S acts as a sort of inverse for both the 
algebra and coalgebra structures. 

DEFINITION 1.2. A Hopf algebra is said to be commutative if the multi- 
plication is commutative and cocommutative if the diagonalization is 
commutative, i.e., &) P @ lz(s) = z(a) h’s) @ h(l). 

For more details about Hopf algebras and a more rigorous definition, 
see [6]. We will sometimes use elementary results on Hopf algebras without 
stating them explicitly beforehand. 

A classical example of a Hopf algebra is the group ring R[lJ where r is 
any group. This has the usual algebra structure and 

A(y) =r@r yErandall 

c(y) = 1 extended by linearity 

S(y) = y-l to the whole of R[T]. 

In an arbitrary Hopf algebra H, an element g which satisfies A(g) = g @g 
is said to be group-like. 

DEFINITION 1.3. A left H-module M is an R-module together with a map 
-i,,f: H @ iIf-+ 1cI so that the following diagrams commute. 

(0 
H@H@M’QI-H@M 

(ii) 
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PROPOSITION 1.4. Let M, iV be left H modules ;ulith actions -bi , -N . 
Then the map 

(9 

gives n left H-modules structure to M @ IV. Hom(M, N) is also a left H-module 
by the follw&zg action: 

(ii) (i2 2 f)(m) = c(h) h(l) -N [f (S(h)@)) -M m)] h E H, m E A/l, 

f E Hom(M, N). 

Proof. We will run through the proof of part (ii) in order to show the 
techniques involved, although these are quite straightforward. Part (i) is 
even more straightforward. 

We verify diagram 1.3(i). Let f E Hom(Al, N), nz E IV, Iz, , h, E H. 

(h, . h, -f)(m) = c 
(h,.h,) 

(4 . h,P ; [f (S(h . h,)‘“‘) ;~f nz)l 
bv definition of - 

= ;) ;, (h?) . hL1)) ; [f(S(12:‘2) . lip’) 2 m)] 
1 2 

== c 
(h,)uL,) 

(hy) . h!,2)) ; [f (S(ty) . S(hy G m)] 

= 2) hy G [(h, - f )(s(h(;2)) ; m)l. by definition of A 

= (4 - (ha - f>>!m> by definition of - 

:. h, . h, - f = h, - (h, - f) 

d(1,) = 1H 0 1H , and 

so 1.3(ii) follows immediately. 

S(L) = 1H 9 

Q.E.D. 

DEFINITION 1.5. If M, N are as above, and f~ Hom(M, N), then j is 
said to be an H-module .rna$ if the following diagram commutes. 
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DEFINITION 1.6. A is a left H-module algebra if it is an R algebra and a 
left H-module so that the structure maps 

1,: R+A and -,:A @A+A 

are H-module maps. (R is a left H-module by -R : H @ R g HA R, and 
A @ A is a left H-module by 1.4). 

These conditions say that h - lA = c(h) * lA and 

la - (a, . a*) = c (h(l) -1 UJ . (h(“’ - 4 
(h) 

If ,4 is an algebra then let 40~ denote the opposite algebra. This is isomorphic 
to A as R-module so, if A is an H-module then AOP is automatically an 
H-module as well. 

PROPOSITION 1.7. Let H be cocommutative. If A, B are left H-module 
algebras then so aye A @ B and Aop, and A @ B a?zd B @ A are isomorphic 
as H-module algebras. 

Proof. Straightforward. 

PROPOSITION 1.8. Let H be cocommutative. If d!l is a left H-module then 
End(M) is a left H-module algebra. If M, N are left H-modules which are 
finitely generated psojective over R, then the natural isomorphism 

End(M ) @ End(N) c End(M @ N) 

is an H-module map. 

Proof. We have that End(M) = Hom(M, Jl) is a left H-module by 1.4(n). 
We show that the H-module action respects the algebra structure in End(M). 

We have (k -E f) (HZ) = J5& h(l) -nr [f (S(h(*)) -So m)]. Let h E H, 

m E M, f, g E End(M). Then 

E 
(h’l’ -f) . (h(*’ 

(h) 
-g)] (4 

= c (h(l) -f)[(h’2’ 2 g)(m)] 
(h.) 

= C (h(l) - f)[hc2) ;E; (g(S(hc3)) ;I; m))], 
(A) 
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{where Cch) W @ /z(s) @ h(s) denotes (10 A) d(h)) 

=Z” (l) ;c; {f[S(hc2)) 2 (ht3’ ;;;’ k$Vc49 ;;; 41111 

= C h’1’c(h(2)) - [f(g[S(hc3)) 
(h) 

ivl 2 ml)1 

(c(ht2)) E R, so can be “pulled through”) 

=Z” (1) ;;; [f - g(S(h@‘) ; m)] 

= (h - f - g)(m) 

h 2 f . g = c (h’l’ - f) - (hC2’ - g). 
(h) 

(12 -l,)(m) = C h(l) d [~&S(hc2’) $ nzll 
(h) 

(1) ; (S(hf2)) $ m) 

= c h(l) . S(hc2)) ; m 
(h) 

= E(h)m. 

That is, h -I&{ = E(h) . InI. Hence, End(M) is an H-module algebra. The 
rest is easy. Q.E.D. 

PROPOSITION 1.9. Let H be cocommutative. If A is CL left H-module algebra 
then the standard map A @ Aop + End(A) is an H-module algebra map. 

Proof. Straightforward. 
We now have all the apparatus necessary to define the Brauer group for 

the category of left H-module algebras which are finitely generated projective 
faithful Azumaya algebras over R, (with H cocommutative). 

We define A -B (in this category) if 3 finitely generated projective 
faithful R-modules M, N which are also left H-modules such that 

A @ End(M) z B @ End(N) as H-module algebras. 



564 F. W. LONG 

It is easy to verify that N is an equivalence relation and the quotient set is a 
group under the operations induced by 0. 

DEFINITION 1.10. We call this group the Brauer group of H-module 
algebras and denote it by BM(R, H). 

This generalizes the equivariant Brauer group of Frijhlich and Wall (see 
[2]). We now prove that, for certain Hopf algebras H, 

BM(K, H) g B(K) x H2(H, K), 

where K is a field and H”(H, K) is the 2-cohomology group as defined in [7] 
(H acts trivially on K). This result is an extension of a result of Friihlich 
and Wall. 

By ignoring the H-structure, it is easy to see that one can get a group 
homomorphism from BM(K, H) onto B(K). Let the kernel of this homo- 
morphism be denoted by Bo(K, H). S o we have a short exact sequence 

0 4 Bo(K, H) + BM(K, H) --z B(K) + 0. 

If we have any K-algebra A then we can give it the trivial H-module 
structure h -1 a = E(h)a. This construction gives rise to an injective group 
homomorphism from B(K) into BM(K, H) which splits the above short 
exact sequence. 

So we have already BM(K, H) z B(K) x Bo(K, H). 
Now, Bo(K, H) consists of classes of algebras which become (ordinary) 

Brauer trivial when we forget the H-structure. i.e., they are endomorph&m 
rings over our base field K. So, when calculating Bo(K, H) we had only 
consider endomorphism rings. 

For the remainder of this section we suppose that H is a cocommutative 
Hopf algebra over K whose simple subcoalgebras are of the form Kg for 
some grouplike element g. Then [7, Theorem 9.51 applies and any H-action 
on a finite dimensional central simple K algebra A is A-inner. This means 
that there is a mapf: H -+ A such that 

h - a = z f (h(l)) gf-l(h@)) Vh E H, a E A. 

Here, f-r is the inverse off under convolution in the algebra Hom(H, A) 
and satisfies 

2 f (h”‘) . f -1(h’2’) = c(h) . IA . 

Since h, - (h, - a2) = h,h, - a we have 

(h$h = 
2 
) f (hF)hF)) af -l(h~)h~‘) ,n’& ) f (h?)) f (h(Z1)) af -l(hg)) f -l(h12)), 

1 2 
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i.e., 

Since A is central we deduce that Vh, , 12, E H 

c f-l(h\%;‘) f(hi2)) f(h:‘)) = c(h, , ‘2,) 1, , 
(h,HA,) 

for some c(k, , h,) E K. We can rewrite this as 

f(h,)f(h,) = c c(hF’, h~))f(h:“)h~)). 
(h,Hh,) 

Using associativity in A gives that c satisfies the 2-cocycle identity, 

c c(h$ h;i)) c(hy)h$ hJ = 1 c(h, , hf)h;‘) c(h;), hk2’). 
(hl)&) (hg)(hs) 

It is straightforward to check that if we had started with a different inner 
action given by g: H-+ A then we would have arrived at a 2-cocycle in the 
same cohomology class as c. 

LEMMA 1.11. The Axumaya H-module a2,ebra A = End(P) is Brazer 
trivial (iz BM(K, I-I)) ;f and only if its associated cocycle c is a coboundaary. 

Proof. 3 : A is Brauer trivial so the H-action on d is derived from an 
H-action on V as in 1.4(ii). Hence, the inner action on 3 is given by 

f (4 = fh where 6(v) = h - v. 

Then f (A,) f(h,) = fh,ht, = fhlh,% = f (h,h,). So, the associated cocyde is 
trivial, being c(h, , h,) = I c(h,). 

+: Suppose that -q = End(V) gives rise to the cohomologically trivial 
cocycle c. 

:. c(h, , “J = c g&l’) g(h;)) g-l(h~‘h~‘) 
(h,)(h,) 

for some invertible map g: H---f K. 

f(h,)f (h,) = C g(hF’)g(h;‘) g-'(h~2'rz~'>f(h:"'h~~'): (7 
(hl)(h2) 

where f: H + A gives the inner action h - u == x(h) f(h’l’) af-l(hr’)). Define 
an H-action on Y by h 2 v = z(a) g-l(h'l')f (h”‘)(a). 
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Then 

h,-(h,-u) = h,A 

= hlh2-v. 

A-b from (*) f(lH) f(h) = Cm g&d g@(l)) g-1W2))fP) = g(ldf(h) 

:. g-ylH)f(lH) = 1,. 

Thus,h-v= Cm g-W19 fW29( v is an H-module action on V. Further, 1 
from (*), 

-$f(h”‘)f(S(h(2))) = ;g(h’l’) g(S(ht2))) g-1(hW(h(4)))f(h(5)S(h(6))) 

= &dW &W*‘N g-Vdf(Lr) 

= C g(h’l’) g(S(h’2’)) 1, 
m 

I.e., 

:. ; fQ”‘)[g-l(hc2)) g-1(S(hc3)))f(S(h(4)))] = 1, , 

;)g”(h’l’) g-1(S(h(2)))f(S(h(3))) = f-l(h). (‘) 

Now, our action on V gives an action on End(V) which we denote by h - a. 
This is 

(h --, a)(v) = C h(l) - [a(S(hf2)) - v)] 
uks) 

= $ g-l(hc1’)f(hc2))[a(g”(S(hc3)))f(S(hc4)))(u)ll 

= z f(h(1))[a(f-1(h’2)>(v)>l by (‘1 

= (h - a)(v); 
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i.e., the action we have defined via V is the same as the original action. So, 
our original H-module algebra A is Brauer trivial. Q.E.D. 

This lemma gives us a well defmed injective map from Bo(K, H) to 
NB(N, K). It is easy to check that it is, in fact, a group homomorphism. 

It remains to prove that this homomorphism is onto and we do this by 
constructing, for any prescribed cocycle c, an H-module algebra 4 whose 
associated cocyde is c. 

So, let c be a 2-cocycle from N to K. Let A =: End(N) and define fhl E A by 

fh1(h2) = c gzy, h?) hyhy. 
(h,lUQ 

Now define an inner action of H on A by 

f: H-A, f(h) =jh. 

Then f-l(h) =fsch) as is easily checked. Now, 

[f(hl) f(hzll(h> = fhl(fhpw 

= -;,, f&(hy, h”‘) hpz’2’] 
2 

zzz c c(h!y, hyz’“‘) C(h!,l’, h(lq h(;2qw~~ 
(hl)(h2)171) 

= c cpy, hp(l)) c(lzf), h’“‘) hy’hph’3’ 

(h,)(h,l(h) 

= (h, ,;,,, c(h$ h?)) C(hyhp, h’l’) hyhyz’“’ 

= ‘z: a C(h$ h~‘)f(h:“‘h:“‘)(h) 
(by the cocycle law) 

(h,)(h,) 

:. f(hJf(rz,) = 1 cpy, q))f(py), 
(h,)(h,) 

and so A has associated with it the given cocycle c. This allows us to conclude 
with the following theorem. 

THEOREM 1.12. If H is a cocommutative Hopf algebra otter a jield K whose 
simple subcoalgebras are of the fornz Kg for some group& element g, then 
Bo(K, H) s H2(H, K) as groups. Furthermore 

BM(K, H) r B(K) x H”(H, K). 
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2. COMODULE ALGEBFXS 

Having dealt with H-modules, we now turn to the dual concept of 
H-comodules. 

DEFINITION 2.1. A right H-comodule IL’ is an R-module together with 
a map x&*: M-+ M @ H, so that the following diagrams commute. 

(i> 
X&4 

(ii) 

If M, N are right H-comodules with structure maps xM , xN respectively and 
f E Hom(M, N), then f is said to be an H-comodule map if the following 
diagram commutes. 

(iii) 
f 

nf - N 

We write ~~(02) = C~n@o) @ m(l), etc. m(O)‘s E 42, m(l)‘s E H. The next 
proposition shows that H-comodules generalize r-graded modules. 

PROPOSITION 2.2. Let r be a group. Then A4 is a (right) R[r] comodule 
if and only if A4 is a rgraded R-module. 

Proof. +: A4 graded by r, i.e., M = @,,sriW,, . Define 

x&f: nd ---t M @ R[I’j 

by m ++Lr m, @ y where m = x,,EII m, , mY E MY . This is obviously 
R-linear. Also: x,,,. : mlrt-+m,@yVrnY~MY. 

:. (x,~@I)~x~:~~~~~ m,OrOr, 
YEJ- 

but (I @ 0) o xM: m F+ ‘j&- m, @ y @ y so 2.1(i) is satisfied. 
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(since c(y) = 1 Vy E r). This is 2.l(ii). So (III, xM) is a right R[r] comoduie. 
3: xn4: m b x:i m, @ lzi hi E R[I’]. y E r give an R basis for R[F] so we can 
write 

xgbf: m ++ 1 m, 0 Y- 
YEi- 

By 2.1 (ii) m = J&- mv . Now, ‘dy E r define y* E Hom(R[r], R) by 
(y”, y, = 1, (Y’~, 8) = 0 y # 6. Consider the map &: X @ R[T] + X for 
any R-module X defined by x @ h + .x(y”, Izj. This is R-linear. Also, if 
x, E Xs.t. -&j- y x @ y = 0, then applying 0, shows that x,, = 0 Vy c- i? 
From 2.1(i) we have &- ~,~(nq) @ y = CYEI. m, @ y @ y 

:. x&m,) = m, 0 y vy E r. 

Also, CVEr m,’ @ y = CYEr m, @ y 3 m,’ = Tn.,, Vy E I’. So Al = G&r Mg 
where MY = {m E M s.t. x&m) = m @ y>. This gives the grading. Q.E.D. 

For an R-module X, we shall denote Hom(X, R) by X*. Suppose, just 
for the moment, that H is finitely generated projective over R. Then we have 
an isomorphism, 

given by h(f)(h* @ m) = (I @ h*)f(m). f E Hom(M, M 18 H), h* E IF, 
m B M. 

PROPOSITION 2.3. (i) If H is a Hopf algebra which is jkitely generated 
projective as R-module then H* is also a Hopf algebra. 

(ii) x: M-+ M @j H dejkes a Fight H-comodzcle if and only if - = 
h(x): H* @ M + M defixes a left H*-module. 

(iii) If M, N are right H-comodules, and hence left H*-modules, and 
f E Hom(M, N), then f is an H-comodule map if and only $f is an H*-module 
map. 

Proof. (i) The structure maps for H* are given as follows 

.H*: H” @ II” -++ (H @ H)* rl* H” 

1 H+: R++R”‘H* 

A * H* H** 
.LL(H@H)*~H*@II* 
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where, if f: X-+ Y is a morphism of R-modules, then f *: Y* --j X* is the 
map given by (f*( y*), x) = (‘J*,-f(x)>. It is straightforward (but tedious) 
to show that these new maps satisfy all the conditions for H* to be a Hopf 
algebra. 

For a proof of part (ii), see [5, Proposition 11. The last part of the proposi- 
tion is straightforward. Q.E.D. 

We see from the previous propositions that if H is finitely generated 
projective we can go over to H*-modules and study these instead of H- 
comodules. Note that, if I’ is a finite group, then R[I’]* is always a Hopf 
algebra although it may not be a group ring. When H is not finitely generated 
projective we can proceed as follows. 

PROPOSITION 2.4. Let M, N be right H-comodules with actions xM , xhi . 
Then the map 

0) 

gives M @ N a right H-comodule stTuctwe. 

Proof. Straightforward. 
Suppose that ill is finitely generated projective over R and xM: M + M @ H 

gives lid a right H-comodule structure. 
Define a map M* -+ Hom(M, H) by ?n* ++ f,ne where 

f,*(m) = (m* @I) x(m) = (5 (m”, mP> m(l). 

Identifying Hom(M, H) with H @ AZ* gives a map. 

PROPOSITION 2.5. xMMt gives a left H-comodule structure to M*. 

Proof. write x,&m*) = Ccrn*, m*(-1) @ nz*(O). Then 

c 
~*c-ly,,*(o,, nZ) =fm,*(n2) = 1 (m”, mco)) m(l). (i) 

(m*) wan) 
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NOW, 

QmEM, (5) +z*(-l))(m*(o), m> = E (1 m*‘(-ym*‘o’, m>) 
Cm*) 

=E (C cm*, m(O)) m(l) J by (i) above 
h, 

m(O) c(m”‘)) 
= Cm*, m> by 2.l(ii) 

:. m* =Cfrn*) E(wz*(-l)) m*(O) = (C 81) 0 xni*(m*). This is the counit law 
for M*. 

It remains to prove that (A @)I) 0 xrn* = (10 xm*) o xnL*. These are 
maps M*-+H@H@M*. Now H@H@M*gHom(M,H@H) so 
we work in Hom(M, H @ H). We are required to show that 

c A(nz*(-l’) @ m*(o) = c m”(-1) @ m*‘O”-” @ p??*(o)“’ . 

(rn’) CIIP) [C (mr(@)) 1 
Vm E M, c m*(-l) 

(rnf) 
0 [ JJ”, ) m”‘O’““<m*‘” (O), m)] 

= & 
m*(-l) 0 [z, <tn*(O), BZ(~)) dl)] by (i) 

= 2 <m*, m(O)> m(l) @ rncg) by(i) again and 2.1(i) 

Qm E M, C A(m*(-l))(m*(O), m} = A c m*(-l)(m*(0), m} 
(WC*) ( (w*) i 

= A 
( 

C (m*, m(O)> m(l) (i) again 
cm) ) 

= z (m*, m(O)) m(*) @ m@) Q.E.D. 

Suppose M, N are right H comodules and M is finitely generated projective 
over R. We construct the following map. 

Hom(M,N)&N@M*~N@H@H@M* 

IOIOT 
-----+N@H@M*@H=N@M*@H&H 

3 Hom(M, N) @ H. 
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PROPOSITION 2.6. This gives a right H-comodule structure to Hom(lW, N). 

Proof. It is easy to check that II” F-+ & ,F@) @ x(O) is a left-comodule 
structure iff x W &) x(O) @ S(x’-I’) is a right comodule structure. Now 
use Propositions 2.4 and 2.5. (See also [3, p. 3561.) Q.E.D. 

LEMMA 2.7. With the action described above 

x(f)(m) = ,m,,~~~~~,,,~(~~z’~‘)~~~ @f(m(o))(l) . S(m’l’) m E M, f E Hom(M, N). 

Proof. Let f-xi ni @ nz,* in the isomorphism CO: Hom(M, N) g 
N @ iv*. 

. . . f(m) = C IZi(mi*, m>. 

x(f) = i c nI”) @ m:(O) @ nL1) . S(lpzf(-l)). 
i ‘n*“?ni*) 

:. x(f)(m) = C 1 f~:~)(mF(~), m) @ nil) . S(m:(-I)) 
i ‘ni)‘mi*J 

= T cn~m, ni”‘(mi*, m(O)> @ n:” . S(&‘) by 2.5(i). 

= 1 c J(m’“‘)‘“’ @f(nz’“‘)” . S(m’l’). Q.E.D. 
'm' 'f'do')) 

PROPOSITION 2.8. If H is j%zitelJj generated projective over R, tlzen the 
above structwe is tlze sawze as that obtained by goi?zg over to H*-modules. 

Proof. M is an H*-module by h* - nz =&J m(O)(h*, tiz(r)> and 
similarly for N (see Proposition 2.3). 

So, regarding M and N as H*-modules, we have that Hom(M, N) is a 
left H*-module by 

(12” - f)(m) = 1 h*(l) ; [f(S(h*@)) ;E;‘ m)] (see Proposition 1.4(ii)) 
‘m*) 

zzz C h*(l) ; [f(m(“)(S(h*(e)), m(l)))] 
‘h”‘m’ 

Lemma 2.7 now gives the result. Q.E.D. 
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DEFINITION 2.9. d is a right H-comodule algebra if it is an R-algebra and 
a right H-comodule so that the structure maps 

1,: R---f A and ‘A: A i% A -7’ _fl 

are H-comodule maps (R is a right H-comodule by x: R % Hz R 13 H, 
and A @ A is a right H-comodule by 2.4). 

In symbols these conditions become ~~(1~) = lA (8 IH 

xA(a, * aB) = 1 ay) . a:’ @:I a:) . a!‘. 
‘U,“UZ’ 

If H is finitely generated projective then B is a right H-comodule algebra iff 
it is a left H*-module algebra. Also, if H = R[I’] then A is a (right) 
H-comodule algebra iff it is a r-graded R-algebra. 

PROPOSITION 2.10. Let H be commutative. If, d, B are right H-comodzlle 
algebras then so are A @ B and A”p, and A @ B and B @I A are isomorphic 
as H-comodale algebras. 

Proof. Straightforward. 

PROPOSITION 2.11. Let H be commutative. Let AT, N be right H-comodules 
which are fkiteb generated projective over R. T/wn End(M) is a right 
H-comodule algebra and the natural isomorphism 

End(M) @ End(N) z End(M 1% N) 

is an El-comodule map. 

Proof. We have that End(M) = Hom(M, A/r) is a right H-comodule by 
2.6. 

We show that the H-comodule action respects the algebra structure in 
End(M) 

x(Ihf)(m) = (,nl(I~l~O))l I(m(“))(o) @ I(m(0))(2i . S(nr(‘)) by 2.7 

= i) nil @ m’l’ . S(m’~‘) 
1 

= C n~(~)~(rn(~)) @ lH = m @ lN 
‘m) 

:. X(&f) = I&f 0 1, . This is the first condition. We are required to prove 
that 

(Z) (f . g)‘O’ 0 (f . g)‘l’ = (;g)f’“’ . g’0’ @f’l’ . g’l’. 

481/30/193-37 
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Now 

(;g,f’“’ . p’(m) @f(l) . g’l’ 

= (i)(m)~m(o)))fio)~go)(D)) 0 f ‘1’ . g(mcoY1) ’ SW1’) by 2.7 for g 

z 1 f(g(m'O')'O')'O' @f(g(m'"')'"')"' . S(g(m'O')'l') 

'rn'kl'rn'~)" 

. g(m’o’)‘“’ . S(mll’)‘f’g’r”‘O”‘O’” again by 2.7 for f 
= (m)(~(~~i(o))))f M~~(9Y0) Of k(~~(“)N(l) . ew 

using properties of S and F 

= Cf. A904 by 2.7 yet again. 

This completes the first part of the proposition. The second part is similar to 
the above, and uses that H is commutative. Q.E.D. 

PROPOSITION 2.12. Let H be commutative, A a right H-comodule algebra, 
jinitely generated projective over R. Then the standard map A @ Aop + End(A) 
is an H-comodule map. 

Proof. The map is F: A @ AOP + End(A) 

F aB,bOp(c) = a . c . b 

.-. x(~aobop)(~) = ,,,,aso’ b, (a . c(O) . b)(O) 0 (a ’ c(O) . b)(l) . S(c’l’) bY 2-7 

= c 
a’O’ . c’O’ . b(O) @ a’l’ . c(l) . &I’ . S(c’2’) 

‘a’(b)(c) since A is a comodule algebra. 

a(0’ . c . b(O) @ aU) . b(l) 

H commutative and use properties of S, E 

:= ‘.L F,a ~)bop,(o)(c) 0 (a 0 @‘P)(l). Q.E.D. 

Once again we can define the Brauer group, this time in the category of 
right H-comodule algebras which are finitely generated projective faithful 
Azumaya algebras over R. 

DEFINITION 2.13. We call this group the Brauer group of H-comodule 
algebras and denote it by BC(R, H). 

If H is finitely generated projective then of course BC(R, H) is isomorphic 
to BiW(R, H*) as defined in 1.10. 
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3. DIMODULES 

Throughout this section H is commutative and cocommutative. In general, 
H-module actions will be written on the left, and H-comodule action on the 
right. 

We use -Al: H @ M --f M, and xILI: M-t A< @ H for these actions 
respectively. 

DEFINITION 3.1. (i) An H-dimodule is an R-module Al which is also an 
H-module and an H-comodule so that the foIlowing diagram commutes. 

(ii) If M, N are H-dimodules andf E Hom(AJ, N), thenf is said to be 
an H-dimodule map if it is simultaneously an H-module map and an H-como- 
dule map. 

(iii) An H-dimodule aZgebra is an R-algebra which is an H-dimodule so 
that it is an H-module algebra and an H-comodule algebra. 

(iv) If A, B are H-dimodule algebras f E Hom(A, B), then f is an 
H-dimodule algebra map if it is an H-dimodule map and an algebra map. 

If H is finitely generated projective then we can take the H-comodule 
structure over to an H*-module structure. It is then easy to verify that M is 
an H-dimodule iff it is an H - H*-bimodule. 

If Al, N are H-dimodules then $10 N is an H-module by 1.4(i) and an 
H-comodule by 2.4. Similarly, if A, B are H-dimodule algebras then -4 @ B 
is an H-module algebra and an H-comodule algebra by 1.7 and 2.10, respec- 
tively. 

However, we can put a new multiplication on 3 @ B as follows. 

DEFINITION 3.2. A @ B with this multiplication is denoted by A # B 
and is called the smash product of ,4 and B. A # B has H-action inherited 
from the R-module A Q B. 
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In symbols 

(a, # bJ . (a, # b,) = c a1 . (by -y a,) # “:“’ * b, . 
(b,’ 

Note that the multiplication in A # B depends only on the comodule structure 
on B and the module structure on 4 (and the algebra structure on A and B). 

The smash product can be defined under more general circumstances. 

THEOREM 3.3. With the structure described above we have the following 
results. M @ N is au H-dimodule. A @ B and A # B are H-dimodule algebras 
and we have an isomorphism of H-dimodule algebras 

given by 

(4#B)#CsA#B(B#C), 

(a#@#cwa#(b#c). 

Proof. Straightforward (but tedious!). 

DEFINITION 3.4. Let A be an H-dimodule algebra Define A to be 
isomorphic to A as R-module with multiplication defined by 

a aA6 = C (a(l) - b) . a(O) 
(a’ 

and H-actions inherited from 8. 

THEOREM 3.5. 2 is a dimodule algebra. Furthermore, we have isomorphisms 
of H-dimodule algebras 

___-- 
d s /!f given by a F+ c a(l) - alo’ 

(a’ 

B#A~A#Bgivenbyb#?~~~(b(~‘-a)#b(O’. 
(b’ 

Proof. That 2 is a dimodule algebra is again straightforward. We prove 
the isomorphism. I__ 

a i--t J&j a(l) 2 a(O) has inverse d t+ Cta) S(O) - a(O), so it is an 
isomorphism of R-modules. 

It is easy to see that it respects the H-structures; we show that it is an 
algebra map. 
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__- -__ 
= (Zb) [(&) - a'O')'l' A (&l' _- p)] 'A (&) -1 a'w)'O' 

(l$lL~lo)) by definition of multiplication in A 

__-__ 
= c [(a"' _1 (&l'- &I')] .d (,a) __I awl) 

(a)(b) 

since A is a dimodule 

by definition of 2 again 

= C (&)6(r) - a(O)) . (&JP - 6(O)) since H is commutative and 
IdlO) cocommutative 
-___ 

= (& &)&l’ 2 alo)p’ = c &l’ 2 ap’. 
Cab) 

The other isomorphism is dealt with similarly. Q.E.D. 

By 1.7 and 2.10 ,!@p is also an H-dimodule algebra. 
Let n/I, N be finitely generated projective over R. If M, N are H-dimodules 

then Hom(M, N) is an H-module by 1.4(ii) and an H-comodule by 2.6. 
As would be expected we now have the following theorem. 

THEOREM 3.6. If AI, N are H-dimodules, then so is Hom(M, N). Further- 
more, End(M) is an H-dimodule algebra. 

Proof. We already have that Hom(M, N) is an H-module and an H- 
comodule, so all that remains is to show that the diagram in 3.1(i) is satisfied, 
i.e., we have to show that x(/z -f) = Ccfj h -f(O) Of(l) f~ Hom(M, N) 
~EH. Now 

X(h-f)(m) = (,,~)((h~)(mlO))) [(h - f )(m(“))](o) @ [(h - f)(m(“))] .(l) S(m(l)) 
by Lemma 2.7 

Z c (nd (h) (h’” ; [f(S(h’2’) ;;; m’“‘)])‘“’ 
(h(l)-N[f((S(h(q -,&pP], 
@ (h(l) ; [f(S(hce)) ; m(o))])(1) . S(m(l)) by 1.4(ii) 

= c h(l) ; [(f(S(h(“)) ; 7f~(O)))(~)] 
(m)(h) 

@ [f (S(W)) ; m(0))](1) . S+dl)) since N is a dimodule 
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zzz 
c 

(h)Ls(h(~4-&pz) 

Jl(1) r; [(f((S(W) 2 m)(O)))(O)] 

(f(wh’*‘)- J,fmP))) 

@ cf((S(JP’) ;;; my”‘)]‘” * 

zzz 

S((S(JP) ; m)(l)) 

since A4 is a dimodule 

41 0 f” by 2.7 again 

= g (Jl -f’@)(m) @f”‘. 

This is true VPZ E A& hence x(/z--f) = J&J h-f(O) @f(l) as required. 
That End(M) is a dimodule algebra now follows from 1.8 and 2.11. Q.E.D. 

Let Al be an H-dimodule; and for m E Al, Jz E H definef, byi, = h -1 m. 
Then fh E End(M). If f E End(M) then 1.4(ii) gives us that /z-f = 

c(n) fhW .f-fS(h(~J). Of c"ur%fh,fh, "f?&,h, andflH = h . BY 2.7 

X(fh)b) = (w~~~~~~o~~~fh~~z~o~~~o~ @fTt~(m(o)>(1) ’ ‘%+‘) 

= (m)(h&l) @ 
_\ m’O’)‘O’ @ (A - m’O’ e)(r) * S(m(r)) by definition fh 

-I ) 

=L? 
- m(O) @ #+l) . S(,#‘) as Al is a dimodule 

=h-m(FJl~ by properties of S, etc. 

=fhb> @ lIf 

.-. x(fh) =fh @ lH - 

The above notation is useful in the next proposition. 

PROPOSITION 3.7. Let Ad be an H-dimodule whicJa is Jinitely generated 
projective ovey R, and let B be an H-dimodule algebra. The map 

4: End(Ad) # B--t End(M) @ B 

given by +(f# b) =&,)f*jb 0 b(O) is an isomorphism of H-dimodule 
algebras. 

Proof. (i) we show that 4 is an algebra map. 
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= ,b;b.,fi .f,l(,, *f2 .fstbp),fbpbpi 0 by . b$” 
1 2 

= (b E. ) f, l &p) *f2 *f,,,) @ b:o;b’,o) 
1 2 

by properties of S, etc. 

= (F,fi *f,y 0 b:“)) . (;,fz *fbp 0 bpr) 
1 a 

= d(fi # h) * $(fi # 4) 

+(I# IB) = I @ iB trivially. 

(ii) $ is an H-module map. 

+(h 2 (f # 4) = 4 (C (h(l) -f > # W”) - 4) 
(h, 

= -zbj fh(~)ff&)~ ’ f@ @ hc3’ - b’*’ 

= (g&ffa(')fSCh ) c2) @ h(3) - b(O) since H is commutative 

= h-4(b(f#W. 

(iii) $ is an H-comodule map 

X('#f # b)) = X (; f ‘f@ @ b(O)) 

= ,&., f (‘) *fb(“) @ b(O) @f (I) . b(l) remember ,y(fh) = fh @ lH 

= ,z*, f(O) *fb(I) @ b(O) @f(l) . b(“) since H is commutative 

= (4 0 -rXx(f # w 

f @ b -&,f -fS(bW) # b(O) is easily seen to be an inverse to (6, hence + 
is an isomorphism of dimodule algebras. Q.E.D. 

COROLLARY 3.8. If n/r, N are H-dimodules which are jkitely gmemted 
pojective over R, then we have 

End(M) # End(N) G End(M @ N) as dimodule algebas. 
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Proof. End(M) # End(N) g End(M) @ End(N) by Proposition 3.7. 

- End(M @ N) = by 1.8 and 2.11. Q.E.D. 

In the above, the function f F+ f. fh can be regarded as an action of H on 
End(M). In order to prove that B # End(M) g B @End(M) we must 
define the dual action and derive some of its properties. 

Let M be an H-dimodule which is finitely generated projective over R, 
letfe End(M) and supposef++C, mi @ m,* in the isomorphism End(M) s 
M @ M*. Then we define a map 5: End(M) ---t H @ End(M) by 

S(f) = 1 1 qmy> @I ,mp @ nzi*). 
i (rrli) 

We write f(J) = &lf[-ll @f[OJ. 

LEMMA 3.9. (i) f(f)(m) =&w) S(f(ffz)(‘)) @f(m)“‘, m E fif- 
(ii) f(h 2 f) = Ccpl f[-11 @ h -fro1 h E H. 

Proof. (i) We have f(m) = xi nzi<nzi*, m> where f +-+zi m, 0 mi* as 
above 

<(f)(ez) = T ,z, S(mjl)) @ m~“)(nzi*, m) 

= & ww”) Of (m)(O). 

(ii) now follows fairly easily, using (i). Q.E.D. 

PROPOSITION 3.10. Let iW be an H-dimodule which is jGzitely generated 
projective over R, and let B be alz H-dimodule algebra. Then tlze nzap p: 
B # End(M) -+ B @ End(M) giverz by p(b #f) = &I (f C-11 - b) @f LOI is 
a?z isomorphism of H-dinzodule algebras. 

Proof. (i) We show that p is an algebra map. 

p[(b, # f,) . (bs #.&>I = P [(; %(f :” - b,) #f:“’ *fz] 
1 
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Acting on m E M this gives 

@f1(fi2(m)(0))(O) 

z c (p - bl > . (s(j,(~?p) - b,) @j-fi”l(f2(m)‘“‘) by 3.9(i) 
Ifll(f2W 

= ,IGf l (fi-‘] - b,) . (ii-‘) - bz) @f~l(f~l(m)) by 3.9(i) again. 
1 2 

This is p(b, #fi) . p(bs #fJ acting on m. Hence p(bI #jJ * p(b, #jJ = 
p[(b, #jJ . (6, #fJ]. p(lB # Ifir) acting on m is &l) (S(m(li) - lB) @ m(O’ = 
lB 0 m :. p(lB # InI) = In @ Ifi . 

(ii) p is a comodule map 

- 4 0 ($O’ 0 mi’)] > where 

= C (S(mj2)) - b(O)) @ (m(io) @ m:(O)) @ b%n~~S(m,f(-~!) 
(b)Wr+ini*) 

= (P 0 4 x(b ff.0 

(iii) p is an H-module map 

P(lZ - (6 #.I?) = P (; P1) - 4 # W”’ -0) 

z c h(l) - [f[-11 - b] @ ]@ -1fP1 
(h)[f] 

by 3.9($ 

ZYz 
h - P(b #f)- 

The map b @fwC~~l [S(f[-‘1) - b] #f[Ol is inverse to p, so it is an 
isomorphism of dimodule algebras. Q.E.D. 

COROLLARY 3.11. M rind B as above, then B # End(M) s End(M) # B 
as dimodule algebras. 
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Proof. B # End(M) s B @ End(M) by 3.10 

- End(M) @ B = by 1.7 and 2.10 

cx End(M) # B - by 3.7. Q.E.D. 

PROPOSITION 3.12. Let M be an H-dimodule which. is Jinitely generated 
projective over R. Then the map 

given by 

r: End(M) + End(M)Op 

r(f)(m) = 1 (m(l) -f)(nP)) 
(TZi 

is an isomorphism of dimodule algebras. 

Proof. Note 7 can be defined by going via the isomorphism End(M) z 
M @ M* to show that it is well defined. 

We show that T is an algebra map. 

f.i = c (f(l)-g)f’O’ 
(0 

by definition of - 

:. 7-(f -g)(m) = 1 (m(l) -1 [(f”’ - g) . f’O’])(m(O)) 
W(f) 

= (Z,) (nPf’1 --1 g) . (m(2) -f (qdo)) 

= (if, (m(l’f(l) - g)(nP 2 [f(“)(S(m(3)) 2 mco))]) 

zzz c {[m”‘(f (S(m@J) ;;; m~oyS(m(f))] - g} 
Cm) 

(f(S(m("))-&))) 

(m(3) 2 [f (S(m’4’) ; m’“‘)]‘“‘) by 2.7 

= c [f (S(nz@)) ; m(0))(1) - g] 

(fwh(Kn(~f)) 

(m(l) ;I; If(S(d2)) ;I; m(o))](o)) 

= T(g) ((Z) (m(l) -f w"9) 

:. T(J + 2) = r(g) . T(J) in End(M) 

:. 7(f. g> = 7(J) . T(g) in End(M>“o. 
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Obviously ~(1~~) = IAl . That T respect the H actions is fairly straightfonvard 
and is left to the reader. The inverse of 7 is given by 

T-‘(f”P)(m) = 1 (S(m(1)) --f)(m’O’) 
(rn) 

as is easily checked. Hence, T is an isomorphism of H-dimodule algebras. 
Q.E.D. 

PROPOSITION 3.13. Let n/r be an H-&nodule which is finite& generated 
projective oveY R. Then 

End(M E End(M*) as dimodule algebras. 

Proof. The map End(M + End(M*) is given byfop i-f*. 
It is well known that this gives an isomorphism of algebras and it 

is straightforward (but tedious) to check that this map preserves the 
H-structures. Q,E.D. 

4. THE BRAUER GROUP BD(R, N) 

We are now in a position to be able to define the concept of H-Azumaya. 
From now on, all R-modules (except H) will be finitely generated projective 

and faithful over R. 
Let A be an H-dimodule algebra. We define two maps 

F: A # -2 --f End(A) 

G: A # A -> End(A)Op 

by 

F(a # 6) = F,+J where F,&c) = 1 a . (b’l’ - c) . b(O) 
ib) 

G(a # b) = G;$, where Gdiib(c) = 1 (c(r) - a) . c(O) . b, 
Cc) 

PROPOSITION 4.1. F, G are H-dimodule algebra maps. 

Proof. We show this for F, and leave G to the reader. 

(a,#b,).(a,#h,) = 1 a;(b:l)-a,)#b:‘L’.bz 
(b,) 

= z a, . (by) - a,) # (b:) - b.J . by) 



584 F. W. LONG 

= & ) qby’ - a,)[(by - (bp - c)](bF) - by) b:“’ 
1 2 

since His commutative and cocommutative 

Fl,+i, = IA trivially, so F is an algebra map. 

Ftn2-(ag6),(c) = c (h”’ - U)(b’l’ - C)(h(‘) - b(O)) 

(h)(b) 

= 

(h)(b) 

= (Zb) (h(l) - u)(h”-‘b’l’S(lz’~‘) - c)(W - b(O)) 

= (gb)h’l’ - [a(6 (1) - (S(/P) - c)) b(O)] 

= ; h(1) - [F~,+&S(h’“’ - c)] 

= (h - Fa+ii)(c), 

so F is an H-module map. 
Finally 

x(FapE)(c) = C [Fa&(o))](o) @ [Fap&(o))](1) S(P) by 2.7 

w,,~)c(%, 

= c do) . (b (1) 2 c'O') . b(O) @ a'l' . ,+) . b'"' . @'2') 

(a)(b)(c) 

= ,:b, 

a’O’ . (b’“’ ..a~, c) . b(O) @ &) . b(l) 

so F is a comodule map. Q.E.D. 
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DEFINITION 4.2. If A is an H-dimodule algebra (which is finitely 
generated projective and faithful over R) such that F and G are isomorphisms, 
then A is said to be H-Azumaya. 

THEOREM 4.3. (i) If M is an H&nodule, then End(M) is H-Azumaya, 

(ii) A, B H-Asumaya * A # B is H-AzumaJla. 

(iii) A H-dxumaya D A is H-Azumaya. 

Proof. (i) End(A) # End(M) z End(M) @ End(M)oP by 3.7 and 3.12 

s End(End(M)) as algebra, since End(M) 
is Azumaya (ordinary), 

Now suppose that R is a field. Then End(M) # End(lt/l) is simple as algebra, 
and hence F: End(M) # End(M) * End(End(M)) must have zero kernel. 
Comparing dimensions gives that it is an isomorphism. The general case is 
now done by localization. Similar arguments apply to G. 

(ii) (a # B) # (,4 # B) g (A # B) # (B # A) by 3.5. 

=rZ#(B#B)#A by3.3 

- d # End(B) # 2 zzzzz as B is H-Azumaya 

z B # A # End(B) by 3.11 

s End(A) # End(B) as cl is H-Azumaya 

N End(A @ B) - by 3.8 

s End(A # B) since A # B = A @ B as 
H-dimodule. 

We now prove that F and G are isomorphisms as in (i). 

(A # B) # (a # B) s End(A # B)“P is similar. 

(iii) This can be seen from the symmetry in the definition of 
H-Azumaya. Q.E.D, 

DEFINITION 4.4. Let A, B be H-Azumaya. We say A and B are Brauzr 
equivalent as H-dimodule algebras (denoted A N B) if 3 H-dimodules M, N 
such that 

9 # End(M) g B # End(N) as H-dimodule algebras. 

THEOREM 4.5. - is an equivalence relation which respects the operation #. 
The quotient set is a group undo the multiplication induced by #, with inverse 
induced by -. 
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Proof. Straightforward, using 3.3, 3.8, 3.11, 3.12, and 3.13. 

DEFINITION 4.6. We denote this group by BD(R, H) and call it the 
Brauer group of dimodule algebras. 

Let T be a commutative ring with 1, and suppose that we have a ring 
homomorphism f: R -+ T. Then we can regard T as an R-module via f by 
r . t = f (r)t, Y E R, t E T. If M is an R-module define ill, = M OR T. This 
gives us a functor from R-modules to T-modules. Note that MT @r NT g 
(M OR A$. the maps being 

THEOREM 4.7. Let H be a Hopf Blgebra over R. Let M, N be H-dimodules, 
A, B H-dimodule algebra. Then 

(i) HT is a Hopf Algebra OWY T. 

(ii) &I, is an H,-dimodule. 

(iii) -4, is an H,-dimodule algebra. 

(iv) The isomorphism Ic$ &-NT g (M OR N)T is an isomovphism of 
H,-dimodules. 

(v) (AT #= BT) G (A # B)T is an isomorphism of H,-dimodule algebras, - 
as is the natural map (,$- g (AT). 

(vi) The natural isomorphism (End,(M)), g End&&.) is a map of 
H,-dimodule algebras. 

Proof. (i) The structure maps for HT are given by 

.: H,0,H,~HH0,H0,TH~~HORT3=HT, 

1: TgR&T=H&T=HT, 

A: HO, T+@’ --+-Ho,HO,T~H,O,HT, 

E: HgRT---+ EHoIR@RT= T, 

S: Hi&T=H&T. 

That these do define a Hopf algebra structure on H, is straightforward. 

(ii) A&. is an Hr-module by 



BRAUER GROUP OF DIWODULE ALGEBRAS 587 

and an Hr-comodule by 

Again we leave the details to the reader. 

(iii) and (iv) Straightforward. 

(v) The isomorphism Ar #r BT s (A # B)T is given by 

(u :B s) # (b @ t) w (a # 6) @ st, s,tcT,a~A,b~B. 

We check that this is an algebra map. 

The rest is equally straightforward. 

(vi) The map End(M) @ T--f End,(A/f,) is given by 

fB,-ft where ft(m @ t’) =f(~z) @ tf’. 

Again, it is easy to check the details. Q.E.D. 

COROLLARY 4.8. (i) A is H-Azumap ~8~ is Hr-Axu?rzaya. 

(ii) d, B Bvazlev equivalent as H-&no&de algebras +A, , B= aye BrazceFp 
equivalerzt as HTdimodub algebras. 

Proof. (i) F,: A, #r(&) - End,(A,) is given by 

Ar #r (Lqr) g dr #r (&G (A # x)r 3 (End@))r s End@,) 

as is easily checked. So, if F is an isomorphism then so is Fr . Similarly for G. 

(ii) This is similar. Q.E.D. 
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COROLLARY 4.9. The functor Ad++ MT indues a group lzon~omo~pha’sm 
BD(R, H) ---f BD(T, HT) by mapping the class of A to the class of -4, . 

We now exhibit some subgroups of BD(R, H). 
If M is an R-module then we can give M trivial H-module and comodule 

structures by 

If A is an H-module algebra or an H-comodule algebra, then giving A the 
appropriate trivial H structure makes A into an H-dimodule algebra. 

We then have ?i = AOP, A #B = A @B, etc. So, suppose il is an 
H-module algebra which is Azumaya. Then giving &iz the trivial comodule 
structure makes it an H-dimodule algebra and 

A # 2~ A 0 @P G End(d), 

A # -4 g AOP @ A s End(B)op, 

.*. A is H-Azumaya. It is therefore easy to see that we have a map: 

0: BM(R, H) -+ BD(R, H) of groups. 

THEOREM 4.10. 0 is an injection. 

Proof. Suppose that _4 represents a class in BM(R, H) which is in the 
kernel of 0, i.e., A (with the trivial comodule structure) is Brauer trivial in 
BD(R, H). 

:. 3 H-dimodules M, N such that 9 # End(M) E End(N) as H-dimodule 
algebras. 

Let M’ be isomorphic to M as H-module, but with trivial comodule 
structure, and let M’ be similarly related to N. Then, since -4 has trivial 
comodule structure, we have 

A # End(M’) s End(W) 

:. A is Brauer trivial in BM(R, H). Q.E.D. 

This theorem enables us to regard BM(R? H) as a subgroup of BD(R, H). 
Similarly, BC(R, H) can be embedded in BD(R, H). Furthermore, by 
giving trivial H-actions to R-algebras without any H-structure we can embed 
the ordinary Brauer group of R, B(R), is both BM(R, H) and BC(R, H). 
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Hence, we have the following arrangement of groups. 

BlW(R, H) 

6 Q 
BD(R, H) 

6 

BW, W 

5. AN EXAMPLE OF BD(R,H) 

In this section we consider the case when R is a field of characteristic p 
(we shall denote this by K instead of R), and H is the group algebra K[C,], 
where C, is the cyclic group of order p. Throughout this section y will be a 
fixed generator of C, . 

The case H = K[C,], K of characteristic not dividing z has been dealt 
with in [4]. There we were concerned only with the group Cn and did not 
mention the Hopf algebra K[C,]. However, we implicitly used the fact that 
the Hopf algebra dual to K[C,] was again K[C,J (under suitable conditions 
on K). (See Proposition 2.3(i) of this paper for a definition of the dual Hopf 
algebra.) 

It is necessary to investigate xv-hat happens to the dual Hopf algebra in 
our present situation. 

PROPOSITION 5.1. Let K be of charackstic p, H = K[C,]. Then H” 
has basis l*, d, d” ,..., dp-l where d satisjes dF = d, A(d) = 1* @ d + d @ 1”. 

Proof. K[C,] has basis 1, y,..., y*-l where y = y - 1 and so yJ = 0. 
(Remember, y is our fixed generator of C,). 

4Y) = 0, :. <1*, y”) = 0 vs > 0. 

(I* is the identity in H*, see Proposition 2.3(i).) 
Now, 

A(y)=A(Y-l)=y@y-l@l 

=YoY+Yo1+loY 

.-. A(y”) = A(y)” = (y Oy +y 0 1 + 1 0~)~ 

zzz to C) (Y oY)“-“(Y 0 1 + 1 0 Y)’ 

.&I/30/183-38 
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=g to CM (y @y)“-“(y 0 l)t-“(1 By)” 

(1) 

Note that the summation variables must satisfy 

O<Zl<t<S. (2) 

Define d E H* by (d, y8) = S,,, (Kronecker delta). Notice {d, 1) = 0 

:. (d’, I} = (d @ d, d(1)) = (d, l)(d, 1) = 0, 

and by induction, (d’, 1) = 0 Vr > 0. Now, 

<&+I, y”) = (d . dr, y”} = (d 0 d’, A(ys)) 

(d, yS+Q(dr, ys-t+u) bY (1). 

But, (d, y”-“) = 0 unless s - u = 1, i.e., u = s - 1. Then, (2) requires 
t=u=s-lort=s 

:. (d’+l, y”> = (, T 1) c 1 ;) l(d’, y”> + (1) (, s. 1) I@‘, y”-9 
= s((d’, y”) + (dr, y”-‘)) (s 3 1). (3) 

Induction now gives that 

(d’, y) = 1 vr > 0, 

{d’, y”> = 0 for p > s > r > 0, 

(d’,Jf)=r! #O forp>r>O. 

So, the d’, I’ = 0, l,..., p - I are linearly independent and must form a basis 
of H* over K. 

Now, <A(d), yS By”> = (d, y” * y”) = (d, ys+“) = 0 unless ysft = y. 

:. A(d) = l* @ d + d @ l* as required. 

(dp+l,yS) = s(dP, y” + y”-I) for s >, 1 by (3) 

= s<A(d)p, ys-l 0 (Y + 1)) 

=s(l*@d~+d”@l*,y~-l@(y+l)> asweareincharc.p 

= s(d”, y”-l> for s>l. 
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However, from our recursion formula (3) again. 

(dp+l, YS) = s(d*, yS> + s(d”, y-l j 

:. s(dP, y”) == 0 for s>l 

- (dp, ys) == 0 . . for p>s>l. 

We have already proved that (dp, y) = 1 and (dp, I> = 0 so finally dp = d. 
Q.E.D. 

Notice that A(d) = l* @ d + d @ 1 * gives that 

44 = ad(b) + d(a)b. 

So, in characteristic p, CD-graded algebras correspond to algebras on which 
acts a derivation d satisfying d” = d. 

PROPOSITION 5.2. Let K be algebraically closed of characteristic p, 
H = K[C,]. Then any H-Axumaya algebra over K is Ammaya. 

Proof. Let A be an H-Azumaya algebra over K. 
Then H is a group ring and we can apply 14, Theorem 19(i)]. So, A is 

semisimple, i.e., a direct sum of matrix rings with orthogonal central idem- 
potents e, ,..., e, . We have the derivation d on A corresponding to the 
grading. Let d(eJ = CF=, aijej . Then 

g aiiej = d(eJ = d(e,eJ = eid(e,) + d(eJ ei 

= aiiei + aiiei 

.*. a,j = 0, i + j and aLi = aii + ait 

.‘. a,, = 0 also. So, d(e,) = 0 Vi = l,..., Y. i.e., all the idempotents have 
grade 1. 

. . . F(lAs~i)(C) = ce, = eic = F(el+iA)(C) VCEA 

:. lA # Zj = ei # iA since F: A # 23 End(A) is an isomorphism 

:. ei = lA . 

Hence, there is only one matrix ring and A is Azumaya. Q.E.D. 
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PROPOSITION 5.3. Let K be algebraica& closed of chart. p. Then ;f A is an 
Azuwza~~a H-dimodule algebra (ova K) 3u, x E A such that u” = 1, , x9 = x, 
ya = uau-l Va E A and a is of grade yt o ,xa - ax = ta. Further, xu - ux = su 
for some s E F, C K. (IF, is the jield of p elemerzts.) 

Proof. y is an automorphism of the Azumaya algebra 8, and hence is 
inner 

:. 3u E ,4 such that ya = uau-l ‘da E A. 

Then up is central in A and since K is perfect we can choose u such that 
up zzz 1 

NowA A is an H-dimodule algebra and hence an H-comodule algebra. 
So, by Proposition 2.3(ii) A is an H*-module algebra. So, the derivation d of 
Proposition 5.1 acts on A. Because A is Azumaya, any derivation is inner. 
(See [I, Chapter III, Proposition 1.61.) 

:. 3x’ E A such that d(a) = x’a - ax’ Va E A. 

Notice that x’ and x’ f klA , k E K, give the same derivation. A straightfor- 
ward induction gives that 

d”(a) = zO (-1)’ (~) x’s-rax’r. 

So dp(a) = x’pa - a~ ‘1’ as we are in characteristic p. But, 

d” = d, :. xrma - axlP = x’a - ax’ Va E A 

:. (x’p - x’)a = a(x’p - x’) Vu E A 

:. x ‘TJ zzx x’ + k’l, ) k’ E K, since A is central. 

Hence, (x’ + kl,)P = xfp + kpl, = x’ + (k~ + k’) 1A . It is always possible 
to solve .zp - x + k’ = 0 in K since K is separably closed. Then, if k is a 
solution of this equation, we have 

so 
k” + k’ = k 

(x’ + kl,)” = x’ + kl, . 

Putting x == x’ + kl, we have xp I= x as required. Now y = y + 1 (same 
notation as in Proposition 5.1). 

:. ys = (y + 1)” = 1 + sy + ... +ys. 

.*. a E A has grade ys o d(a) = sa. 
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Since d is a dimodule algebra, the actions of y and d commute 

:. xuau-1 - uau-4 = u(xa - ax) 21-l Va E A 

.“ xuaz+ - uxau-l = uarlx - uaxu-l Va E A 

.‘. (u-?w - x)a = a(u-lxu - x) Va e A 

:. u-lxu - x = sl, ) s E K, since A is central 

:. NU - ux = su 

=‘. xpu - uxp = spu = su since 5P = :v 

:. sp = s 

:. s E F, . Q.E.D. 

As K is algebraically closed and Azumaya algebra is a matrix ring over K. 
So we can take A = End(V), and then we can give V an H-module structure 
by YZ, = u(v) and an H-comodule structure (i.e., a CD-grading) by demanding 
that ZI is homogeneous of grade yT G+ X(V) = r2r. These structures on Y induce 
the original structure on End(T/). Note that L7 will be an H-dimodule if and 
only if u and x commute, i.e., if and only ifs = 0. Proposition 5.3 allows us to 
associate to every Azumaya H-dimodule algebra an element s E IF, and we 
have just seen that the algebra is equal to the endomorphism ring of an 
H-dimodule (i.e., it is in the trivial class in BD(K, H)) if and only if s = 0. 
Suppose now that our A is H-Azumaya. Then the map F: A # A+ End(A) 
is an isomorphism. 

We show that this implies s # 1. 
Assume, in order to get a contradiction, that s = 1. Then u has grade 

y (notation as in Proposition 5.3). So 

Fh,+da) = (Y4 . u 

= uau-l ’ u 

= ua 

= Fcusad4 VaEA. 

But F is an isomorphism, 

:. iA # ii = tl# i, . 
So, we must have, zd = Kl, for some K E K. This is impossible since u has 
grade y + 1. We conclude that 1 - s is not zero in F, , as required. 

LEMMA 5.4. If A is as abme and B is aq H-dimodule algebra, therz 
A # B z A @ B as H-module algebra. 

Note. This isomorphism does not preserve the comodule structure. 
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Proof. The isomorphism is given by the map 

0: a # b F+ a * ur @ b where b is homogeneous of grade yV, 

and u is the element described in Proposition 5.3. 

B is obviously an isomorphism of K-spaces, with inverse a @ b I-+ a * u-’ # 6, 
where b is homogeneous of grade yr. We show that 0 is multiplicative. 

e((a, # bd - (aa # bd) = eM%) # b&4 bi of grade yTf 

= e(aldla2u~T1 # b,b,) 

= ald1a2u+%4 h+~) @ b,b, 

= aruT1azzJ2 @I b,b, 

= (aId @ bl)(a4ur2 @ 6,) 

= e(a, # 6,) @(a, # 4. 

Obviously B(1, # la) = 1, @ la. Also 

ep(a # b)) = tipa # yb) = O(uau-l # ‘b) 

z uazrW @ Yb (remember, yb has the same grade as b) 

= u(auT)rl @ yb 

= y(e(a # 6)). 

So 0 preserves the H-action also. Q.E.D. 

Now let A and B be Azumaya H-dimodule algebras. Let A have u with 
grade ys as above and let B have zi with grade yT. 

Y(a @ b) = ya @ Yb = uau-l @ vbv-l 

= (u @ v)(a @I b)(u @ v)-1. 

So the element corresponding to u in A @ B is u @ v. But -4 @ B E A # B 
as H-module algebras so the corresponding element in A # B is 

e-yu @ v) = u . u-r # v 
= *l--r 

# v- 

(see Lemma 5.4) 

This has grade y~(l--~)+r = yS+r-ST. If A has u of grade ys then we say A is of 
type 1 - s. We have seen that “type” is a map from the set of H-Azumaya 
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algebras which are also Azumaya into the nonzero elements of 5, . Let B be 
of type s, B of type r, then by our argument above -4 # B is of type 

1 - ((1 - S) + (1 -r) - (1 - S)(l - Y)) = .W. 

Furthermore, B is Brauer trivial in BD(R, N) if and only if iz is of type 1. 
Hence, “type” lifts to a well defined injective group homomorphism from 
BD(K, H) into U(ff,) (the nonzero elements of the field E,). We show that 
“type” is, in fact, onto by constructing Azumaya algebras of the appropriate 

type. 

CONSTRUCTION 5.5. Letf(2) = Zp - Z and let V = K[Z]/(f(Z)). Then 
V is a p-dimensional K-algebra. Denote the image of Z in V by x, then 
S’ = z. Let x be the endomorphism of V given by x: z’ ++ zq so xP = x. 
Define an algebra endomorphism of K[Z] by U: Z M 2 - S, s E ff, . Then 

f&(Z)) =f(Z-s)=(Z-s)~---z+s 

=ZP-z since s E [F, 

= f(Z)- 

So, ulinduces an algebra endomorphism, also denoted by U, on V. 

U(X) = x - s 

(xu - ux)(v) = x . u(u) - u(m) 

= x * u(v) - u(z) * UCU) 

= m(v). 

since u is an algebra map 

:. xu - ux = su. 

Hence, A = End(V) if of type 1 - s. It remains to prove that A is 
H-Azumaya, and for this we need the following lemma. 

LEMMA 5.6. Let End(V) be an H-dimodule algebra of type 1 - s. Then 
there is an algebra map 7: End(V) -+ End( V)oP given by ~-(f)(v) = <y’f)(v) 
where v is homogeneous of grade y’. If I - s is nonzero in F, then 7 is an 
isomorphism. 

Proof. Obviously ~(1) = I (I is the identity map on V)- 

f.pqQr).f where f is of grade yt, 

:. -itf. a(4 = y’wrglf x4 (v of grade yr) 

= (y”+tg)yf)(v) 

= m ~6m) since ('jc j(v) is of grade y’f$. 
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So 7 is an algebra map: End(V) --j End( V)Op. Now, ZI is of grade yT * X(U) = 
TV. (See Proposition 5.3.) 

:. m(v) = m(v) + m(v) = (Y + s) u(v) 

:. YV = U(V) is of grade Y~+~. 

Suppose 1 - s is nonzero in F, with inverse t. Then (5, defined by a(fop)(v) = 
PM*“f)(v) where v is of grade y’, is the inverse of T. 

dfop>(v> = (“(“fop>)(v) 

= “[(Uf”P)(“-‘v)] by definition of H-action on End(V) 

= q-(y+~) if)(Yv)] since +v is of grade yrdst 

= “[(‘-‘f)(‘-‘v)] 

= f (4. 

Similarly f7r( f )(v) = f(v). Q.E.D. 

PROPOSITION 5.7, If End(V) is an H-dimodule algebra of type t # 0, then 
End(V) is H-Axumuya. 

Proof. We have to show that 

F: End(V) # End(V) + End(End( V)) 
and 

G: End(V) # End(V) + End(End( V)) 

are isomorphisms. Now, 

End(V) # End(V) s End(V) # End( Vpp by Lemma 5.6 

- End(V) @ End( VpP zzz by Lemma 5.4 

- End(End( V)) zzzz well known. 

So, as algebra, End(V) # End(V) is isomorphic to End(End( V)). Hence, it is 
simple, so F must be injective (F(I # -r> = I, so F # 0). Comparing dimen- 
sions gives that F is an isomorphism. Similarly one proves that G is an 
isomorphism. Q.E.D. 

So, we have constructed H-Azumaya algebras of the appropriate type and 
we can conclude with the following theorem. 



BRAUER GROUP OF DIMODULE ALGEBRAS 59-l 

THEOREM 5.8. Let K be algebraically closed of characteristic p: and bet 
H = K[C,]. Then BD(K, H) E C,-, . 

PPOOf. “Type” is a group homomorphism from BD(K, H) onto the group 
of nonzero elements of F, , which is isomorphic to the cyclic group of order 
p- 1. Q.E.D. 

We now describe BD(K, H) when K is not algebraicaliy closed. Proposition 
5.1 still holds, but Proposition 5.3 needs some modification. Let z be the 
algebraic closure of K, then by Corollary 4.9 we have a group homomorphism 

6: BD(K, H) + BD(E, HK). 

Of course, HE = K[C,] so we know that BD(R, HE) s C,-, . Also, the 
algebras constructed in 5.5 did not require their base field to be algebraically 
cIosed. Hence they can be constructed over K and so 0 above is onto. Let its 
kernel be N. Then we have a short exact sequence 

1 -+ M + BD(K, H) ---f BD(K, Hz) + 1. 

Now the ordinary Brauer group of K, B(K), can be represented as a subgroup 
of BD(K, H) (see the end of Section 4). Any class of algebras in BD(K, H) 
which is in fact in B(K) can be represented by an algebra A with trivial 
H-module and H-comodule structures. This implies that for any H-dimodule 
algebra B 

A#B=A@BrB@AzB#A as H-dimodule algebras. 

So, B(K) is a normal subgroup of BD(K, H). B(K) is trivial, and me get the 
following diagram of groups. 

1 1 1 

1 1 
B(K) ---------) N 

,I 
1 1 $ 

1 -----f B(K) - BD(K, H) -‘+ BD(K, H)/‘B(K) - 1 

1 le 1 
1 ---+ BD(R, HE) ----+ BD(K, Hz,,) ----+ 1 
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Here d, is the natural surjection BD(K, H) -+ BD(K, H)/B(K), and X is the 
kernel of the induced map 

BD(K, H)/B(K) --f BD(E, Hz). 

It is easy to see from the above diagram that we have the exact sequence 

1 -+B(K)+N+X+ 1. 

We will find the group X. Let A be an H-dimodule algebra (over K) which is 
H-Azumaya and such that$((A)) E X. (A) denotes the class of A in BD(K, H). 
Let B be isomorphic to AoP as K-aIgebra and have trivial H-module and 
comodule structure. Then 

A#BzA@BBEnd(A) as K-algebras. 

A #B is an H-dimodule algebra so we can use this isomorphism to give an 
H-dimodule structure to End(A). (This will not, in general, be the one 
induced by A.) 

Now A is H-Azumaya so AE is HK-Azumaya (Corollary 4.8(i)) and hence 
AZ is Azumaya as K-algebra (Proposition 5.2). Thus A is Azumaya as 
K-algebra (see [l, Chapter III, Corollary 2.91). Furthermore, (B) E B(K) 
since B must be Azumaya and has trivial H-structure. 

:. (A) . (B) = (End(A)), 

:. +((A>> = WnWN since 4((B)) = 1. 

Further, if +((A)) E X th en 8((A)) = 1 also, by our definition of X. So, 
when studying X we can restrict our attention to H-dimodule algebras which 
are endomorphism rings over K and which become Brauer trivial in 
BD(K, Hz). 

We now try to emulate Proposition 5.3. Let A = End(V) be an H-dimodule 
algebra which is H-Azumaya (and hence Azumaya) and which becomes 
Brauer trivial in BD(R, Jr,). Since A is Azumaya and y is an automorphism 
of A, 

324 E A s.t. ya = uau-l Vu E A. 

However, we can no longer ensure that up = IA . Instead we must be satisfied 
with UP = li . lA where k E K*. Of course, u and K,u (12, E K*) give the same 
inner automorphism and (k,~)p = &%I, . Hence, the automorphism y can 
be associated with a class in K*/(K*)p. Now, as in Proposition 5.3, the 
derivation d acts on A and must be inner. So 3x E A s.t. 

d(a)=xa-ax VaaA. 
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However, again we may no longer be able to solve the necessary equation 
to ensure that XP = x. Instead we have only that SD = x + II, I I E K. Now 
x and x + ZllA give rise to the same inner derivation and (x + Z1lA)p = 
(x + Z,lA) + (II” - Z1 + E) 1, . So the derivation d can be associated with a 
class in the group K/#(K), where fi(Z) = 1~ - Z. 

On tensoring up with Z?, u and x are preserved except that u may become 
ku, k E i?+ and x may become x + Zl,* , Z E R. Now A becomes Brauer 
trivial in BD(K, Hz) and so u and x must commute over %.?. This implies 
that zc and x must commute over I<, i.e., u has grade 1 and y acts trivially on 3~. 
(Recall that a has grade yr e ~a - ax = ~a.) We have associated with an 
algebra whose class has its image under 4 in X an element of the group 
K*/(K*)p x K/b(K). We show in fact that 

x s K*/(K*)p x K/&K) as groups. 

If a@’ = 1, and x9 = .?c then we can define an H-module structure on V by 
YV = U(V) and an H-comodule structure by demanding that v has grade yr 
if and only if T(V) = TV. These structures on I’ induce the original structures 
on End(V) as is easily checked and make V into an H-dimodule. Conversely, 
if V is an H-dimodule then we have u and x defined in this way and they 
satisfy up = lA , xp = x, respectively. Thus, k = 1 and I = 0 if and only if 
A is Brauer trivial in BD(K, H). 

Now let d and B be H-Azumaya algebras such that +((A)) E- X, $((B)) E X. 
Let A have uA , “\1;2 as above satisfying uA?’ = k,l, , xAp = xA + ZAIA and 
corresponding to this let B have U, , x, satisfying .u~P = k,l, ) xBp = 
xg + ZBIB . Let a E A, b E B, then 

“(U # b) = ya # rb = 21@.l~1 # UBbzl;;I = (MA # Zlg)(U # b)(Ud # ZQJ-l 

since u, has grade 1 and obviously yzlA = uA . So 

We next prove that xAsB = 1, # xg + GrA # lB . Remember, x, is defined 
by the property that a has grade yT e sAa - ax, = pa. Suppose a E A has 
grade yr, b E B has grade y*. Then 

(1~ # xB + XA # l~)(a # 4 - (a # W, # % f XA # 1~) 

= a # xgb + xAa # b - a # bxB - ax, # b 

since xs has grade 1 and yxA = xA 

= a # (xBb - bxg) + (xAu - uxA) # b = a # sb + ra # 6 

= (s + r>(a # b) 



600 F. W. LONG 

and, of course, n # b has grade ysfT. So xAss = 1, # .xB + xA # 1s as 
required 

:. &+B = 1A # q?” + XAB # 1B = IA # (XB + ZBlB) + (%A + Z/JAI # 1B 

= lA#~B+~A#lB+(~E+~A)lA#1B 

= 3L’A#B + (ZB + IA) 1 A#B . 

:. z&B = IA f zE . 

Thus by associating with the algebra A the elements kA and ZA we get a well 
defined injective group homomorphism 

x --+ K”/(K”)P x K/)q‘c). 

(K*[(K*)p is a multiplicative group, K/+(K) is additive.) It remains to 
construct algebras satisfying the required properties to prove that this map 
is onto. 

Let V be a pz dimensional K-space with basic v~,~ i,i = l,...,p. Define u 
and x in A = End(V) by 

VT,, + h,, s = 1, 

4VT,J = 

1 

%,s+1 s=2 ,*‘-, P - 2, 
%,l s=p-1, 

\ ‘z.‘r,z s =p. 

It is straightforward to check that u and x satisfy 

up = kl A, x9 = x -j- II, .w. = ux. 

For p = 2, we define x by 

4VT,l) = VT,1 + b,, 

instead of the formulae given above. 

This gives us an H-dimodule algebra which is H-Azumaya because it is 
certainly H-Azumaya when tensored up with R (in fact it becomes Brauer 
trivial in BD(&?, HE)) and if either of the maps F, G had a kernel over K 
then this would be preserved over &?. So we have Xr K*/(K*)p x K/#(K). 
We sum up with the following theorem. 
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THEOREM 5.9. Let K be a jield of characteristic p, K its algebraic closure 
and let H = K[C,]. Thez we have the folloruing exact sequences 

1 --f N-t BD(K, H) ---f ED@, HE) + 1 

1 + B(K) + N + K*/(K*p x K/#(K) + 1. 
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