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Marker assisted selection (MAS) canbeused to improve the efficiency of genetic selectionof traits for
which phenotypicmeasurements are expensive or cannot be obtained on selection candidates, such
as carcass traits. Marker information required forMASmay be acquired through the identification of
QTLs. Generally, univariatemodels areused forQTLdetection, althoughmultiple-traitmodels (MTM)
may enhance QTL detection and breeding value estimation. In MTM, however, the number of
parameters can be large and, if traits are highly correlated, such as carcass traits, estimates of (co)
variance matrices may be close to singular. Because of this, dimension reduction techniques such as
Factor Analysis (FA)may be useful. The aim of our project is to evaluate the use of FA for structuring
(co)variancematrices in thecontextofBayesianmodels forQTLdetection in crossesbetweenoutbred
populations. In ourmethod,QTL effects arepostulated at the level of common factors (CF) rather than
the original traits, using a three-step approach. In a first step, aMTM is fitted to arrive at estimates of
systematic effects and prediction of breeding values (procedure A) and only systematic effect
(procedure B). These estimates/predictions are then used to generate an adjusted phenotype that is
further analyzedwith a Bayesian FAmodel. This step yields estimates of factor scores for each animal
and CF. In the last step, the scores relative to each CF are analyzed independently using probabilities
for the line of origin combination. To illustrate themethodology, data on 416 F2pigs (Brazilian PiauX
commercial)with ten traits (5 fat-related, 2 loinmeasurements, and 3 carcass classification systems)
were analyzed. For each of the three resulting CFs, an independent QTL scan was performed on
chromosome 7 considering threemodels: I) null (i.e., absence of QTL); II) additive effect QTL, and III)
additive and dominance effect QTL. The posterior probability (PP) of eachmodelwas calculated from
Bayes factor for each considered procedures (A and B). A Three-step Bayesian factor analysis allowed
us to calculate the probability of QTLs that simultaneously affect a group of carcass traits for each
position of SSC 7. The removal of systematic effects in the first step of the evaluation (procedure B)
allowed that the factor analysis, which was performed in the second step, identify three distinct
factors that explained 85% of the total traits variation. For the common factor that represented fat-
related traits (bacon depth, midline lower backfat thickness, higher backfat thickness on the
shoulder; midline backfat thickness after the last rib; midline backfat thickness on the last lumbar
vertebrae) the third step of the analysis showed that the highest probability of an additive QTL effect
at the 65 cM position was 86%.
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1. Introduction

Currently, to meet the growing and increasingly demanding
consumer market, characterized by higher meat yield and lower
external fat deposition, carcass characteristics are very important
for the development of pig farming. Thus, genetic improvements
that are carried over successive generations are an indispensable
tool for obtaining animals with such desirable characteristics.

A considerable reduction of the number of generations that
are needed to produce animals with the required carcass
standard canbeobtained through theassociation of phenotypic,
given by carcass quality measures, and genotypic information,
being the latter characterized by genetic markers that can be
linked to loci that affect quantitative traits (QTL's). Thus, several
studies have been developed to identify QTLs that are related to
carcass traits in pigs (Demeure et al., 2005; Milan et al., 2002;
Wang et al., 1998; Yue et al., 2003).

Recent genome scanning revealed that there are genes
located within quantitative trait locus (QTL) regions for fat
related traits, including regional backfat thickness and intra-
muscular fat content (Szydlowski et al., 2011), but other traits
like the quality of the cuts and carcass classification systems
also can be important. In view of this larger number of traits,
multivariate models to detect QTLs can be useful, however, the
direct application of these models can present problems, such
confused interpretations of the results and singularity of the
(co)variance matrices, which are due to the strong correlations
between some traits.

A practicalmethod for solving these problems is to transform
the original variables so that they become uncorrelated, i.e., the
use of techniques based in dimension data reduction, such as
principal component (PCA) and factor analysis (FA). Under these
approaches, is possible to detect QTLs associated whit latent
variables, components or factors, which represent several traits
simultaneously.

Stearns et al. (2005) used the PCA technique to analyze
QTLs for growth, carcass, and meat quality traits in pigs from
the F2 generation of a Berkshire×Duroc. The authors reported
the advantages of working with a small number of parameters
andofusingunivariatemethods todetectQTLs for theorthogonal
components. Although the PCA technique is relevant, it has some
disadvantages; it is restricted to the condition of orthogonality
between, it is susceptible to changes in the scales and lacks an
adequate criterion to determine when a sufficient proportion of
the total variation is explained by the retained components
(Johnson and Wichern, 2007).

FA is a more appropriate technique in which each variable
response is represented by a linear function of a small number
of non-observable common factors and a simple latent
specific variable. The coefficients of the common factors are
not restricted to the condition of orthogonality, which confers
generality but requires normality of the data and determina-
tion of the number of factors a priori (Johnson and Wichern,
2007). These last two conditions of FA can be easily dismantled
under the Bayesian approach, which has been highly effective
in the area of animal breeding during the last decade. Bayesian
FA was employed successfully by de los Campos and Gianola
(2007) in assessments of themulti-characteristic mixedmodel
basedonpedigree information (Henderson, 1984).However, to
date, there have been no reports concerning the application of
this Bayesian technique in multivariate analysis of QTLs.
2. Objectives

The aim of the present paper is to evaluate the use of FA
for structuring (co)variance matrices in the context of
Bayesian models for QTL detection in crosses between
outbred F2 population in pigs Brazilian Piau X commercial.
In the proposed method, QTL effects are postulated at the
level of common factors (CF) rather than the original traits,
using a three-step Bayesian approach.

3. Materials and methods

3.1. Population assessment, phenotypic data and genotypic
information

The F2 pig population was generated by crossing two
native Brazilian Piau boars with 18 commercial sows (Land-
race×Large White×Pietran) selected for growth rate and
backfat thickness. The F1 generation consisted of 106 sows
and 134 boars (Band et al., 2005). Twelve boars from different
litters were randomly selected from the 134 F1 boars and
mated by natural breeding with 54 F1 sows to produce the F2
generation. The F2 generation consisted of approximately 840
offspring divided into five batches according to the season in
which they were born.

After slaughter, around 65 kg of living weight (64.71±
0.24), the following carcass traitswere evaluated in the animals
of F2 generation: bacon depth (BCD), midline lower backfat
thickness (L), higher backfat thickness on the shoulder (SBT);
midline backfat thickness after the last rib (LR);midline backfat
thickness on the last lumbar vertebrae (LL), loin eye area (LEA),
loin depth (LD), Brazilian (MBCC) and American (MLC) carcass
classification method, and carcass yield (CY).

Details of the DNA extraction procedures used have been
describedby Faria et al. (2006). Sixprimerpairs formicrosatellite
markers distributed on SSC7 (S0025, S0064, S0102, SW252,
SW632, and S0212) were used. Amplifications were done in an
MJ Research PTC 100-96® thermocycler, according to standard
laboratory procedures. The amplified fragments were scored
automatically byGenScan software installed in anABI PRISM310
sequencer (Applied Biosystems). Annotation and genotype
checking were done manually by two independent and
previously trained technicians. The CRIMAP software (Lander
and Green, 1987) was used to construct linkage maps of the
related markers, which were distributed, respectively, at
positions 0, 31, 65, 96, 108 and 136 cM.

3.3. Bayesian factor analysis

Briefly, FA is a statistical technique that is used to reduce
the size of a multivariate data set. This is accomplished by the
identification of common factors that originate from (co)
variance measurements among the considered variables.
According to Meyer (2009), y is a vector of q random
variables with a (co)variance matrix that is given by Σ, and
therefore, the following model can be considered:

y = μ + Гc + s; ð1Þ

where μ is a vector of the average; Г is a matrix called
“factorial loadings”with dimensions of q x m such that m≤q;



212 F.F. Silva et al. / Livestock Science 142 (2011) 210–215
c is a vector of “common factors” with dimensions of m×1;
and s is a vector of the residuals, which are also called
“specific factors”, with dimensions of q×1. In the simplest
case involving FA, the columns (γi) of Г, which are given by
the square root of the eigenvectors of Σ, which are considered
orthogonal. That is, γi′γj=0 for i≠ j, such that the elements
of c are not correlated. Furthermore, the elements of c are
assumed to present a unit variance, V(c)=I, and independent
of s. For this last vector, the variance of the ith element is
given by Ψi.

According to the presented theory, Σ can be decomposed
as Σ=Г′Г+Ψ, where Ψ=diag(Ψi). In this representation,
all of the (co)variances between the variables in y appear to
be explained by some common factors (c). The specific
factors (s) describe the additional variance that is restricted
to each of these variables. In general, for m common factors,
the q(q+1)/2 elements of Σ can be represented by q+mq−
m(m−1) /2 parameters obtained from the FA. Thus, for
small values of m, the FA provides a parsimonious modeling
of Σ.

The parameters of the model presented in (1) can be
estimated using different methods, and the Bayesian infer-
ence was utilized herein. For this purpose, we developed two
different procedures in which three distinct steps were
considered. For the procedure A, in the first step a Bayesian
analysis of a multivariate mixed model was performed with
the goal of removing polygenic and environmental effects,
such that the scores resulting of the Bayesian factors analysis
in the second step depend solely on the QTL effects. Thus, in
the third step, the estimated factor scores from the second
step were considered as dependent variables in a Bayesian
linear regression to estimate the QTL effects. For the
procedure B, in the first step the multivariate model
contemplated only environmental effects, thus in the second
step the resulting scores depended on the QTL and polygenic
effects, which were embedded in the last step model. In
summary, the procedures A and B comparisons are related to
hypothesis that the estimation of QTL effects simultaneously
with polygenic effects (procedure B) can produce most
significant results, because a relevant percentage of variance
explained by the QTL may be removed by the polygenic
effects in the first step of the procedure A.

In the first step of procedure A, the following multivariate
mixed model was adopted:

y = Xβ + Zu + e; ð2Þ

where y=(y1,y2,…,yp)' is the vector for the observation of p
variables, β andu are the vectors for systematic effects (sex and
batch) and polygenic effects, respectively, and e is a vector for
random errors.

Using the Bayesian approach, the following distribution of
the sample data was assumed: y|β,u,G,R~N(Xβ+Zu, I⊗R);
and non-informative priors (flat) was attributed for β and for
the (co)variance components (G and R). For u the adopted
distribution was: u|A,G~N(0,A⊗G). After determining esti-
mates for the parameters of themodel in question,we obtained
w = ê = y� Xβ̂ + Zû

� �
. The free softwareGIBBSF90 (Misztal

et al., 2002) was used for this analysis, and a total of 150,000
iterations, with bur-in of 50,000 and thin of 2 iterations were
considered. For the procedure B, themodel (2) did not consider
the polygenic effect term.

In the next step, the adjusted traits of each animal (wi)
were reduced to common factors (ci) in accordance with the
following factor model:

wi = Γci + si ; ði ¼ 1;2;…;nÞ; ð3Þ

where Г=(λjk) is a matrix of the factorial loadings p×q
(j=1,2,…, p and k=1,2,…, q); ci=(c1i, …, cqi)′ is the vector
of dimension q×1 for common factors determined for animal
i; si=(s1i,…, spi) ′ is the vector of dimension p×1 for specific
factors determined for animal i.

Given themodel in question, the following distribution for

the sample data was assumed: ci
si

� �
eiidN 0

0

� �
;

Iq 0
0 Ψ

� �� �
,

where Ψ=diag(ψj). Therefore, wieiidN 0;∑ð Þ; with matrix Σ
given by ∑=ΓΓ'+Ψ. The prior distributions for the param-
eters of the factorial model were as follows: λjk~N(μλjk

,σλjk

2),
ci~N(0, Iq),e ψj~ IG(a,b). To implement this Bayesian analysis
the MCMCfactanal function available in the MCMCpack of the
free R software (R Development Core Team, 2010) was used
considering the same number of iteration of the previous step.
The assumed values for the hyperparameters (prior distribu-
tion parameters) were given by the MCMCfactanal function
default.

In the third and final step of the analysis, the estimated
factor score for each animal (ĉi), which was given by the
posterior mean of ci, was used as the phenotypic character-
istics in a Bayesian linear regression model as proposed by
Haley et al. (1994).

For theprocedure A, in thismodel the independent variables
are the coefficients a (additive effect) and d (dominance effect),
which are related to the probabilities for the line of origin
combination. These coefficients are expressed as follows:
a=P(QQ)−P(qq) and d=P(Qq), where P(QQ), P(qq), and
P(Qq) are the probabilities of the alleles being commercial
homozygous, Piau homozygous, and heterozygous, respec-
tively. The regression model in question is given by:

ĉ = Qα + ε;

where ĉ = ĉ
0

1; ĉ
0

2;…; ĉ
0

n

� �0

is the vector for the estimated

factor scores of n individuals, Q is the incidence matrix of
the effects represented by α, and ε is the vector of random
errors. Under this approach, three different models were
considered, and each model had its own particular inci-
dence matrix.

Model I is the null model (presence of the intercept only),
model II includes additive QTL effects, and model III includes
additive and dominance QTL effects. The incidence matrices
for each of these models were, respectively:

QI =
1
⋮
1

2
4

3
5; QII =

1
⋮

a1
⋮

1 an

2
4

3
5; QIII =

1 a1 d1
⋮ ⋮ ⋮
1 an dn

2
4

3
5;

where the values for coefficients ai and di of each animal i were
obtained fromQxpak software (Pérez-Enciso andMisztal, 2004).
To perform the Bayesian inference, the following distributions
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were adopted: ĉ jα;σ2eN Qα;σ2In
� �

, α~N(μα,σα
2I3) and

σ 2~ IG(c,d). For this purpose, we used theMCMCreg function
available in theMCMCpack of the R software (R Development
Core Team, 2010). The iterations number, bur-in and thin
were the same of the first and second step. In order to
compare the models I, II, and III and thus infer about the
presence of QTLs in each chromosome 7 position (see Fig. 1),
we calculated the model posterior probability using the
PostProbMod function available in the MCMCpack of the R
software (R Development Core Team, 2010). This probability
is provided by the following expression:

p Mt j ĉ
� �

=
p ĉ jMt

� �
p Mtð Þ

∑
III

t= I
p ĉ jMt

� �
p Mtð Þ

; t ¼ I; III; III;

where p f̂ jMt

� �
is the marginal likelihood calculated by

Newton and Raftery (1994) method, and p(Mt)is the model
prior probability, assumed as the same for all models.

For the procedure B, in the last step the following model
was considered:

ĉ = Zu + Qα + ε;

where u is the polygenic effect with incidence matrix given
by Z. The following distributions were used in the Bayesian
analysis of this model: ĉ ju;σ 2

u;α;σ
2eN Zu + Qα;σ2In

� �
,

u|σu
2~N(0,Aσu

2),α~N(μα,σα
2I3), σ2~ IG(c,d) and σu

2~ IG(e, f). In
order to fit the model in question, the package MCMCglmm
(with the optionpedigree) of the R softwarewasused, being the
iterations number, bur-in and thin the sameas those previously
presented. Under this procedure B, in order to compare the
models I, II, and III, that now contain the polygenic effect, the
model posterior probabilities were calculated from DIC
(Spiegelhalter et al., 2002) using the approximation presented
by Wilberg and Bence (2008), which is given by:

p Mt j ĉ
� �

=
exp −Δt=2

� �
∑
III

t= I
exp −Δt=2

� � ; t ¼ I; III; III;

where: p Mt jĉ
� �

is the posterior probability of model t, Δt is

the DIC difference between model t and the best model (for
the best model, that present smaller DIC, this difference is
equals zero).

These probability values were obtained for each position
of chromosome 7 (Fig. 1).
Fig. 1. Schematic illustration of the positions
4. Results and discussion

In summary, the proposed methodology comprising three
distinct steps allowed us to conduct a QTL analysis of factors
that represent groups of variables, thus enabling the use of a
univariate method (Haley et al., 1994) that avoided the
involvement of complex multivariate models.

Implementation of the first step of procedure A provided a
set of multivariate data without the influence of fixed effects
(sex and batch) and random polygenic effect, while for the
procedure B the influence of this late effect was not
considered. In general, the Gibbs algorithm as implemented
in the GIBBSF90 software (Misztal et al., 2002) converged for
all of the parameters, for both procedures, when 50,000
resulting iterations were used. This convergence was verified
by the Geweke criterion using the package BOA (Bayesian
Output Analysis) in the R software.

In the second step, estimates (posterior means) of the
factorial loadings λjk indicated the common factors that
accounted for certain groups of traits. Only three common factors
(Table 1) explained, respectively to procedures A and B, 85.64%
and 80.44% of the total variation from ten original traits. For both
procedures,we cannote that the fat-related traits (BCD, L, SBT, LR
and LL) were highly correlated, and therefore, all of these traits
were represented by the first common factor. Similarly, the two
loin traits (LEA and LD) could be represented by the second
factor; furthermore, the three carcass characteristics (MBCC,MLC
and CY) were associated with the third factor. Although the
results of the trait classification with respect to each common
factor has been the same for the procedures A and B, the
differencesbetween traits factorial loadingswithineachcommon
factor were more evident for the A, i.e., the removal of polygenic
effect in the first step provided a better discrimination of traits
within each common factor.

In the third step, the estimates (posterior means) of the
factorial scores for each animal (ĉi) were subjected to a Bayesian
linear regression analysis by considering the model proposed by
Haley et al. (1994). Thus, the null regressionmodel (model I), the
additive QTL effects model (model II), and the additive and
dominance QTL effects model (model III) were compared
according to the model posterior probability of each of the 11
positions evaluated (Fig. 1) considering the procedures A and B.
Figs. 2a and b shows, respectively for the procedures A and B, the
behavior of the probabilities of each of the threemodels over the
SSC 7 positions by considering the regression analysis deter-
mined for the first factor, which represent the traits BCD, L, SBT,
LR and LL. For the second and third factors, these probabilities did
not suggest an additive QTL effect for neither one procedure, and
therefore, the graphics corresponding to these factors have been
omitted from the figure because they are irrelevant.

Fig. 2 shows that the model II (additive QTL effects)
demonstrated the highest posterior probability at position
to which the models were compared.



Table 1
Estimates (posterior means) of the factorial loadings for each common factor
considering the two proposed procedures (A and B).

Common factor (procedure A) Common factor (procedure B)Traits

c1 c2 c3 c1 c2 c3

LR 0.6106 − 0.1916 − 0.0582 0.4893 − 0.1160 − 0.0311
LL 0.6028 − 0.1186 − 0.1179 0.4719 − 0.0977 − 0.0723
L 0.6185 − 0.0781 − 0.0926 0.4801 − 0.0884 − 0.0466
BCD 0.5556 0.0065 − 0.1773 0.4444 0.0123 − 0.0833
LEA − 0.1273 − 0.6553 − 0.2388 − 0.1011 − 0.1553 − 0.0711
MBCC 0.3364 − 0.4338 0.3000 0.3834 − 0.1234 0.1012
MLC 0.3300 − 0.3786 0.2801 0.3634 − 0.0766 0.0967
SBT 0.5435 − 0.2080 0.0577 0.4321 − 0.1021 0.0033
LD 0.0254 − 0.6876 − 0.2438 0.0711 − 0.1799 − 0.0384
CY 0.2713 − 0.3600 0.2608 0.3476 − 0.1100 0.0907
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65 cM for procedure A (probability of 0.78) and B (probability of
0.86). For the procedure A in this same position, themodels I and
III, demonstrated probabilities of 0.20 and 0.02, respectively. For
the procedure B these valueswere, respectively, 0.13 and 0.01. In
addition, the posterior probabilities of the nullmodelweremuch
higher than other two models for all of the other evaluated
positions. In general, the finding that themodel with an additive
QTL effect presented the higher probability at position 65 cMdid
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Fig. 2. Profile of the posterior model probabilities for each regression model cons
not imply directly the presence of a QTL in this position. The only
assumption that can be made is that this position has a 78% and
86% probability, respectively to procedures A and B, of a QTL that
simultaneously affects the fat-related traits (BCD, L, SBT, LR and
LL). Anyway,wecannote that procedureBwasmore informative
about theQTLpresence, showing so that a percentage of variance
explained by the QTL was removed jointly with polygenic effect
(first step) by the use of procedure A.

In order to verify the importance of the position 65 cM for
each analyzed trait separately, simple regression analyses
were carried out using Qxpak software (Pérez-Enciso and
Misztal, 2004). These results showed only significant QTL
(Pb0.05) for LR and LL at position 65 cM, indicating that the
idea of to use common factors rather than the original traits
possibly can to increase the QTL detection power for related
traits.

Several other studies have investigated traits related to fat
deposition and observed significant QTL effects at positions
close to 65 cM on SSC 7. Wang et al. (1998) analyzed data
obtained from F2 individuals offive different families thatwere
generated via the crossbreeding of two Chinese breeds
(Meishan and Minzhu) and three American breeds (Landrace,
Duroc, and Hampshire). In that study, a significant QTL was
observed at 66 cM for backfat thickness after the first rib. Milan
et al. (2002) employed different designs (line-cross and half
100 150

) at SSC 7
Aditive QTL and Dominance (Model III)

100 150

) at SSC 7
Aditive QTL and Dominance (Model III)

idered in the SSC 7 analysis respectively to the procedures A (a) and B (b).

Unlabelled image
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full-sib analyses) to study QTL effects inMeishan×LargeWhite
animals, and theydiscovereda significantQTL atposition65 cM
for backfat thickness between the third and fourth rib. Yue et al.
(2003) evaluated an F2 population with a high degree of
heterozygosity that was generated by crossing Meishan,
Pietrain, and European wild purebreds, and they detected
significant QTLs at 66 and 67 cM for backfat thickness after the
last rib and abdominal fat weight, respectively. Demeure et al.
(2005) used the half full-sib design to infer significant QTL
effects in Large White×Meishan animals, and they found
significant evidence for a QTL at 69 cM for lower backfat
thickness between the third and fourth rib. Sanchez et al.
(2006) used backcrossed populations that were established by
crossing LargeWhite×Meishananimals and foundevidence for
significant QTL effects at 67 cM for backfat thickness between
the third and fourth rib.

With respect to a full Bayesian analysis instead of three
step approach, one possible and relatively simple proposal
may be the implementation of factor analysis for structuring
covariance matrices in a mixed model (de los Campos and
Gianola., 2007) with additive genetic and genotypic QTL
random effects, being the covariancematrix associated to this
late effect a IBD matrix that can be obtained by the Qxpak
software (Pérez-Enciso and Misztal, 2004). Thus, the infer-
ence about the QTL presence at each chromosome position
may be easily realized by the bayesian comparison between
complete mixed model and a null model without QTL effect.
5. Conclusions

A Three-step Bayesian factor analysis allowed us to
calculate the probability of QTLs that simultaneously affect a
group of carcass traits for each position of SSC 7. The removal
of systematic effects in the first step of the evaluation
(procedure B) allowed that the factor analysis, which was
performed in the second step, identify three distinct factors
that explained 85% of the total traits variation. For the
common factor that represented fat-related traits (bacon
depth, midline lower backfat thickness, higher backfat
thickness on the shoulder; midline backfat thickness after
the last rib; midline backfat thickness on the last lumbar
vertebrae) the third step of the analysis showed that the
highest probability of an additive QTL effect at the 65 cM
position was 86%.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
doi:10.1016/j.livsci.2011.07.012.
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