Note
Partition of a directed bipartite graph into two directed cycles

Hong Wang*, Charles Little, Kee Teo
Department of Mathematics, Massey University, Palmerston North, New Zealand
Received 24 March 1994; revised 14 February 1995

Abstract
Let \(D = (V_1, V_2; A) \) be a directed bipartite graph with \(|V_1| = |V_2| = n \geq 2\). Suppose that \(d_D(x) + d_D(y) \geq 3n + 1 \) for all \(x \in V_1 \) and \(y \in V_2 \). Then \(D \) contains two vertex-disjoint directed cycles of lengths \(2n_1 \) and \(2n_2 \), respectively, for any positive integer partition \(n = n_1 + n_2 \). Moreover, the condition is sharp for even \(n \) and nearly sharp for odd \(n \).

1. Introduction

We discuss only finite simple graphs and strict directed graphs. The terminology and notation concerning graphs is that of [4], except as indicated. A directed graph \(D \) is called a directed bipartite graph if there exists a partition \(\{V_1, V_2\} \) of \(V(D) \) such that the two induced directed subgraphs \(D[V_1] \) and \(D[V_2] \) of \(D \) contain no arcs of \(D \). We denote by \((V_1, V_2; A) \) a directed bipartite graph with \(\{V_1, V_2\} \) as its bipartition and \(A \) as its arc set. Similarly, \((V_1, V_2; E) \) represents a bipartite graph with \(\{V_1, V_2\} \) as its bipartition and \(E \) as its edge set.

In 1963, Corrádi and Hajnal [5] investigated the maximum number of vertex-disjoint cycles in a graph. They proved that if \(G \) is a graph of order at least \(3k \) with minimum degree at least \(2k \), then \(G \) contains \(k \) vertex-disjoint cycles. In particular, when the order of \(G \) is exactly \(3k \), then \(G \) contains \(k \) vertex-disjoint triangles. In 1984, El-Zahar [6] proved that if \(G \) is a graph of order \(n = n_1 + n_2 \) with \(n_1 \geq 3 \), \(n_2 \geq 3 \) and minimum degree at least \(\lceil n_1/2 \rceil + \lceil n_2/2 \rceil \), then \(G \) contains two vertex-disjoint cycles of lengths \(n_1 \) and \(n_2 \), respectively. In 1991, Amar and Raspaud [2] investigated vertex-disjoint directed cycles in a strongly connected directed graph of order \(n \) with

*Correspondence address: Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA.

0012-365X/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0012-365X(95)00165-4
Little and Wang [7] proved that if D is a directed graph of order $n \geq 4$ with minimum degree at least $(3n - 3)/2$, then D contains two vertex-disjoint directed cycles of lengths n_1 and n_2, respectively, for any integer partition $n = n_1 + n_2$ with $n_1 \geq 2$ and $n_2 \geq 2$. In this paper, we prove the following result.

Theorem. Let $D = (V_1, V_2; A)$ be a directed bipartite graph with $|V_1| = |V_2| = n \geq 2$. Suppose that $d_D(x) + d_D(y) \geq 3n + 1$ for all $x \in V_1$ and $y \in V_2$. Then D contains two vertex-disjoint directed cycles of lengths $2n_1$ and $2n_2$, respectively, for any positive integer partition $n = n_1 + n_2$.

We recall some terminology and notation. Let G be a graph and D a directed graph. We use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of G, respectively. We denote $|E(G)|$ by $e(G)$. We use $V(D)$ and $A(D)$ to denote the vertex set and the arc set of D, respectively. For a vertex $x \in V(D)$, $N_D^-(x)$ is the set of all vertices y of D with $(x, y) \in A(D)$. We similarly define $N_D^+(x)$ and let $N_D(x) = N_D^-(x) \cup N_D^+(x)$. We also define $d_D^-(x) = |N_D^-(x)|$, $d_D^+(x) = |N_D^+(x)|$ and $d_D(x) = d_D^-(x) + d_D^+(x)$. For two vertices x and y of D, we say that x is joined to y in D if either (x, y) or (y, x) is an arc of D. For a vertex $u \in V(G)$ and a subgraph H of G, we define $d_G(u, H) = |N_G(u) \cap V(H)|$. Hence, $d_G(u, G) = d_G(u)$, the degree of u in G. For a subset $U \subseteq V(G)$, $G[U]$ is the subgraph of G induced by U. For a subset $X \subseteq V(D)$, $D[X]$ is the directed subgraph of D induced by X. A graph or directed graph is said to be traceable if it contains a hamilton path or directed hamilton path, respectively. A graph or directed graph is called hamiltonian if it contains a hamilton cycle or directed hamilton cycle, respectively. For any two vertices x and y of G, we define $e(xy) = 1$ if xy is an edge of G and $e(xy) = 0$ otherwise.

2. Lemmas

In the following, $G = (V_1, V_2; E)$ is a bipartite graph with $|V_1| = |V_2| = n \geq 2$.

Lemma 2.1. Let $P = x_1y_1 \cdots x_ky_k$ be a path of G. Let $x \in V_1$ and $y \in V_2$ be vertices not on P. Then the following two statements hold:

(a) If $d_G(x, P) + d_G(y, P) \geq k + 2 - e(xy)$, then G contains a path P' from x_1 to y_k such that $V(P') = V(P) \cup \{x, y\}$.

(b) If $d_G(x, P) + d_G(y, P) \geq k + 1 - e(xy)$, then G contains a path P' such that $V(P') = V(P) \cup \{x, y\}$.

Proof. We may assume that $x_1 \in V_1$. To prove (a), we see that if $e(xy) = 1$, then there exists $i \in \{1, 2, \ldots, k\}$ such that $\{x_1y_i, x_iy_k\} \subseteq E(G)$. Then the path $x_1y_1 \cdots y_{i-1}x_iy_1x_{i+1} \cdots x_ky_k$ is the required path. If $e(xy) = 0$, then there exist $i, j \in \{1, 2, \ldots, k\}$ with $i < j$ such that $\{x_1y_i, x_jy_j, x_iy_j, x_jy_1\} \subseteq E(G)$. Then the path $x_1y_1 \cdots y_{i-1}x_iy_jy_{j-1} \cdots x_{i+1}y_1x_jy_{j+1} \cdots x_ky_k$ is the required path.
To prove (b), we first assume that $\varepsilon(xy) = 1$. Then (b) is true if xy_k or x_1y is an edge of G. Hence we may assume that both $xy_k \notin E$ and $x_1y \notin E$. Then $d_G(x, P - x_1 - y_k) + d_G(y, P - x_1 - y_k) \geq k$. By (a), G has a path P' from y_1 to x_k such that $V(P') = V(P - x_1 - y_k) \cup \{x, y\}$. Then the path $x_1P'x_k$ satisfies the requirement.

Next, we assume $\varepsilon(xy) = 0$. If both $xy_k \in E$ and $x_1y \in E$, then (b) is true. Thus, we may assume that $xy_k \notin E$. If $xy_k \notin E$, then by (a), G has a path L from y_1 to x_k such that $V(L) = V(P - x_1 - y_k) \cup \{x, y\}$. Therefore, the path x_1Lx_k satisfies the requirement. Therefore, we may further assume that $xy_k \notin E$. By the proof of (a), we may assume that there exists a unique $i \in \{1, 2, \ldots, k\}$ such that $\{xy_i, x_iy\} \subseteq E$. Therefore, for every $j \in \{1, 2, \ldots, k\}$ with $j \neq i$, we have that $xy_j \in E$ if and only if $x_jy \notin E$. Hence, $xy_1 \in E$. Let j be the smallest integer in $\{1, 2, \ldots, k\}$ such that $x_jy \notin E$. Thus, $1 < j \leq i$ and $xy_{j-1} \in E$. Then the path $x_1y_1 \cdots x_{j-1}y_{j-1}x_k \cdots y_jx_jy$ satisfies the requirement. This proves the lemma. □

Lemma 2.2 (Bondy and Chvátal [3]). The following two statements hold:

(a) Let $P = x_1y_1 \cdots x_ky_k$ be a path of G with $k \geq 2$. If $d_G(x_1, P) + d_G(y_k, P) \geq k + 1$, then G has a cycle C such that $V(C) = V(P)$.

(b) If $d_G(x) + d_G(y) \geq n + 1$, for any two non-adjacent vertices x and y with $x \in V_1$ and $y \in V_2$, then G is hamiltonian.

The following lemma is Lemma 6 of [1].

Lemma 2.3. Let $C = x_1y_1 \cdots x_ky_kx_1$ be a cycle of G. Let $i, j \in \{1, 2, \ldots, k\}$. Suppose that $d_G(x_i, C) + d_G(y_j, C) \geq k + 2$. Then G has a path P from y_j to x_{j+1} such that $V(P) = V(C)$, where subscripts are reduced modulo k.

Proof. Construct a new graph G' from G by adding two new vertices u and v of degree 2 to G such that y_iux_{j+1} is a path of G'. Observe that $P' = (C - x_iy_i - x_{j+1}y_j) \cup \{y_iu, uv, ex_{j+1}\}$ is a path of G' from x_i to y_j. By Lemma 2.2(a), G' has a cycle C' with $V(C') = V(P')$. Clearly, C' contains the path y_iux_{j+1}. Hence, the path $C' - u - v$ satisfies the requirement. □

Lemma 2.4. Suppose that G has a hamilton path and for any two endvertices u and v of a hamilton path of G, $d_G(u) + d_G(v) \geq k$ holds, where k is an integer greater than n. Then for every $x \in V_1$ and every $y \in V_2$, $d_G(x) + d_G(y) \geq k$.

Proof. By Lemma 2.2(a), G is hamiltonian. Let $C = x_1y_1 \cdots x_ny_nx_1$ be a hamilton cycle of G. Suppose, for a contradiction, that $d_G(x_i) + d_G(y_i) \leq k - 1$ for some $i, j \in \{1, 2, \ldots, n\}$. Then G has no hamilton path from x_i to y_j. By the hypothesis, we have that $d_G(y_{i-1}) + d_G(x_i) \geq k$ and $d_G(x_{j+1}) + d_G(y_j) \geq k$, where subscripts are reduced modulo n. Hence, $d_G(y_{i-1}) + d_G(x_i) \geq k + 1 \geq n + 2$. By lemma 2.3, G has a hamilton path from x_i to y_j. This contradiction proves the lemma. □
3. Proof of the theorem

Let \(D = (V_1, V_2; A) \) be a directed bipartite graph with \(|V_1| = |V_2| = n \geq 2 \) such that \(d_\rho(x) + d_\rho(y) \geq 3n + 1 \) for all \(x \in V_1 \) and \(y \in V_2 \). Suppose, for a contradiction, that \(D \) does not contain two vertex-disjoint directed cycles of lengths \(2n_1 \) and \(2n_2 \), respectively, for some positive integer partition \(n = n_1 + n_2 \).

We construct a bipartite graph \(G = (V_1, V_2; E) \) from \(D \) such that \(xy \in E \) if and only if both \((x, y) \) and \((y, x) \) belong to \(A \). Then \(G \) does not contain two vertex-disjoint cycles of lengths \(2n_1 \) and \(2n_2 \), respectively.

Claim 1. For all \(x \in V_1 \) and \(y \in V_2 \), \(d_G(x) + d_G(y) \geq n + 1 \).

Proof. We have

\[
d_G(x) + d_G(y) = d_\rho(x) + d_\rho(y) - (|N_\rho(x)| + |N_\rho(y)|)
\geq 3n + 1 - 2n = n + 1.
\]

By Claim 1 and Lemma 2.2(b), \(G \) is Hamiltonian. Hence, we can choose two vertex-disjoint induced subgraphs of \(G \), say \(G_1 = (A_1, B_1; E_1) \) and \(G_2 = (A_2, B_2; E_2) \), of order \(2n_1 \) and \(2n_2 \) respectively, such that both \(G_1 \) and \(G_2 \) are traceable.

Subject to (3), we may further choose \(G_1 \) and \(G_2 \) such that

\[
e(G_1) + e(G_2) \text{ is maximum.}
\]

Claim 2. Let \(u \) and \(v \) be two endvertices of a Hamilton path of \(G_1 \) and let \(x \) and \(y \) be two endvertices of a Hamilton path of \(G_2 \). Suppose that \(uy \in E \) and \(vx \in E \). Then

\[
d_G(u, G_1) + d_G(v, G_1) + d_G(x, G_2) + d_G(y, G_2)
\geq d_G(u, G_2) + d_G(v, G_2) + d_G(x, G_1) + d_G(y, G_1).
\]

Proof. Suppose that (5) does not hold. Then either \(d_G(u, G_2) + d_G(x, G_1) > d_G(u, G_1) + d_G(x, G_2) \), or \(d_G(v, G_2) + d_G(y, G_1) > d_G(v, G_1) + d_G(y, G_2) \). We may assume w.l.o.g. that the former holds. Then \(e(G_1 - u + x) + e(G_2 - x + u) > e(G_1) + e(G_2) \). As \(uy \in E \) and \(vx \in E \), both \(G_1 - u + x \) and \(G_2 - x + u \) are traceable. We obtain a contradiction with (4). \(\square \)

Claim 3. Let \(u \) and \(v \) be two endvertices of a Hamilton path of \(G_1 \) and let \(x \) and \(y \) be two endvertices of a Hamilton path of \(G_2 \) such that \(u \in V_1 \) and \(x \in V_1 \). Let \(G'_1 = G_1 - u - v + x + y \) and \(G'_2 = G_2 - x - y + u + v \). If both \(G'_1 \) and \(G'_2 \) are
traceable, then
\[d_G(u, G_1) + d_G(v, G_1) + d_G(x, G_2) + d_G(y, G_2) \]
\[\geq d_G(u, G_2) + d_G(v, G_2) + d_G(x, G_1) + d_G(y, G_1) \]
\[- 2(e(uv) + e(vx)) + 2(e(uv) + e(xy)). \] (6)

In particular, if \(d_G(u, G_2) + d_G(v, G_2) \geq n_2 + 2 \) and \(d_G(x, G_1) + d_G(y, G_1) \geq n_1 + 2 \), then (6) holds.

Proof. If \(d_G(u, G_2) + d_G(v, G_2) \geq n_2 + 2 \) and \(d_G(x, G_1) + d_G(y, G_1) \geq n_1 + 2 \), then, by Lemma 2.1(b), both \(G'_1 \) and \(G'_2 \) are traceable. As both \(G'_1 \) and \(G'_2 \) are traceable, we have, by (4), that \(e(G'_1) + e(G'_2) \leq e(G_1) + e(G_2) \), which implies (6). \(\square \)

Let \(P_1 = u_1u_2 \ldots u_{2n_1} \) and \(P_2 = x_1x_2 \ldots x_{2n_2} \) be two hamilton paths of \(G_1 \) and \(G_2 \), respectively. We may assume that \(u_1 \in A_1, x_1 \in A_2, A_1 \cup A_2 = V_1 \) and of course \(B_1 \cup B_2 = V_2 \). As either \(G_1 \) or \(G_2 \) is not hamiltonian or isomorphic to \(K_2 \), we may assume that \(G_2 \) is not hamiltonian or isomorphic to \(K_2 \). Then \(n_2 \geq 2 \), and by Lemma 2.2(a), we have
\[d_G(x_1, G_2) + d_G(x_{2n_2}, G_2) \leq n_2. \] (7)

Claim 4. \(G_1 \) is hamiltonian or isomorphic to \(K_2 \). Furthermore, \(d_G(u, G_1) + d_G(v, G_1) \geq n_1 + 1 \) for any two vertices \(u \) and \(v \) of \(G_1 \) with \(u \in V_1 \) and \(v \in V_2 \).

Proof. Suppose, for a contradiction, that the claim is not true. Then \(n_1 \geq 2 \), and by Lemma 2.2(b) and 2.4, there exist two endvertices \(u \) and \(v \) of a hamiltonian path of \(G_1 \) such that \(d_G(u, G_1) + d_G(v, G_1) \leq n_1 \). Without loss of generality, we may assume that \(d_G(u_1, G_1) + d_G(u_{2n_1}, G_1) \leq n_1 \). By Claim 1, it follows that \(d_G(u_1, G_2) + d_G(u_{2n_1}, G_2) \geq n_3 + 1 \) and \(d_G(x_1, G_1) + d_G(x_{2n_2}, G_2) \geq n_1 + 1 \). By Claim 2, we see that \(e(u_1x_{2n_1}) + e(x_1u_{2n_1}) \leq 1 \). Let \(G'_1 = G_1 - u_1 - u_{2n_1} + x_1 + x_{2n_2} \) and \(G'_2 = G_2 - x_1 - x_{2n_1} + u_1 + u_{2n_1} \). By Lemma 2.1(b), both \(G'_1 \) and \(G'_2 \) are traceable. By Claim 3, we have that \(n_1 + n_2 \geq (n_2 + 1) + (n_1 + 1) - 2(e(u_1x_{2n_1}) + e(x_1u_{2n_1})) \geq n_1 + n_2 \). This implies that \(d_G(u_1) + d_G(u_{2n_1}) = n + 1 = d_G(x_1) + d_G(x_{2n_2}) \). By (1) and (2), we see that \(N_P(u_1) = V_2 = N_P(x_1) \) and therefore both \(D[V(G_1)] \) and \(D[V(G_2)] \) are hamiltonian, a contradiction. \(\square \)

As \(D[V(G_2)] \) is not hamiltonian, \(\{(x_1, x_{j+1}), (x_{2n_2}, x_j)\} \not\in E \) and \(\{(x_{j+1}, x_1), (x_{2n_2}, x_1)\} \not\in E \) for all \(j \in \{1, 3, \ldots, 2n_2 - 1\} \). This implies that \(d_P(x_1, G_2) + d_P(x_{2n_2}, G_2) \leq n_2 \) and \(d_P(x_1, G_1) + d_P(x_{2n_2}, G_1) \leq n_2 \). Therefore, we have
\[4n_1 \geq d_P(x_1, G_1) + d_P(x_{2n_2}, G_1) \geq 3n + 1 - 2n_2 = 3n_1 + n_2 + 1. \] (8)

This implies
\[n_1 \geq n_2 + 1 \quad \text{and} \quad d_G(x_1, G_1) + d_G(x_{2n_2}, G_1) \geq n_1 + n_2 + 1 \geq n_1 + 3. \] (9)
As \(G_1 \) is hamiltonian, we may assume that \(u_i u_{2n_i} \in E_1 \). In the following, the subscripts of the \(u_i \)'s will be reduced modulo \(2n_1 \).

Claim 5. For each \(i \in \{1, 2, \ldots , 2n_1 \} \), \(d_G(u_i, G_1) + d_G(u_{i+1}, G_1) \geq n_1 + 2 \).

Proof. Suppose that the claim fails. Then, without loss of generality, we may assume that \(d_G(u_1, G_1) + d_G(u_{2n_1}, G_1) \leq n_1 + 1 \). By Claim 1, \(d_G(u_1, G_2) + d_G(u_{2n_1}, G_2) \geq n \). By (7), (9) and Claim 2, we see that either \(u_1 x_{2n_2} \notin E \) or \(x_{2n_2} u_1 \notin E \). By Lemma 2.1(b), both \(G_1' = G_1 - u_1 - u_{2n_1} + x_1 + x_{2n_2} \) and \(G_2' = G_2 - x_1 - x_{2n_2} + u_1 + u_{2n_1} \) are traceable. By Claim 3, we have

\[
(n_1 + 1) + n_2 \geq n_2 + (n_1 + 3) - 2(e(u_1 x_{2n_2}) + e(x_1 u_{2n_1})) + 2 \geq n_1 + n_2 + 3,
\]

a contradiction. \(\square \)

Claim 6. For every \(i \in \{1, 2, \ldots , 2n_1 \} \), \(D[V(G_i - u_i - u_{i+1} + x_1 + x_{2n_2})] \) is hamiltonian.

Proof. Without loss of generality, we show that \(D[V(G_i - u_1 - u_{2n_1} + x_1 + x_{2n_2})] \) is hamiltonian. By (9), \(d_G(x_i, G_i - u_1 - u_{2n_1}) + d_G(x_{2n_2}, G_i - u_1 - u_{2n_1}) \geq n_1 + 3 - 2 = n_1 + 1 \). By Lemma 2.1(a), we see that if either \(G_i - u_1 - u_{2n_1} \) is hamiltonian or \(u_2 \) is joined to \(u_{2n_1} \) in \(D \), then \(D[V(G_i - u_1 - u_{2n_1} + x_1 + x_{2n_2})] \) is hamiltonian. Therefore, we may assume that \(u_2 \) is not joined to \(u_{2n_1} \) in \(D \) and \(G_i - u_1 - u_{2n_1} \) is not hamiltonian. Then \(d_G(u_2, G_i - u_1 - u_{2n_1}) + d_G(u_{2n_1}, G_i - u_1 - u_{2n_1}) \leq n_1 - 1 \) by Lemma 2.2(a). Thus, we have that \(d_G(u_2, G_i) + d_G(u_{2n_1}, G_i) \leq n_1 + 1 \). By Claim 5, \(d_G(u_1, G_i) + d_G(u_{2n_1}, G_i) \geq n_1 + 2 \). This implies, by applying Lemma 2.1(a) to the path \(u_2 u_3 \ldots u_{2n_1} \), that \(G_i \) has a hamilton path from \(u_2 \) to \(u_{2n_1} \). By (1), we see that \(d_G(u_2) + d_G(u_{2n_1}) \geq n + 3 \) as \(|N_D(u_2)| \leq n - 1 \) and \(|N_D(u_{2n_1})| \leq n - 1 \). Hence, \(d_G(u_2, G_2) + d_G(u_{2n_1}, G_2) \geq n_2 + 2 \). By Claim 3, we have that \((n_1 + 1) + n_2 \geq (n_2 + 2) + (n_1 + 3) - 2(e(x_1 u_2) + e(x_{2n_2} u_{2n_1} - 1)) \geq n_1 + n_2 + 1 \). This implies that \(\{x_i u_2, x_{2n_2} u_{2n_1} - 1\} \subseteq E \). By Claim 2, we should have \(e(x_i u_2) + e(x_{2n_2} u_{2n_1} - 1) \leq 1 \), a contradiction. This proves the claim. \(\square \)

We are now in a position to prove the theorem. If \(F \) is a subgraph of \(G \) or directed subgraph of \(D \), we define \(d^*_F(u, F) \) and \(d_F(u, F) \) to be \(|N^+_F(u) \cap V(F)| \) and \(|N_F(u) \cap V(F)| \), respectively, for any \(u \in V(D) \). Let \(H = G_2 - x_1 - x_{2n_2} \). By Claim 6 and the assumption that the theorem fails for \(D \), we have that \(D[V(H + u_i + u_{i+1})] \) is not hamiltonian for any \(i \in \{1, 2, \ldots , 2n_1\} \). Let \(x \) and \(y \) be any two endvertices of a hamilton path of \(H \) with \(x \in A_2 \). Then for any \(i \in \{1, 3, \ldots , 2n_1 - 1\} \), we have that \(\{x, u_{i+1}\}, \{u_i, y\} \notin A \) and \(\{u_{i+1}, x\}, \{y, u_i\} \notin A \). This implies:

\[
d_G(x, G_1) + d_G(y, G_1) \leq n_1, \quad \tag{12}
d^*_F(x, G_1) + d^*_F(y, G_1) \leq n_1, \quad \tag{13}
d_F(x, G_1) + d_F(y, G_1) \leq n_1. \quad \tag{14}
\]
By (13) and (14), we have that
\[
4n_2 \geq d_D(x, G_2) + d_D(y, G_2)
\]
\[
\geq d_D(x) + d_D(y) - 2n_1 \geq 3n + 1 - 2n_1 = 3n_2 + n_1 + 1.
\]
This implies that \(n_2 \geq n_1 + 1\), contradicting (9). This proves the theorem. \(\square\)

To see the sharpness of the condition of the theorem, we construct a direct bipartite graph \(B_n\) of order \(2n\) for every integer \(n \geq 2\). We use \(K^*_{a,b}\) to denote the complete directed bipartite graph \((V_1, V_2; A)\) with \(|V_1| = a\) and \(|V_2| = b\) such that both \((x, y)\) and \((y, x)\) belong to \(A\) for all \(x \in V_1\) and \(y \in V_2\). Let \(D_1 = (X_1, Y_1; A_1)\) and \(D_2 = (X_2, Y_2; A_2)\) be two vertex-disjoint directed bipartite graphs such that \(D_1\) is isomorphic to \(K^*_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}\) and \(D_2\) is isomorphic to \(K^*_{\lceil n/2 \rceil, \lceil n/2 \rceil}\). Then \(B_n\) consists of \(D_1\) and \(D_2\) and all arcs \((u, v)\) and \((x, y)\) for \(u \in X_1\), \(v \in Y_2\), \(x \in Y_1\) and \(y \in X_2\). It is easy to see that \(d_{B_n}(a) + d_{B_n}(b) \geq 3n - \varepsilon_n\) for all \(a \in X_1 \cup X_2\) and \(b \in Y_1 \cup Y_2\) with equality if \(a \in X_1\) and \(b \in Y_1\), where \(\varepsilon_n = 0\) if \(n\) is even and \(\varepsilon_n = 1\) otherwise. But \(B_n\) does not contain two vertex-disjoint directed cycles of lengths \(2n_1\) and \(2n_2\), respectively, for any positive integer partition \(n = n_1 + n_2\) with \(\{n_1, n_2\} \neq \lfloor n/2 \rfloor, \lfloor n/2 \rfloor\).

We conjecture the following.

Conjecture. Let \(D = (V_1, V_2; A)\) be a directed bipartite graph with \(|V_1| = |V_2| = n \geq 2\). Suppose that \(n\) is odd and \(d_D(x) + d_D(y) \geq 3n\) for all \(x \in V_1\) and \(y \in V_2\). Then \(D\) contains two vertex-disjoint directed cycles of lengths \(2n_1\) and \(2n_2\), respectively, for any positive integer partition \(n = n_1 + n_2\).

Acknowledgements

We thank the referee for the suggestions which have shortened the first version.

References