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Abstract

Let G be a finite simple group. We show that a random walk on G with respect to the conjugacy class xG

of a random element x ∈ G has mixing time 2. In particular it follows that (xG)2 covers almost all of G,
which could be regarded as a probabilistic version of a longstanding conjecture of Thompson. We also show
that if w is a non-trivial word, then almost every pair of values of w in G generates G.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Random walks on finite (almost) simple groups G with respect to a conjugacy class C as
a generating set have been studied extensively in the past decades. See Diaconis and Shahsha-
hani [DS] for transpositions in symmetric groups, Lulov [Lu] and Vishne [V] for homogeneous
classes in symmetric groups, and [H,Gl,LiSh2,LiSh5] for groups of Lie type. A main problem
investigated is determining the mixing time T (C,G) of the random walk, namely the time re-
quired till we reach an almost uniform distribution on G. In most cases this mixing time is still
not known. For background see also [D1,D2].

Here we obtain a somewhat surprising result, showing that this mixing time T (G,C) is usually
the smallest possible, namely 2.
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Theorem 1.1. Let G be a finite simple group, let x ∈ G be randomly chosen, and let C = xG be
its conjugacy class. Then the probability that T (C,G) = 2 tends to 1 as |G| → ∞.

This means that the product of two random elements of a “typical” class C is almost uniformly
distributed on G.

By Theorem 1.8 of [LiSh5] and the remark following it, if G is a (large) simple group of
Lie type and C is a regular semisimple class in G, then T (G,C) = 2. This can be used to prove
Theorem 1.1 for Lie type groups X(q) where q → ∞. However, this argument does not work for
alternating groups and Lie type groups over bounded fields. Our proof of Theorem 1.1 employs
a different strategy and is based on a result of independent interest which we obtain for arbitrary
finite groups (see Theorem 2.4 below).

Our method also yields results on random walks when the generating set changes over time.
We show that for almost all x, y in a finite simple group G, a product of a random element of xG

with a random element of yG is almost uniformly distributed on G (see Theorem 2.5 below).
The results above immediately imply the following.

Corollary 1.2. Let G be a finite simple group and fix ε > 0. Let x, y ∈ G be randomly chosen.

(i) The probability that |(xG)2|/|G| � 1 − ε tends to 1 as |G| → ∞.
(ii) The probability that |xGyG|/|G| � 1 − ε tends to 1 as |G| → ∞.

We note that for alternating groups G = An, the probability that (xG)2 = G already tends
to 1, as was recently shown in [LaSh].

A longstanding conjecture of Thompson states that every finite simple group G has a conju-
gacy class C such that C2 = G. This is known in various cases but very much open in general.
See [EG] for background and latest results. Corollary 1.2 shows that the square of a class of a ran-
dom element of G covers almost all of G. This provides positive evidence towards Thompson’s
conjecture, suggesting that C2 might be equal to G for many classes C.

A key tool in the proof of the above results is the study of the so-called Witten zeta function
ζG encoding the character degrees of a finite group G. Let IrrG denote the set of complex
irreducible characters of G. For a real number s define

ζG(s) =
∑

χ∈IrrG

χ(1)−s .

This function was studied and applied extensively in [LiSh3,LiSh4,LiSh5,GSh]. Here we show
that, if Gi is any family of finite groups satisfying ζGi (2/3) → 1, and x ∈ Gi is chosen at random,
then T (xGi ,Gi) = 2 with probability tending to 1. See Theorem 2.4 below for this, and more
general results of this type. This theorem implies Theorem 1.1 for all families of simple groups
except L2(q),L3(q),U3(q), which are dealt with directly.

It is intriguing that, while the value of ζG(2/3) is important in our context, other values of
the Witten zeta function play a vital role in other contexts. For instance, in [GSh] we show that
if G is a finite group, and ζG(2) is close to 1, then the commutator map on G is almost measure
preserving, and in particular almost all elements of G are commutators; this is the case where G

is a (large) finite simple group.
Note that ζG(s) = ∑

n�1 rnn
−s , where rn is the number of complex irreducible represen-

tations of G of dimension n. We can therefore say that groups with very small representation
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growth (in the sense that
∑

rnn
−2/3 is very close to 1) have mixing properties as in Theorem 1.1

and Corollary 1.2 above.
While the results above deal with products of conjugacy classes, a new method of Gowers

[G], which is also based on characters, enables one to study products of two arbitrary subsets of
finite groups. Here the relevant invariant is not the full zeta function ζG, but the minimal degree
of a non-trivial character of G. Using a theorem of Gowers (see Theorem 2.7 below) we easily
deduce the following.

Proposition 1.3. Let G be any finite group, and let k be the minimal degree of a non-trivial
character of G. Let A,B be any subsets of G. Then

(i) |AB|
|G| � 1 − (k

|A|
|G

|B|
|G| )

−1.

(ii) If (G,A,B) range over a family satisfying |A||B|/(|G|2/k) → ∞, then |AB|/|G| → 1.
(iii) In particular, if |A|/(|G|/k1/2) → ∞, then |A2|/|G| → 1.

A related recent result of Nikolov and Pyber [NP] shows that, with the above notation, if
|A| > |G|/k1/3 then A3 = G. Part (iii) above shows that a weaker condition implies that A2

covers almost all of G.
We note that parts (ii) and (iii) cannot be applied when G is simple and A,B are conju-

gacy classes; indeed conjugacy classes in simple groups are too small to satisfy the assumption
|A||B|/(|G|2/k) → ∞. In particular Proposition 1.3 does not imply Corollary 1.2. However, it
does imply a result on values of words in simple groups.

Let w �= 1 be a word, namely a non-identity element of some free group, and let w(G) denote
the values of w in G. In recent years there is a growing interest in the subsets w(G) for finite
simple groups G, in relation to Waring type problems and other problems, see [DPSSh,La,Sh,
LaSh].

It is shown in [Sh] that w(G)3 = G if |G| � Nw , namely every element of G is a product of 3
values of w. This was reproved in [NP] using Gowers method and results from [LaSh]. In [LaSh]
it is shown that w(G)2 = G for alternating groups and groups of Lie type of bounded rank, and it
remains open whether this is true in general. Proposition 1.3 can be used to show the following.

Corollary 1.4. Let w be a non-identity word, and let G be a finite simple group. Then
|w(G)2|/|G| → 1 as |G| → ∞. Moreover, if w1,w2 are two non-identity words, then
|w1(G)w2(G)|/|G| → 1 as |G| → ∞, namely almost all elements of G are a product of a
value of w1 and a value of w2.

This result also follows from [Sh] and [LaSh] but Proposition 1.3 above provides a shorter
proof. Corollary 1.4 has various interesting instances. For example, it shows that, given an integer
m � 2, almost all elements of a (large) finite simple group G can be written as a product of two
mth powers in G.

Our final result deals with generation by two random elements of w(G). In recent years many
results on random generation of finite simple groups have been obtained, see for instance [KL,
LiSh1,LiSh23,GLSSh,GK,LiShrs] and the references therein. Many results focus on random
generation of simple groups by elements of given orders; here we focus on elements which are
values of a given word.
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Theorem 1.5. Let w be a non-identity word, and G a finite simple group. Suppose x, y ∈ w(G)

are chosen at random. Then x, y generate G with probability tending to 1 as |G| → ∞.

The case of groups of Lie type was recently established by Nikolov and Pyber [NP]. Therefore
it remains to prove the theorem for alternating groups, which is what we do here. The proof for
alternating groups is harder, since random generation does not follow just from results on the
size of the subset w(G), and more delicate arguments should be invoked.

We note that similar arguments show that, if w1,w2 are non-identity words, then random
elements of w1(G) and of w2(G) generate G with probability tending to 1. This leads to various
particular cases of interest. For example we have

Corollary 1.6. Let k,m be positive integers. Then a finite simple group G is almost surely gen-
erated by a random kth power and a random mth power in G.

This paper is organized as follows. In Section 2 we show how the behavior of the function ζG

for a finite group G can be used to bound the mixing time of the random walks under considera-
tion. We then prove results 1.1–1.3. Section 3 deals with word values and random generation in
simple groups. This is where results 1.4–1.5 are proved.

2. Characters and random walks

We start with properties of the Witten zeta function

ζG(s) =
∑

χ∈IrrG

χ(1)−s .

In what follows we let Ln (Un) denote the projective special linear (unitary) group in dimen-
sion n.

Lemma 2.1. Let G be a finite simple group.

(i) ζG(2) → 1 as |G| → ∞.
(ii) If G �= L2(q),L3(q),U3(q), then ζG(2/3) → 1 as |G| → ∞.

Proof. Part (i) follows from Theorem 1.1 of [LiSh4].
Part (ii) follows from Theorems 1.1 and 1.2 of [LiSh5] (see also the remark following Theo-

rem 1.1 of [LiSh4]). �
Given a finite group G let P = PG be the uniform distribution on G. If Q is another proba-

bility distribution on G we set

‖Q − P ‖ =
∑
g∈G

∣∣Q(g) − P(g)
∣∣,

the L1-distance between P and Q (which is equivalent to the so-called variation distance, see
[D1]).
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Lemma 2.2. Let s > 0 be a real number, G a finite group, and let x ∈ G be randomly chosen.
Then the probability that

∣∣χ(x)
∣∣ � χ(1)s for all χ ∈ IrrG

is greater than 2 − ζG(2s).

Proof. Let P = PG as above.
Given χ ∈ IrrG let E(χ) = {x ∈ G: |χ(x)| > χ(1)s}. Then

|G| =
∑
x∈G

∣∣χ(x)
∣∣2

>
∣∣E(χ)

∣∣χ(1)2s .

Hence P(E(χ)) < χ(1)−2s . Clearly P(E(1)) = 0. It follows that

P

( ⋃
χ∈IrrG

E(χ)

)
�

∑
χ �=1

P
(
E(χ)

)
< ζG(2s) − 1.

Thus the probability of the complementary event is greater than 1 − (ζG(2s)− 1) = 2 − ζG(2s).
The lemma is proved. �

Given x ∈ G and a positive integer t define

dt (x) =
∑

1�=χ∈IrrG

∣∣χ(x)
∣∣2t

/χ(1)2t−2.

Let C = xG, and let P t
C denote the probability distribution on G after t steps of the random walk

with C as a generating set. We are interested in the L1-distance ‖P t
C − P ‖ between P t

C and the
uniform distribution P on G. When this distance is smaller than 1/e we say that the mixing time
is � t . By the upper bound lemma of [DS] we have

∥∥P t
C − P

∥∥2 � dt (x).

Therefore, to show that T (xG,G) = 2 it suffices to show that d2(x) is sufficiently small.
Our next result shows that the value of ζG at the point 2/3 has special importance in our

context.

Proposition 2.3. Let t be a positive integer, G a finite group, and let α = ζG(2 − 4/(t + 1)) − 1.
Let x ∈ G be randomly chosen and set C = xG. Then the probability that ‖P t

C − P ‖2 � α is at
least 1 − α.

In particular, if α = ζG(2/3) − 1, then the probability that ‖P 2
C − P ‖2 � α is at least 1 − α.

Proof. Let s = (t − 1)/(t + 1). Then 2s = 2 − 4/(t + 1). Let E be the set of elements x ∈ G

satisfying

∣∣χ(x)
∣∣ � χ(1)s for all χ ∈ IrrG.
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By Lemma 2.2 we have P(E) � 2 − ζG(2s) = 1 − α. Suppose x ∈ E. Then we have

dt (x) �
∑
χ �=1

(
χ(1)s

)2t
/χ(1)2t−2.

Since 2t − 2 − 2ts = 2s we obtain

∥∥P t
C − P

∥∥2 � dt (x) �
∑
χ �=1

χ(1)−2s = ζG(2s) − 1 = α.

The result follows. �
Proposition 2.3 immediately yields the following.

Theorem 2.4. Fix a positive integer t . Let G range over a family of finite groups satisfying
ζG(2 − 4/(t + 1)) → 1. Let x ∈ G be randomly chosen. Then the probability that T (xG,G) � t

tends to 1.
In particular if ζG(2/3) → 1 then the probability that T (xG,G) = 2 tends to 1.

This theorem shows that if, for some ε > 0, we have ζG(2 − ε) → 0, then the mixing time
T (xG,G) is bounded almost surely.

We can now prove Theorem 1.1. Let G be a finite simple group. Suppose first that G �=
L2(q),L3(q),U3(q). Then by Lemma 2.1(ii) we have

ζG(2/3) → 1 as |G| → ∞.

Therefore the required conclusion follows from Theorem 2.4
Now suppose G = L2(q),L3(q) or U3(q) (or indeed, any Lie type group of bounded rank).

Let E be the set of regular semisimple elements of G. Then as |G| → ∞ we have q → ∞, and
P(E) � 1 − O(q−1) by [GL]. Thus P(E) → 1 as |G| → ∞. Now, by Lemma 4.4 of [Sh] there
is an absolute constant c such that for x ∈ E we have

∣∣χ(x)
∣∣ � c for all x ∈ E.

Thus for such x we have

d2(x) �
∑
χ �=1

c4χ(1)−2 = c4(ζG(2) − 1
)
.

Combining this with Lemma 2.1(i) we see that for x ∈ E we have d2(x) → 0 as |G| → ∞. This
completes the proof of Theorem 1.1.

There is a variant of Theorem 1.1 dealing with two distinct conjugacy classes. Let x, y ∈ G be
randomly chosen, and consider their conjugacy classes xG,yG. Let Q be the distribution on G

of the random variable obtained by multiplying random elements of xG and yG. Then standard
Fourier-type arguments show that

‖Q − P ‖2 � d(x, y),



A. Shalev / Journal of Algebra 319 (2008) 3075–3086 3081
where

d(x, y) =
∑

1�=χ∈IrrG

∣∣χ(x)
∣∣2∣∣χ(y)

∣∣2
/χ(1)2.

If G is simple then the arguments above show that the probability that d(x, y) � ε tends to 1 as
|G| → ∞. This gives rise to

Theorem 2.5. Let G be a finite simple group, and let x, y ∈ G be randomly chosen. Then the
product of random elements of xG and yG is almost uniformly distributed.

The above results have immediate applications to the size of (xG)2 and xGyG. Indeed,
d2(x) → 0 implies |(xG)2|/|G| → 1, and d(x, y) → 0 implies |xGyG|/|G| → 1. This gives
rise to Corollary 1.2.

Our method yields a related quantitative result for arbitrary finite groups.

Corollary 2.6. Let G be a finite group, and let ε = (ζG(2/3) − 1)1/2. Let x, y ∈ G be chosen at
random. Then

(i) P(|(xG)2| � (1 − ε)|G|) � 1 − ε2.
(ii) P(|xGyG| � (1 − ε)|G|) � (1 − ε2)2.

Proof. We use the second part of Proposition 2.3 and its notation. Thus ε = α1/2 and the proba-
bility that ‖P 2

C − P ‖ � ε is at least 1 − ε2.
Note that if Q is a probability distribution on G satisfying ‖Q − P ‖ � ε, then the support of

Q has size at least (1 − ε)|G|. Hence ‖P 2
C − P ‖ � ε implies |C2| � (1 − ε)|G|. This completes

the proof of part (i).
To prove part (ii), we deduce from Lemma 2.2 that the probability that |χ(x)| � χ(1)1/3 and

|χ(y)| � χ(1)1/3 for all χ ∈ IrrG is at least (2 − ζG(2/3))2 = (1 − ε2)2. Now, assuming x, y

satisfy the above inequalities we have d(x, y) � ζG(2/3)−1. Combining this with the discussion
and notation preceding Theorem 2.5 we see that ‖Q−P ‖ � ε with probability at least (1− ε2)2.
Finally, ‖Q − P ‖ � ε implies |xGyG| � (1 − ε)|G|.

This completes the proof. �
We now prove Proposition 1.3. Our main tool is the following result of Gowers (see p. 22

of [G]).

Theorem 2.7. Let G be a finite group and k the minimal degree of a non-trivial character of G.
If A,B,C are subsets of G such that |A‖B‖C| > |G|3/k, then there are a ∈ A, b ∈ B , c ∈ C

such that ab = c.

Now, given A,B ⊆ G, define C = G\AB . Then there are no a ∈ A,b ∈ B,c ∈ C with ab = c.
Hence, by Gowers’ Theorem, |A‖B‖C| � |G|3/k, and so

|G| − |AB| = |C| � |G|3/(
k|A‖B|).

This yields |AB|/|G| � 1 − |G|2/(k|A‖B|), proving part (i) of Proposition 1.3. Parts (ii) and
(iii) follow from part (i).
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3. Word values and generation

We first provide a short proof of Corollary 1.4 using Gowers’ method. Let w1,w2 �= 1 be
words. If G = An and n is large enough then it is shown in [LaSh] that

w1(G)w2(G) = G.

So it remains to deal with simple groups of Lie type. Suppose G is such a group of rank r over
the field with q elements. Let k be the minimal degree of a non-trivial character of G.

We now apply Proposition 1.3 with A = w1(G) and B = w2(G). To show that |w1(G)w2(G)|/
|G| → 1 it suffices to show that, for i = 1,2,

∣∣wi(G)
∣∣/(|G|/k1/2) → ∞ as |G| → ∞.

Now, by [LS] we have

k � cqr ,

where c > 0 is some absolute constant. It therefore suffices to show that, for any word w �= 1,

∣∣w(G)
∣∣/(|G|/qr/2) → ∞ as |G| → ∞.

For r bounded, or G symplectic or orthogonal, this follows from stronger lower bounds on
|w(G)| given in [LaSh]. For r unbounded and G special linear or unitary, this follows from
results 1.7 and 1.8 in the paper [NP] of Nikolov and Pyber.

This completes the proof of Corollary 1.4.
For the proof of Theorem 1.5 we need some preparations. Let G = An, an alternating group.

We let M denote a set of representatives of conjugacy classes of maximal subgroups of G. For
an integer 1 � k � n/2 let

Mk = (Sk × Sn−k) ∩ An,

the setwise stabilizer of {1, . . . , k} in An.

Lemma 3.1. Fix a positive integer k � n/2 and let T ⊂ M be all subgroups in M which are not
conjugate to M1, . . . ,Mk−1. Then

∑
M∈T

|G : M|−1 = O

((
n

k

)−1)
,

where the implied constant depends on k.

Proof. It follows from [LMSh] that An has at most no(1) conjugacy classes of primitive maximal
subgroup M . It is well known that each such subgroup M has size at most ncn1/2

(see [C]).
Thus the contribution of the primitive subgroups to the sum on the left-hand side is at most
no(1)(n!/2ncn1/2

)−1 which is marginal.
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The number of classes of transitive imprimitive maximal subgroups M is d(n) − 2, where
d(n) = no(1) is the number of divisors of n. Each such subgroup has index at least 2n/2 and so
again their contribution is marginal.

It therefore remains to deal with intransitive maximal subgroups Ml , where k � l � n/2. This
easily yields the result. �
Lemma 3.2. For any constant c1 > 1 there is a constant c2 > 1 (depending on c1) such that, as
x ∈ An is randomly chosen, we have

P
(∣∣CAn(x)

∣∣ < c
√

n

2

)
� 1 − c

−√
n

1 .

Proof. For a finite group G let k(G) denote the number of its conjugacy classes. Then for a real
number α > 0 we have

P
(∣∣CG(x)

∣∣ < αk(G)
)
� 1 − α−1.

See Lemma 5.3 of [Sh]. Letting α = c
√

n

1 and using the well-known bound k(An) � a
√

n we
obtain the conclusion with c2 = c1a. �

A main tool in our proof of Theorem 1.5 is a theorem from [LaSh], quoted below.

Theorem 3.3. Let w be a non-identity word, and let ε > 0. Then for all sufficiently large n we
have

∣∣w(An)
∣∣ � n−4−ε |An|.

We now prove Theorem 1.5. As mentioned in the introduction, it suffices to deal with alter-
nating groups G = An. Let W = w(An), and let x, y ∈ W be randomly chosen. Fix 0 < ε < 1/2
and suppose n is large enough, so that

|W |/|An| � n−4−ε .

Step 1. We first show that the probability that x, y ∈ W belong to some maximal subgroup M

of G which is not conjugate to M1, . . . ,M8 (stabilizers of k-sets, k � 8) tends to 0 as n → ∞.
Indeed, let T denote the union

⋃
M M ×M over all maximal subgroups of G not conjugate to

some Mk , k � 8. Let T denote a set of representatives of conjugacy classes of these subgroups.
Then

|T |/|G|2 � |G|−2
∑
M∈T

|G : M||M|2 =
∑
M∈T

|G : M|−1 � c

(
n

9

)−1

,

by Lemma 3.1.
Since |W × W | � |G|2n−8−2ε it follows that

|T |/|W × W | � n8+2ε
/(

c

(
n

9

))
→ 0 as n → ∞.

This concludes Step 1 of the proof.
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Step 2. We show that the probability that x, y ∈ W belong to some maximal subgroup M of G

conjugate to some Mk with 1 � k � 8 tends to 0.
Fix a constant c1 > 1, and let c2 be as in Lemma 3.2. Let

W1 = {
g ∈ W :

∣∣CAn(g)
∣∣ < c

√
n

2

}
.

Then Lemma 3.2 yields

|W \ W1| � c
−√

n

1 |An|.

Since |W | � n−4−ε |An| it follows that

|W1|/|W | � 1 − n4+εc
−√

n

1 → 1.

Hence in proving the claim in Step 2 we may assume x, y ∈ W1.
Let f be the number of fixed points of x (on {1, . . . , n}) and e the number of cycles in x of

length at least 2. Then

f ! · 2e/2 �
∣∣CAn(x)

∣∣ < c
√

n

2 .

This implies

f � c3
√

n/ logn and e � c4
√

n.

Given k with 1 � k � 8 and g ∈ G let fk(g) denote the number of fixed points of g in its
action on k-subsets of {1, . . . , n} (namely the number of invariant subsets of g of size k).

To bound the number fk(x) note that each k-subset invariant under x is a union of x-orbits. If
i is the number of orbits of size 1 in this union then i � k and there are at most (k − i)/2 orbits
of size at least 2. Hence

fk(x) �
∑

0�i�k

(
f

i

){ ∑
0�j�(k−i)/2

(
e

j

)}
�

∑
0�i�k

f i(e + 1)(k−i)/2.

Set e1 = (e + 1)1/2. Then we have

fk(x) �
∑

0�i�k

f iek−i
1 � (f + e1)

k.

Our bounds on f, e imply f + e1 � c5n
1/2/ logn. Hence

fk(x) � (c5/ logn)knk/2.

In a similar manner we have

fk(y) � (c5/ logn)knk/2.
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Let C = xG, D = yG. Then C,D ⊆ W1 since W1 is a normal subset of G. The probability
that a random element of C lies in Mk is |C ∩ Mk|/|C| = fk(x)/

(
n
k

)
.

Let Q(C,D) be the probability that random elements of C and D both lie in some conjugate
of Mk for some 1 � k � 8. Then

Q(C,D) �
8∑

k=1

|G : Mk|fk(x)(
n
k

) · fk(y)(
n
k

) =
8∑

k=1

fk(x)fk(y)(
n
k

) .

Our bounds on fk(x), fk(y) now yield

Q(C,D) �
8∑

k=1

(c5/ logn)2knk(
n
k

) � c6(logn)−2.

Since this holds for any choice of classes C,D ⊆ W1 this concludes the proof of Step 2.
Combining Steps 1 and 2 we see that the probability that randomly chosen elements x, y ∈ W

both lie in some maximal subgroup M of G tends to 0. Thus x, y generate G with probability
tending to 1.

Theorem 1.5 is proved.

We note that the same argument shows that if W is any normal subset of An satisfying |W | �
n−c logn|An| (with c a suitable constant) then An is almost surely generated by two random
elements of W . A more refined argument can be used to deduce the same conclusion under
weaker assumptions on |W | (e.g. |W | � c−√

n|An|).
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