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Abstract

In the present paper we extend existing results on exponential dichotomy roughness for linear
ODE systems to infinite dimensional Banach space. We give new conditions for the existence of
exponential dichotomy roughness in infinite dimensional space and in the finite interval case. We also
improve previous results by indicating the exact values of the dichotomic constants of the perturbed
equation.
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1. Introduction

Throughout this paper, if not specifiefl,is an infinite dimensional Banach space, and
L(E) is the space of all bounded linear operators acting.o@onsider equation:

ZII—’; = A()x, 1)

whereA:Z — L(E) is a continuous operator functioh,being an interval. We denote by
U (¢) the Cauchy operator of Eq. (1).
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We say that (1) is exponential dichotomic if there are two bounded mutually comple-
mentary projections® and Q, acting onE and positive constant%;, v;, i = 1, 2, such
that:

IU@)PUL(s)|| < Nae 109 fort >,

)
U@ QU (s)|| < Nae™26=0, fors >1.
Consider the perturbed equation
o= [A() + B®)]y. 3)

where B:Z — L(E) is a bounded and continuous operator function:, sgpB(¢)||

= § < 00. Roughness means that if Eq. (1) has an exponential dichotomy (2), thén for
small enough, Eq. (3) is still exponential dichotomic, with some mutually complementary
projectionsP and Q, and dichotomic constant€;, ¥;, i = 1, 2:

IV PVLs)| < Nie ™09 fort >, @
V@OV L(s)|| < Noe™"26-D fors >1.

Here V (¢) stands for the Cauchy operator of Eq. (3). We present a short historical of
this problem. Notice that the results below were exposed for finite dimensional space.
In [2, Proposition 1, p. 34], it is shown that fafy = N> = N, v1 = v = v, andé <
v/(4N2) exponentlal dichotomy for Eq. (3) is preserved, with dichotomic consfEnts

Ny =5N?2 /2,v1 =V =v — 2N§. Moreover,P and P are similar.

In [2, Proposition 1, p. 42] it is proved that for any interval (finite or infinit&)<
v/(36N®), Ny = N, =v and v1 = vz =, Eq. (3) has an exponential dichotomy (4) with
P1=17o =7 =v—6N38, Ny = N» = N = 12N3. To prove this result Coppel used a special
reducibility principle (Lemmas 1-3in [2, pp. 39—-41]).

[8] deals with the general cagé # N», v1 # vo. Itis shown that for ang satisfying

N N 1
3(_1+_2)<_,
V1 ) 2

the perturbed equation (3) is still exponential dichotomic, but the estimation of dichotomic
constantsV; is not very accurate (see [8, Theorem 2, p. 568]).
A real progress in estimation éfis made in [6]. It is proved that if satisfies:

8<ﬂ+&> <1, (5)

Vi w2
then Eq. (3) exhibits an exponential dichotomy (4), with dichotomic consfanrtsi, = v
and]\71 = ]\72 = N

Other papers like [5] and [13], investigate on exponential trichotomy roughness.

Exact bounds for dichotomic constants are exposed in [9,14-16], but under stronger
conditions imposed t8.

When turning to infinite dimensional Banach space, a major problem arises: the exis-
tence of a complement (or equivalent a corresponding bounded projection) for the subspace
of initial values of bounded solutions of (3), needs to be proved. This is the main differ-
ence between the finite and infinite dimensional case. For this reason, Propositions 1-4
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in [2, p. 22], do not apply to Banach spaces in absence of hypothesis above, as the reader
may easily observe when lecturing [1, p. 170, Lemma 3.3, p. 171, Theorem 3.3 and p. 174,
Theorem 3.3'].

Therefore the main results in [8] and [6], where Propositions 1-4 in [2, p. 22] were used,
are not applicable to infinite dimensional Banach space. We especially refer to Theorem 1
in [8, p. 565], Theorem 2 in [8, p. 568], Theorem 3 in [8, p. 570] and also to Theorem 3.1
in [6, p. 45], as well as Theorem 3.2 in [6, p. 48].

To avoid these complications, throughout this paper we use a different method, in order
to prove the existence of the named complement. The construction exposed in Section 3
is inspired by the arguments in the proof of Proposition 1 in [2, p. 34] and is based on the
Contraction Mapping Theorem. Otherwise this type of argument is completely absent in
[8] and [6].

In Section 4 we extend Theorem 3.1 from [6, p. 45] to infinite dimensional Banach
space and also improve the existing result by giving the exact values of the new dichotomic
constants.

In Section 5 we investigate on the existence of exponential dichotomy for the perturbed
equation (3), defined on dR. We also prove that condition (5) needs to be changed when
in infinite dimensional.

In Section 6 we deal with the case of the finite interval, using a different method than
that in [2, p. 42, Proposition 1]. This is because Lemmas 1-3 in [2, p. 39-41], that were
used in the proof of proposition we refer, have not been proved for Banach space (but they
still hold in Hilbert space, as one may notice from [1, p. 220, Theorem 1] or [3, p. 154,
Theorem 1.2]). For example, works as [12] speculated exactly on this issue.

The reader will also observe the importance of our new dichotomic inequalities exposed
in Section 2.

We consider as our main results: Lemma 2.1 in Section 2, Theorem 4.1 in Section 4,
Theorems 5.3, 5.6 in Section 5, as well as Theorems 6.2, 6.3 and Corollary 6.4 in the last
section.

2. Preliminaries

The main tool we use in this section is Lemma 2.1 in [3, p. 105]N;ev;,i =1, 2, and
8 be positive constants. Consider functiangs, co) — Ry, y: (—o0, s] — R4, supposed
to be bounded and continuous, satisfying inequalities:

t [e9]
x(t) < Nye "0~ L 5Ny / e U x () du + SN2 / e 2W=D x (u) du, (6)

s 1
1 S

y(t) < Noe™ V257D 4 5Ny / e "=y () du + SNZ/e_”Z(”_’)y(u) du. @)

“o0 t

Lemma 2.1. If § satisfy inequality(5), then there exist positive constarks, i = 1, 2, and
v such that
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K1e "= fort >,

) <
Y < Koe P70 fors >t

For constantk;, i =1, 2, andv we have estimations

.1
v:§|:6(N2—N1)+v1—v2

N N
—l—\/[8(N2—N1)+v1—V2]2+4V1v2[1—5(—1+—2)}}, 8)
Y
N
K1:~1(”7+”2)’ 9)
V+v2— 46N
K2=M~ (10)
V+v1—486N1

Proof. Sinces verify (5), then Lemma 2.1 in [3, p. 105] is applicable. It follows that
x(1) < @(1), y(@) < V()
where the continuous and bounded functign@) and¥ (¢) are defined by integral equa-
tions
t
@ (1) = N1e 107 4+ Ny / e 1D () du
s
o0
+8N2/e_”2(“_’)q§(u)du, r>s, (11)

t
t

W(t) = Noe 2071 1 8Ny / e TP (u) du
—0o0
N
+8N2/e_”2(“_')l1/(u)du, s>1. (12)
t

Elementary calculations show that babhand¥ verify differential equation:

N N:
2"+ 7 [8(N2 — N1) +v1 —v2] — zvlvz[l - 5(U—1 + v—2>] =0. (13)
1 2
Setv = —r_, wherer_ is the negative root of the corresponding characteristic equation;
this yields (8). i i
Put®(t) = K1e ") andv (1) = Koe "¢~ Substitutingd (respectively¥)in (11)
(respectively, (12)), we have
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SN2
Ki=N1+Ki- ,
V+ v
SN1
Ko =N+ K>= ,
V4

which give us estimations (9) (respectively, (10))x

Corollary 2.2. When replacing the symbote, respectively—oo, in inequalities(6), re-
spectively(7), by a finite number all the statements in above lemma remain valid.

Proof. Suppose :[s, b] — R, is a continuous function, satisfying inequality \@vhich
is obtained from (6) replacingroo by b € R. Then we extend to [s, +00) as follows:

x(1), if £ €[s,b],
F)=1 10+ B ppe), ifredb+e),
0, if t €[b+¢, +00).

It easy to see that verifies inequality (6). According to Lemma 21 yerifies the first
inequality in this lemma, and therefore O

Comparing estimations (8)—(10) with their correspondents in Lemmas 1 and 2 in
[8, pp. 561-564], we see that they are qualitative superior. In addition the proof is more
simple.

3. Basic constructions

Let us denote by (¢, s) the Green function of Eq. (1):
U@)PUL(s), ift>s,
U@)QU L), ifs>rt.

Setl, ={(¢,s):t>s, t,se€Z}andl_={(t,s): s >t, t,s €L}.
Consider the Banach spaces

I'(t,s)=

B4(Z)={X:1; — L(E): X is continuous and boundgd
B_(2)= {Y :1_ — L(E): Y is continuous and bound}ad

They are endowed with the supremum norm:
IXlIlc= sup |X@,s)
(t,s)elt

IYllc= sup [¥@ 9.
(t,s)el_—

’

Define operatoK : B (Z) — B (Z) by

(KX)(t,s):U(t)PU_l(s)—i—/F(t,u)B(u)X(u,s)du (14)

N
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and alsoL : B_ — B_,

(LY)(t,s) = U(t)QU_l(s) + / ', u)Bm)Y (u,s)du. (15)
—00
We notify that in the definition of operatd (respectively,l) the intervalZ is supposed
to be a neighborhood 6f oo (respectively—oco), andB:Z — L(E) is a continuous and
bounded operator function such that syp|B(t)|| = § < oo.
Notice that if§ satisfies (5), then botK and L are contractions:

IKX1— KXollc <01X1— X2lc,
ILY1 — LY2llc <O0]Y1— Y2llc.
Heref = §(N1/v1 + N2/v2).

Lemma 3.1. Operatorsk, L have unique fixed points € B..(Z), respectively’ € B_(Z)
that satisfy inequalities

1X(t, )| < K79, ift >, (16)
[t 9)| < K2e™ 7670, if s > 1. (17)

Moreover, for each fixesl, both X andY are solutions of differential operator equation
— = | A(t B()|Z
- =[A0+B®)]

and constants if16) and (17) are given by8)—(10)

This result can be easily proved if we putr) = 1 X(z,5), respectivelyy(r) =
Y (z,s)|, in Lemma 2.1. Operator functiomé andY have another interesting property,
illustrated in the following lemma:

Lemma 3.2. For eacht > ¢ > s we have identities

0] X(r t)X(t §) = X(T s);
(i) Y(s,0)Y(t,7)=Y(s,1).

Proof. Fixt>1t>s.
X(t,0)X(t,s) = |:U(r)PU1(t)+/U(t)PUl(u)B(u)f((u,t)du

t
o0

—/U(I)QU1(u)B(u)X'(u,t)du:|X'(t,s)
t

=U(r)PU_l(s)+/U(r)PU_l(u)B(u)f((u,s)du

N
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—i—/U(I)PU_l(u)B(u)f((u,t)f((t,s)du

1
e ¢]

—/U(T)Qu—l(u)B(u)f((u,z)f((z,s)du.
Furthermore:
X(t,0)X(t,s)— X(z,s) = / U@PU @) B@)[X u, )X (t,5) — X(u,s)] du

t
oo

—/U(r)QU—l(u)B(u)[)?(u,r)f((r,s)—X(u,s)]du
Consider function : [¢, 00) — L(E) defined by (1) = X (u, )X (1, s) — X (u, s). We
have:
lI/(r):/U(t)PU’l(u)B(u)lII(u)du—fU(t)QU’l(u)B(u)W(u)du.
t T

As 0 < 1 and¥ is bounded, the contraction mapping theorem yigids 0.
Similar arguments lead us to the conclusion in (iijz

An immediate consequence of above lemma is that ) andY (¢, 1) are projections
for eachr € 7. Moreover, if we denoteP (1) = U (1) PU (1) and Q(1) = U (1) QU (1),
then uniqueness of fixed poinks respectivelyY of operatorsk, respectivelyl implies:

X(t,t)P(t) =X(t,t), P(t)X(t,t): P(1),
Ya,0HQ@) =Y, 1), QY1) = Q).

Set P, = X(0,0) and 0_ = Y (0, 0). Using identities above we obtain the following
relations:

(18)

PPy=P, P.P=P,

and (18)
00_-=0, 0-0=0-_.
DenotebyQ, =1 — P, P_=1—0Q_, 0.(s)=V(s)0L VL), etc.
Eventually using the arguments in [8, pp. 567-568] we obtain:
V(O PV Hs) = U@)PU(s) Py(s)
—i—/F(t,u)B(u)V(u)P+V71(s)du, t>s,
(19)

V)04V Ys) = U QU L(5) 04 (s)
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s

+fF(r,u)B(u)V(u)Qw*l(s)du, §>1>0,
0
and also,

V(I O-Vis) =U®) QU (s)0-(s)

—i—/F(t,u)B(u)V(u)Q_Vfl(s)du, s>t,

—o0 20
V(O P_Vs) =U@)PUL(s)P_(s) (20)
0

+fF(t,u)B(u)V(u)P_V_l(s)du, 0>t>s.

s

Consider operatoK : B, (I) — B, (Z) defined by

(I?X)(t,s):U(t)PUfl(s)P+(s)+/F(z,s)B(u)X(u,s)du.

N

If § satisfies (5), thenk is a contraction and it's unique fixed point i&(z,s) =
V()PLV~1(s), t > s > 0. Multiplying relation

X(t,5)=(KX)(t,s) (seeLemma 3.1)
by P (s), we obtain thafX (¢, s) P, (s) is also a fixed point of operatd¢, which yields
V(©)PLV 7 (s) = X (8, 5) Py(s).
According to relation (16) we have:
[V PLVs)|| < Kie "9 Py(s)

Using the same type of argument, one may prove that:

fort >s. (21)

)

[V 04 VTHe) | < Kae "0 Q4 (s)|, fors>1>0, (22)
[V P_V7s)|| < Kie "V P_(s)||, for0O=t>s, (23)
[V Q- V7Hs)| < Koe 0] Q_(s)|, fors>1. (24)

Remark 3.3. Let us observe that the subspace of initially bounded solutions of Eq. (3)
is complemented, whe# = [0, +00) being P+ E, and whenZ = (—oo, 0] this space is
Q_E. Notice that in absence of this condition, the statements in Propositions 1-3 in [2,
p. 22] may not hold in infinite dimensional Banach spaces (see also Theorem 3.3 in [3,
p. 171]).

Remark 3.4. Suppose that Eq. (1) is defined on the whole real axis. Then relations (21),
respectively (24) show that the solutions starting at 0 from P, E, respectively from
Q_E, are unbounded o(+oo, 0], respectively ori0, o). This means that condition (5)
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assures thaP, E N Q_E = {0}, and further the absence of nontrivial bounded solutions
on the whole line.

Remark 3.5. ProjectionsP and P, are similar, and so ar@ andQ _. Indeed, sincé, P =
P., PP, = P (relation (18)) the operatofl = I — P + P, is invertible, with inverse
T~1=1+ P — P,, whichyield rapidlyP, = TPTL.

Notice thatin [8, Theorem 1, p. 565] it is proved by using much more complicate calcu-
lations, that dimPL E = dim PE, whenE is finite dimensional. This fact is directly used
in [6, Theorem 3.1, p. 45].

4. The case of the semi infiniteinterval

Throughout this section, we will assume that intet@as$ either(—oo, 0] or [0, +00).
LetC(Z, E) be the space of-valued, bounded and continuous maps acting@ pand
let L(Z, E) be the space of Bochner integrable;valued maps, acting ofi. In finite
dimension the concept of Bochner integral will automatically be replaced by Lebesgue in-
tegral. They are Banach spaces, endowed with nofmrjs:= sup,7 [lx (w)|l, respectively,
I flle = fI || f (w)|| du. The following construction is used in [8, Lemma 8, p. 564] and [6,
Theorem 3.1, p. 45]:
For each fixedf € L(Z, E), consider the functio :C(Z, E) — C(Z, E), defined by

(Tx)(t):/F(t,u)B(u)x(u)du—l—/F(t,u)f(u)du. (25)
T A

If 6 < 1,7 becomes a contraction and it's fixed painis a bounded solution of inho-
mogeneous equation

dz
dr
Moreover, using (25) we obtain estimation:

[A() + B(O)]z+ f(). (26)

N
Irlle < =g I1/lL, (27)

where
N = max{N1, No}. (28)

Remark that equality = 7x defines a bounded and linear operaf@f, E) > f —
x € C(Z, E), with norm less thewv /(1 — 0).

As PP = P, we haveQ,Q = Q, andx(0) € QF impliesx(0) € Q4 E. Therefore
x(t) is the unique bounded solution of Eq. (26), starting-at0 from the subspac@ . E,
whenZ = [0, +00). Similarly, if Z = (—o0, 0], thenx(¢) starts at = 0 from P_E. From
[2, Proposition 1, p. 22] it follows that projectior%. (1), Q_(¢) are subject to estimates:
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N
PL0)|| < ——, ift>=0,
[P+ < 7=
N
_|<—, ifr<0.
le-wl <1
Now we are able to expose the main result of this section, which is valid in any Banach
space.

Theorem 4.1. If Eqg. (1) has an exponential dichoton{g), then for anys satisfying(5),
the perturbed equatio(8) exhibits an exponential dichoton), with projectionP = P,
if Z =0, +00), respectivelyP = I — Q_ if T = (—o0, O].

Dichotomic constants areb; = > = 7, given by(8), N; = K;N/(1—6), i = 1,2,
K; given by(9), (10)and N by (28).

Moreover,P is similar to P and we have

N(N1+ N2)

[P0 = P0] < —=;

(see also Theore®.1in [6, p. 45]) (29)

5. Theroughnesson all R

From the last section we have thatbif< 1, the perturbed equation (3) remains ex-
ponential dichotomic ori0, +00) with projection P;., and on(—oo, 0] with projection
P_=1—-0Q_.

From Remark 3.4 it follows that fof < 1 the perturbed equation (3) does not have
nontrivial bounded solutions on all. Consequenthy?, E N Q_E = {0}.

It remains to show that Eq. (3) has an exponential dichotomy on both half lines with the
same projection. This last problem was studied in a lot of papers as for example [4,5,7,10,
11,13].

The best existing result, at our knowledge, for the roughness oR,ah finite di-
mensional, seems to be that in [6, p. 48, Theorem 10.2]. In fact the authors showed that
perturbed equation (3) is exponential dichotomic on B&th R_ and has no nontrivial
bounded solutions oR, concluding that (3) has an exponential dichotomy on the whole
line.

The next example shows that this type of argument does not suffice to prove the di-
chotomy onR.

Example 5.1. Equation‘j—’; = 2tx, with Cauchy operatot/ (¢) = e’zl, has an exponen-
tial dichotomy on botlR, R_, with projectionsP, = 0, P_ = I and has no nontrivial
bounded solutions oR. (This type of dichotomy was callegtexponential trichotomy and
was introduced in [13].)

Next lemma will be crucial in the sequel, showing exactly where and why finite and
infinite dimensional situation differ.
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Lemma 5.2. Let E be a Banach space. We considecouples of bounded complemen-
tary projections P and Q, P, and O, P_ and Q_. Suppose further that’; P = P,
PP =P, P P=P,PP_=P_.

The following statements are equivalent

() E=PLE® Q_F (direct sun;
(i) OperatorS = P, + Q_ is invertible.

Proof. (i) = (ii). If Sx =0, thenP;x+ Q_x=0,s0P;x=—Q xe€ PLENQ_FE =
Pix=0_x=0.
We rapidly obtainPx = Qx = 0, and finallyx = 0. This proves thaf is one-to-one.
To prove thatS is surjective takey € E. As E = PLE & Q_E, there exist (unigue)
y1 € PLE,y2 € Q_F such thaty = y1 + y2. Putx = y2 + Py; — Py». Observe first that
Q_P=(-P_)P=0.

Sx =P+ Q0 )(y2+ Py1— Py>)
=P y2+Pryi—Pry2+ 0 y2=y1+y2=1y.

So, S is surjective. AsS is bijective, according to Banach theorem, it is invertible.
(i) = (i). Put

p=spst. (30)

Then using the arguments following Proposition 1 in [2, pp. 34-35] and relatiof}s (18
we havethal = PE® (I — P)E=P,E® Q_E. O

Theorem 5.3. A necessary and sufficient condition for the existence of the exponential
dichotomy for Eq(3), on wholeR, whenevers satisfies conditior(), is that operator
S = P, + Q_ be invertible. In this case the structural projectionfls= SPS1.

Proof. Asé satisfies (5), Eq. (3) has an exponential dichotomy on both half lines. Then ex-
ponential dichotomy on whole line is equivalentic= P, E & Q_ E, which is equivalent
to the invertibility of S. O

Corollary 5.4. WhenE is finite dimensional and satisfies(5), as P E N Q_E = {0},
linear operators is injective, so invertible. Therefore, conditi¢d) in finite dimensional
guarantees thaf3) is exponential dichotomic oR, with projectionP.

Next theorem improves the results from Theorem 10.2 in [6, p. 48], giving exact es-
timations for dichotomic constants of perturbed equation, in finite dimensional space.
Meanwhile, we claim we complete its proof, as exposed in [6].

Theorem 5.5 (Roughness oR in finite dimensional spacefuppose thak is finite dimen-
sional and Eq(1) has an exponential dichoton(®) on all R. Then for9 < 1 the perturbed
equation(3) possess an exponential dichotoy, with projection? given by(30). More-

over, estimations on dichotomic constants of &).in Theoren¥.1, and inequality(29)

remain valid.
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Proof. The existence of exponential dichotomy on whilidor Eq. (3), with projectior?,
follows directly from Corollary 5.4.

To obtain the required estimation for dichotomic constants, w& pdiR in Sections 2
and 3, and relations (8)-(10) hold true.7fis replaced byR in Section 4 and < 1,
then for any fixedf € L(R, E), there exist an unique € C(R, E) which is a fixed point
of operator?7 . Thereforex is the unique solution of inhomogeneous equation (26), that
is bounded on alR. If we denote byI*(z, s) the Green function of Eq. (3) and choose
f € LR, E), a map vanishing outside an arbitrary inter¢rak; ¢), we have that function

&

V() = / F(t,u) f () du

—&

is a solution of Eq. (26) which is bounded onR&ll
Using the same type of argument as in Section 4 and in [2, p. 23], we easily obtain

r <N e
I (t,s)||\1_9,ec. O

The situation whelE is infinite dimensional is certainly more complicated, because un-
der suppositiod < 1, the operato§ = P, + Q_ may be only injective, but not necessarily
surjective (or equivalent = P, E & Q_F as adirectsum). AS=1+ P, — P_, a suf-
ficient condition for the invertibility ofS is that the spectral radius of operat®r — P_ is
less than one. A stronger condition is that the nornPof— P_ is less than one and it was
used in [2, p. 34]. We prefer using the first condition in order to obtain a better condition
for 8, as it was given in [2]. Let us estimate this spectral radius. Put first:

A= —/ QU Yw)Bw)V(u)Py, then PL=P+A (in(19)putr =s =0),
0

0
B= / PUYw)Bu)V(u)Q_, then P_=P —B (in(20)putr =s =0).
—0oQ
AsP,Q=P,.(I—-P)=0andQ_P = (I — P_)P =0, it follows A2 = B2 =0.

If we puts = 0 in the first equation (19) and natér) = ||V (t) P4 ||, then itis easy to see
thatx(¢) verifies inequality (6), withy = 0. Using Lemma 2.1 we obtain(r) < Kie™",
and thereford|V (u) P+ || < K1e~"*. Using this type of argument, from the expressions of
A and B above, we obtain estimations:

SN1N2 SN1N2
IAl<a=———"—, |Bl<b=—""—"—.
V4 v2—8N2 V+v1—68N1
As A2 = B2 =0 we have:
(P4 — P_)* = (AB)" + (BA)",
(P4 — P_)*"*' = (AB)"A+ (BA)"B,

for anyn € N.



448 L.H. Popescu / J. Math. Anal. Appl. 314 (2006) 436-454

This yields:
VP — P2 < V2 ab
and also

PPy — POZH < *Va+b-ab.
If r is the spectral radius @, — P_ then we have estimation
r< \/E.
Therefore ifv/ab < 1, the operatos is invertible. This is certainly satisfied for ady
verifying
82N2ZN2 B
W+ v1—8N1)( + v2 —8No)

Our main theorem, that will be exposed below, shows that condition (5) imposed to
needs to be sharped in infinite dimensional Banach space.

1. (31)

Theorem 5.6 (The roughness on aR in Banach space)Suppose that is a Banach
space and Eq(1) has an exponential dichoton{g) on R. Then, fors satisfying(31), the
perturbed equatiorf3) has an exponential dichoton¥) on R, with projection? similar
to P, and estimations of dichotomic constants in Theosebremain valid.

Corollary 5.7. If E is a Banach spaceg, = R, and (1) has an exponential dichoton{g)
with constantsVy; = N» = N, v1 = vp = v, then for anys verifying
2v
< ——m=
(N + 1)?
Eq. (3) is still exponential dichotomic.

(32)

Observe that the estimation (32) is better than that obtained by Coppel in [2, p. 34,
Proposition 1], in finite dimensional space.

Corollary 5.8. Let E be a Banach space arfdan arbitrary interval. If Eq.(1) is uniformly
asymptotically stable of, i.e., for some positive constantsandv, we have
|[UU )| < Ne™ ™, fort >,
then fors < v/N, the perturbed equatio(8) is still uniformly asymptotically stable d:
ViV =) | < Nem@NOE= 0 fort > 5.
The statements above holds true if Eq. (1) is supposed to be uniformly asymptotically
unstable orZ. More exactly if
|[UOU ()| < Ne™S7D, fors >1,
thenifé <v/N
ViV =) | < Nem@NOE=D 0 fors > 1.
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6. Thecaseof thefiniteinterval

We believe that this case also needs a special attention. At our knowledge the only result
for this particular situation, clearly exposed, can be found in [2, Proposition 1, p. 42], but
for E finite dimensional an&/1 = N», v1 = v2 (See Section 1).

We need to remember that the result above cannot be extended to infinite dimensional
Banach space, as the author of [2] used reducibility lemmas in the proof, as already com-
mented in Introduction. Therefore, we are obliged to use a different method.

Firstly, observe that Lemma 2.1 in [3, p. 105] is also applicableZfer (a, b) being a
finite interval ands satisfying (5).

Secondly, we have to consider two cases: when[0, b) or Z = (a, 0], andZ = (a, b).

For example equation

dx t
g X
dt 1—1¢
is defined or? = [0, 1), meanwhile equation
dy 1
i~ Sz

is defined orf = (-1, 1).

Furthermore, equalities (11) and (12) hold true when replaging by b (respectively,
—oo0 by a), and Eq. (13) is also valid. Put, r the roots of the corresponding character-
istic equation of (13), and set

D(t) = al(s)er,(t—s) + (xz(s)er+(t_s),
U(t) = ﬂl(s)e”_(l—s) + ﬁz(s)e”(t_s),

a1(s) and az(s) are uniquely determined as solutions of an algebraic linear system
obtained by substituting (¢) in (13), puttingr = s, thenr = b. It is easy to see that
o1 = Supa1(s) < oo, a2 = SUpa2(s) < oo.
seZ seZ

Similarly we obtain constan{$; andg», using (12).
If we denote by:

K= otze(r*_r*)(b_a) + a1, (33)
Ko = e+ b= 1 gy (34)

then we see that Lemma 2.1 in Section 2 holds tru&fgrK» above and = —r_.

Remark that operatdf in (25) becomes a contraction 4f < 1, and linear operator
L(Z,E)> f— xe€C(Z,E) is bounded, with norm less the¥/(1 — 0) (see also rela-
tion (27)).

Notice that all constructions in Sections 2 and 3 remain valid, whisreither[0, b) or
(a, Q]. ProjectionsP, andQ_ are obtained by using (18).

Replacings by 0 in the first equality (19) and observing that

d
U wv@] =T wBwy @ (35)
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we obtain:
t
V)P =U@)P + f U(t)PU’l(u)B(u)V(u)PJr du

0
b

- / U)QU Y u)Bu)V () P+ du
t
=U®P+U@OPU )V @) PL"Zh+ U @) QU )V () P12},
=UOP+PHOVE)PL —U(@)P
+ QO ()P —UMQU D)V (b) Py
These considerations lead us to
QU Yb)V(b)PL =0 (as alimit). (36)
Using the first equality (20), the same type of argument yield
PUYa)V(@)Q_=0 (asalimit). (37)

Suppose thaf = [0, b), setP = Py, Q = I — P, and letI” be the Green function of
Eqg. (3). Takes € (0, b) and considerf € L(Z, E) a map vanishing outside the interval
[0, €].

Lemma 6.1. The bounded function

(1) = / F(t,u) f (u)du (38)
z
is exactly the fixed point 6f in (25).

Proof. Indeed, using when necessary (36), we successively have:
/F(t, u)Bu)y(u)du
T

b u b

=/1"(t,u)B(u)(/V(u)13V1(s)f(s)ds—/V(u)QV1(s)f(s)ds) du

0 0 u

t u
=/U(r)PU—1(u)B(u)fV(u)ﬁv—l(s)f(s)dsdu

0 0

t b
—/U(z)PU—l(u)B(u)/V(u)Qv—l(s)f(s)dsdu

0
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b u
—/U(t)QU_l(u)B(u)fV(u)ﬁV_l(s)f(s)dsdu
t 0

b b
+ / U 0U " w)Bw) f V)(Q)VL(s) £(s)ds du
t t uu
:/U(z)P[U—l(u)V(u)]’/ﬁv—l(s)f(s)dsdu
0 0
t b
—/U(r)P[U*l(u)V(u)]’/QV*l(s)f(s)dsdu
0 u
b u
—/U(r)Q[U*l(u)V(u)]//ﬁv*l(s)f(s)dsdu
t 0
b b
+/U(r)Q[U—1(u)V(u)]’/ OV~(s) f(s)dsdu
t u

u=t t

=U(t)PU—l(u)V(u)/ﬁv—l(s)f(s)ds
0

u=0 0
b u=0
+UMOPU )V ) / ovV=s) f(s)ds

u=t
t

- / U@ PU~ ) 0w f () du

0

+U@®QU W)V () f PV(s)(s)ds
0

b

+ / Ut)QU X (u) P(u) f (u) du

t

b
+UMQU )V (u) / OV7(s) f(s)ds

b
+ / U QU ) O f (u) du
t

451

—/U(z)PU—l(u)ﬁ(u)f(u)du
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t

t
=P(:)/V(x)ﬁv—l(s)f(s)ds—/U(t)PU—l(u)ﬁ(u)f(u)du
0 0

b
—P() / VOOV Ys) f(s)ds
t

t t
- / U PU~ ) Ow) f () du + Q1) / VOBV Xs) f(s)ds
0

0
b

+/U(I)QU_1(u)15(u)f(u)du

t
b

b
—00) / VOOV Ys) f(s)ds + / U QU ) O ) f ) du
t

t
t b

=/V(r)ﬁv—l(s)f(s)ds—/V(t)Qv—l(s)f(s)ds

0 t
t b

—/U(z)PU—l(u)f(u)du+/U(r)QU—1(u)f(u)du
0 t
=/f(t,s)f(s)ds—/F(t,u)f(u)du
7 A

=y(t)—/F(t,u)f(u)du. O
T

Using now the same kind of argument as in [2, p. 210], we obtain that
IFol <2 Jom] <
S 1-06 Wl s 1y

Theorem 6.2. If Z =[0,b) or Z = (a, 0], (1) has an exponential dichoton{g) and §
verify (5), then Eq(3) has an exponential dichoton®) with dichotomic constant$ given
by(8), N; = NK;/(1—0),i =1,2, K; given by(33)and(34). If Z = [0, b), thenP = P,
and ifZ = (a,0],thenP =1 — Q_.

WhenZ = (a, b), then the situation is more complicated for two reasons:

1. Equation (1) may have or may have not nontrivial bounded solutions;
2. The spacé may be finite or infinite dimensional.
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Anyway, the arguments preceding Theorem 6.2 are still valid replacing &, layd
using both (36) and (37). These considerations lead us to the following result:

Theorem 6.3. Suppose thaf = («, b) and Eq.(1) has an exponential dichoton(g).

() If E is finite dimensional and E@1) does not have nontrivial bounded solutions, then
for any$ satisfying(5), the perturbed equatio(8) has an exponential dichotong)
with projectionP = SPS~1 (S = P, + Q_), and dichotomic constants as in Theo-
reme6.2

(ii) If E is infinite dimensional or Eqg(l) has nontrivial bounded solutions, then fér
satisfying

82N1N2K1K2
o yeRine
O +v)®+v2)
Eq. (3) is exponential dichotomic as {ii) above.

(39)

Using Corollary 2.2, and also Lemma 7 in [8, p. 568], from all the arguments preceding
Theorems 6.2 and 6.3, we easily obtain:

Corollary 6.4. All the statements in the above theorems remain valid when estimations for
constantsk; in (33)—(34)are replaced by those i(®)—(10) and condition(39) changes
in (31).

Remark 6.5. In any intervalZ, for Ny = No = N, v1 = v = v, in any Banach space
condition (32) imposed té, assures the existence of exponential dichotomy for Eq. (3).

Notice that this result improves substantially Proposition 1 in [2, p. 42].

Remark 6.6. Condition (5) in all above results, can be weakened as follows:

N N:
8 [—1(1 — ey Z2(q e_VZ(b_a))] <1 (40)
V1 V2

Indeed, when replacingo by b, and—oo by a in Section 3, condition (40) assures that
operatorsK and L are contractions. This fact shows that the admissible perturbations of
Eq. (1) depend on the length of the definition interval.

Final remark. Throughout this paper we considgi0) = V (0) = I, but instead of 0 we
can choose any fixe@ € Z, asU(¢) can be replaced by (1)U~ l(to) respectivelyV (¢)
by V(1)V~1(10). The only difference is that the constar¥s and Ni,i=12, may be
different.
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