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Abstract

In the present paper we extend existing results on exponential dichotomy roughness fo
ODE systems to infinite dimensional Banach space. We give new conditions for the existe
exponential dichotomy roughness in infinite dimensional space and in the finite interval case. W
improve previous results by indicating the exact values of the dichotomic constants of the pe
equation.
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1. Introduction

Throughout this paper, if not specified,E is an infinite dimensional Banach space, a
L(E) is the space of all bounded linear operators acting onE. Consider equation:

dx

dt
= A(t)x, (1)

whereA :I → L(E) is a continuous operator function,I being an interval. We denote b
U(t) the Cauchy operator of Eq. (1).
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We say that (1) is exponential dichotomic if there are two bounded mutually com
mentary projectionsP andQ, acting onE and positive constantsNi , νi , i = 1,2, such
that: { ‖U(t)PU−1(s)‖ � N1e

−ν1(t−s), for t � s,

‖U(t)QU−1(s)‖ � N2e
−ν2(s−t), for s � t.

(2)

Consider the perturbed equation

dy

dt
= [

A(t) + B(t)
]
y, (3)

where B :I → L(E) is a bounded and continuous operator function: supt∈I ‖B(t)‖
= δ < ∞. Roughness means that if Eq. (1) has an exponential dichotomy (2), thenδ

small enough, Eq. (3) is still exponential dichotomic, with some mutually compleme
projectionsP̃ andQ̃, and dichotomic constants̃Ni , ν̃i , i = 1,2:{ ‖V (t)P̃ V −1(s)‖ � Ñ1e

−ν̃1(t−s), for t � s,

‖V (t)Q̃V −1(s)‖ � Ñ2e
−ν̃2(s−t), for s � t.

(4)

HereV (t) stands for the Cauchy operator of Eq. (3). We present a short historic
this problem. Notice that the results below were exposed for finite dimensional spac

In [2, Proposition 1, p. 34], it is shown that forN1 = N2 = N , ν1 = ν2 = ν, andδ <

ν/(4N2), exponential dichotomy for Eq. (3) is preserved, with dichotomic constantsÑ1 =
Ñ2 = 5N2/2, ν̃1 = ν̃2 = ν − 2Nδ. Moreover,P andP̃ are similar.

In [2, Proposition 1, p. 42] it is proved that for any interval (finite or infinite),δ <

ν/(36N5), N1 = N2 = ν andν1 = ν2 = ν, Eq. (3) has an exponential dichotomy (4) w
ν̃1 = ν̃2 = ν̃ = ν−6N3δ, Ñ1 = Ñ2 = Ñ = 12N3. To prove this result Coppel used a spec
reducibility principle (Lemmas 1–3 in [2, pp. 39–41]).

[8] deals with the general caseN1 �= N2, ν1 �= ν2. It is shown that for anyδ satisfying

δ

(
N1

ν1
+ N2

ν2

)
<

1

2
,

the perturbed equation (3) is still exponential dichotomic, but the estimation of dicho
constantsÑi is not very accurate (see [8, Theorem 2, p. 568]).

A real progress in estimation ofδ is made in [6]. It is proved that ifδ satisfies:

δ

(
N1

ν1
+ N2

ν2

)
< 1, (5)

then Eq. (3) exhibits an exponential dichotomy (4), with dichotomic constantsν̃1 = ν̃2 = ν̃

andÑ1 = Ñ2 = Ñ .
Other papers like [5] and [13], investigate on exponential trichotomy roughness.
Exact bounds for dichotomic constants are exposed in [9,14–16], but under st

conditions imposed toδ.
When turning to infinite dimensional Banach space, a major problem arises: the

tence of a complement (or equivalent a corresponding bounded projection) for the su
of initial values of bounded solutions of (3), needs to be proved. This is the main d
ence between the finite and infinite dimensional case. For this reason, Propositio
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in [2, p. 22], do not apply to Banach spaces in absence of hypothesis above, as the
may easily observe when lecturing [1, p. 170, Lemma 3.3, p. 171, Theorem 3.3 and
Theorem 3.3’].

Therefore the main results in [8] and [6], where Propositions 1–4 in [2, p. 22] were
are not applicable to infinite dimensional Banach space. We especially refer to Theo
in [8, p. 565], Theorem 2 in [8, p. 568], Theorem 3 in [8, p. 570] and also to Theorem
in [6, p. 45], as well as Theorem 3.2 in [6, p. 48].

To avoid these complications, throughout this paper we use a different method, in
to prove the existence of the named complement. The construction exposed in Se
is inspired by the arguments in the proof of Proposition 1 in [2, p. 34] and is based o
Contraction Mapping Theorem. Otherwise this type of argument is completely abs
[8] and [6].

In Section 4 we extend Theorem 3.1 from [6, p. 45] to infinite dimensional Ba
space and also improve the existing result by giving the exact values of the new dich
constants.

In Section 5 we investigate on the existence of exponential dichotomy for the pert
equation (3), defined on allR. We also prove that condition (5) needs to be changed w
in infinite dimensional.

In Section 6 we deal with the case of the finite interval, using a different method
that in [2, p. 42, Proposition 1]. This is because Lemmas 1–3 in [2, p. 39–41], that
used in the proof of proposition we refer, have not been proved for Banach space (b
still hold in Hilbert space, as one may notice from [1, p. 220, Theorem 1] or [3, p.
Theorem 1.2]). For example, works as [12] speculated exactly on this issue.

The reader will also observe the importance of our new dichotomic inequalities ex
in Section 2.

We consider as our main results: Lemma 2.1 in Section 2, Theorem 4.1 in Sec
Theorems 5.3, 5.6 in Section 5, as well as Theorems 6.2, 6.3 and Corollary 6.4 in t
section.

2. Preliminaries

The main tool we use in this section is Lemma 2.1 in [3, p. 105]. LetNi , νi , i = 1,2, and
δ be positive constants. Consider functionsx : [s,∞) → R+, y : (−∞, s] → R+, supposed
to be bounded and continuous, satisfying inequalities:

x(t) � N1e
−ν1(t−s) + δN1

t∫
s

e−ν1(t−u)x(u)du + δN2

∞∫
t

e−ν2(u−t)x(u) du, (6)

y(t) � N2e
−ν2(s−t) + δN1

t∫
−∞

e−ν1(t−u)y(u)du + δN2

s∫
t

e−ν2(u−t)y(u) du. (7)

Lemma 2.1. If δ satisfy inequality(5), then there exist positive constantsKi , i = 1,2, and
ν̃ such that:
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a-

tion;
x(t) � K1e
−ν̃(t−s), for t � s,

y(t) � K2e
−ν̃(s−t), for s � t.

For constantsKi , i = 1,2, andν̃ we have estimations:

ν̃ = 1

2

[
δ(N2 − N1) + ν1 − ν2

+
√[

δ(N2 − N1) + ν1 − ν2
]2 + 4ν1ν2

[
1− δ

(
N1

ν1
+ N2

ν2

)] ]
, (8)

K1 = N1(ν̃ + ν2)

ν̃ + ν2 − δN2
, (9)

K2 = N2(ν̃ + ν1)

ν̃ + ν1 − δN1
. (10)

Proof. Sinceδ verify (5), then Lemma 2.1 in [3, p. 105] is applicable. It follows that

x(t) � Φ(t), y(t) � Ψ (t),

where the continuous and bounded functionsΦ(t) andΨ (t) are defined by integral equ
tions

Φ(t) = N1e
−ν1(t−s) + δN1

t∫
s

e−ν1(t−u)Φ(u)du

+ δN2

∞∫
t

e−ν2(u−t)Φ(u)du, t � s, (11)

Ψ (t) = N2e
−ν2(s−t) + δN1

t∫
−∞

e−ν1(t−u)Ψ (u)du

+ δN2

s∫
t

e−ν2(u−t)Ψ (u)du, s � t. (12)

Elementary calculations show that bothΦ andΨ verify differential equation:

z′′ + z′[δ(N2 − N1) + ν1 − ν2
] − zν1ν2

[
1− δ

(
N1

ν1
+ N2

ν2

)]
= 0. (13)

Setν̃ = −r−, wherer− is the negative root of the corresponding characteristic equa
this yields (8).

PutΦ(t) = K1e
−ν̃(t−s) andΨ (t) = K2e

−ν̃(s−t). SubstitutingΦ (respectively,Ψ ) in (11)
(respectively, (12)), we have
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more
K1 = N1 + K1
δN2

ν̃ + ν2
,

K2 = N2 + K2
δN1

ν̃ + ν1
,

which give us estimations (9) (respectively, (10)).�
Corollary 2.2. When replacing the symbols∞, respectively−∞, in inequalities(6), re-
spectively(7), by a finite number all the statements in above lemma remain valid.

Proof. Supposex : [s, b] → R+ is a continuous function, satisfying inequality (6′), which
is obtained from (6) replacing+∞ by b ∈ R. Then we extendx to [s,+∞) as follows:

x̃(t) =




x(t), if t ∈ [s, b],
−t

x(b)
ε

+ x(b)
ε

(b + ε), if t ∈ (b, b + ε),

0, if t ∈ [b + ε,+∞).

It easy to see that̃x verifies inequality (6). According to Lemma 2.1,x̃ verifies the first
inequality in this lemma, and thereforex. �

Comparing estimations (8)–(10) with their correspondents in Lemmas 1 and
[8, pp. 561–564], we see that they are qualitative superior. In addition the proof is
simple.

3. Basic constructions

Let us denote byΓ (t, s) the Green function of Eq. (1):

Γ (t, s) =
{

U(t)PU−1(s), if t � s,

U(t)QU−1(s), if s � t.

SetI+ = {(t, s): t � s, t, s ∈ I} andI− = {(t, s): s � t, t, s ∈ I}.
Consider the Banach spaces

B+(I) = {
X : I+ → L(E): X is continuous and bounded

}
,

B−(I) = {
Y : I− → L(E): Y is continuous and bounded

}
.

They are endowed with the supremum norm:

‖X‖C = sup
(t,s)∈I+

∥∥X(t, s)
∥∥,

‖Y‖C = sup
(t,s)∈I−

∥∥Y(t, s)
∥∥.

Define operatorK :B+(I) → B+(I) by

(KX)(t, s) = U(t)PU−1(s) +
∞∫

Γ (t, u)B(u)X(u, s) du (14)
s
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and alsoL :B− → B−,

(LY )(t, s) = U(t)QU−1(s) +
s∫

−∞
Γ (t, u)B(u)Y (u, s) du. (15)

We notify that in the definition of operatorK (respectively,L) the intervalI is supposed
to be a neighborhood of+∞ (respectively,−∞), andB :I → L(E) is a continuous an
bounded operator function such that supt∈I ‖B(t)‖ = δ < ∞.

Notice that ifδ satisfies (5), then bothK andL are contractions:

‖KX1 − KX2‖C � θ‖X1 − X2‖C,

‖LY1 − LY2‖C � θ‖Y1 − Y2‖C.

Hereθ = δ(N1/ν1 + N2/ν2).

Lemma 3.1. OperatorsK , L have unique fixed points̃X ∈ B+(I), respectivelyỸ ∈ B−(I)

that satisfy inequalities:∥∥X̃(t, s)
∥∥ � K1e

−ν̃(t−s), if t � s, (16)∥∥Ỹ (t, s)
∥∥ � K2e

−ν̃(s−t), if s � t. (17)

Moreover, for each fixeds, bothX̃ andỸ are solutions of differential operator equatio

dZ

dt
= [

A(t) + B(t)
]
Z

and constants in(16)and (17)are given by(8)–(10).

This result can be easily proved if we putx(t) = ‖X̃(t, s)‖, respectivelyy(t) =
‖Ỹ (t, s)‖, in Lemma 2.1. Operator functions̃X and Ỹ have another interesting proper
illustrated in the following lemma:

Lemma 3.2. For eachτ � t � s we have identities:

(i) X̃(τ, t)X̃(t, s) = X̃(τ, s);
(ii) Ỹ (s, t)Ỹ (t, τ ) = Ỹ (s, τ ).

Proof. Fix τ � t � s.

X̃(τ, t)X̃(t, s) =
[
U(τ)PU−1(t) +

τ∫
t

U(τ )PU−1(u)B(u)X̃(u, t) du

−
∞∫

τ

U(τ)QU−1(u)B(u)X̃(u, t) du

]
X̃(t, s)

= U(τ)PU−1(s) +
t∫
U(τ)PU−1(u)B(u)X̃(u, s) du
s
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+
τ∫

t

U(τ )PU−1(u)B(u)X̃(u, t)X̃(t, s) du

−
∞∫

τ

U(τ)QU−1(u)B(u)X̃(u, t)X̃(t, s) du.

Furthermore:

X̃(τ, t)X̃(t, s) − X̃(τ, s) =
τ∫

t

U(τ )PU−1(u)B(u)
[
X̃(u, t)X̃(t, s) − X̃(u, s)

]
du

−
∞∫

τ

U(τ)QU−1(u)B(u)
[
X̃(u, t)X̃(t, s) − X̃(u, s)

]
du.

Consider functionΨ : [t,∞) → L(E) defined byΨ (u) = X̃(u, t)X̃(t, s) − X̃(u, s). We
have:

Ψ (τ) =
τ∫

t

U(τ )PU−1(u)B(u)Ψ (u)du −
∞∫

τ

U(τ)QU−1(u)B(u)Ψ (u)du.

As θ < 1 andΨ is bounded, the contraction mapping theorem yieldsΨ ≡ 0.
Similar arguments lead us to the conclusion in (ii).�
An immediate consequence of above lemma is thatX̃(t, t) and Ỹ (t, t) are projections

for eacht ∈ I. Moreover, if we denoteP(t) = U(t)PU−1(t) andQ(t) = U(t)QU−1(t),
then uniqueness of fixed points̃X, respectively,Ỹ of operatorsK , respectivelyL implies:

X̃(t, t)P (t) = X̃(t, t), P (t)X̃(t, t) = P(t),
(18)

Ỹ (t, t)Q(t) = Ỹ (t, t), Q(t)Ỹ (t, t) = Q(t).

SetP+ = X̃(0,0) andQ− = Ỹ (0,0). Using identities above we obtain the followin
relations:

PP+ = P, P+P = P+ (18′)
and

QQ− = Q, Q−Q = Q−.

Denote byQ+ = I − P+, P− = I − Q−, Q+(s) = V (s)Q+V −1(s), etc.
Eventually using the arguments in [8, pp. 567–568] we obtain:

V (t)P+V −1(s) = U(t)PU−1(s)P+(s)

+
∞∫
s

Γ (t, u)B(u)V (u)P+V −1(s) du, t � s,

(19)
V (t)Q+V −1(s) = U(t)QU−1(s)Q+(s)
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in [2,
in [3,

(21),

)

+
s∫

0

Γ (t, u)B(u)V (u)Q+V −1(s) du, s � t � 0,

and also,

V (t)Q−V −1(s) = U(t)QU−1(s)Q−(s)

+
s∫

−∞
Γ (t, u)B(u)V (u)Q−V −1(s) du, s � t,

(20)
V (t)P−V −1(s) = U(t)PU−1(s)P−(s)

+
0∫

s

Γ (t, u)B(u)V (u)P−V −1(s) du, 0� t � s.

Consider operator̃K :B+(I) → B+(I) defined by

(K̃X)(t, s) = U(t)PU−1(s)P+(s) +
∞∫
s

Γ (t, s)B(u)X(u, s) du.

If δ satisfies (5), thenK̃ is a contraction and it’s unique fixed point isX(t, s) =
V (t)P+V −1(s), t � s � 0. Multiplying relation

X̃(t, s) = (KX̃)(t, s) (see Lemma 3.1)

by P+(s), we obtain thatX̃(t, s)P+(s) is also a fixed point of operator̃K , which yields

V (t)P+V −1(s) = X̃(t, s)P+(s).

According to relation (16) we have:∥∥V (t)P+V −1(s)
∥∥ � K1e

−ν̃(t−s)
∥∥P+(s)

∥∥, for t � s. (21)

Using the same type of argument, one may prove that:∥∥V (t)Q+V −1(s)
∥∥ � K2e

−ν̃(s−t)
∥∥Q+(s)

∥∥, for s � t � 0, (22)∥∥V (t)P−V −1(s)
∥∥ � K1e

−ν̃(t−s)
∥∥P−(s)

∥∥, for 0� t � s, (23)∥∥V (t)Q−V −1(s)
∥∥ � K2e

−ν̃(s−t)
∥∥Q−(s)

∥∥, for s � t. (24)

Remark 3.3. Let us observe that the subspace of initially bounded solutions of Eq
is complemented, whenI = [0,+∞) beingP+E, and whenI = (−∞,0] this space is
Q−E. Notice that in absence of this condition, the statements in Propositions 1–3
p. 22] may not hold in infinite dimensional Banach spaces (see also Theorem 3.3
p. 171]).

Remark 3.4. Suppose that Eq. (1) is defined on the whole real axis. Then relations
respectively (24) show that the solutions starting att = 0 from P+E, respectively from
Q−E, are unbounded on(−∞,0], respectively on[0,∞). This means that condition (5
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:

assures thatP+E ∩ Q−E = {0}, and further the absence of nontrivial bounded soluti
on the whole line.

Remark 3.5. ProjectionsP andP+ are similar, and so areQ andQ−. Indeed, sinceP+P =
P+, PP+ = P (relation (18′)) the operatorT = I − P + P+ is invertible, with inverse
T −1 = I + P − P+, which yield rapidlyP+ = T PT −1.

Notice that in [8, Theorem 1, p. 565] it is proved by using much more complicate c
lations, that dimP+E = dimPE, whenE is finite dimensional. This fact is directly use
in [6, Theorem 3.1, p. 45].

4. The case of the semi infinite interval

Throughout this section, we will assume that intervalI is either(−∞,0] or [0,+∞).
Let C(I,E) be the space ofE-valued, bounded and continuous maps acting onI, and

let L(I,E) be the space of Bochner integrable,E-valued maps, acting onI. In finite
dimension the concept of Bochner integral will automatically be replaced by Lebesg
tegral. They are Banach spaces, endowed with norms:‖x‖c = supu∈I ‖x(u)‖, respectively,
‖f ‖L = ∫

I ‖f (u)‖du. The following construction is used in [8, Lemma 8, p. 564] and
Theorem 3.1, p. 45]:

For each fixedf ∈ L(I,E), consider the functionT :C(I,E) → C(I,E), defined by

(T x)(t) =
∫
I

Γ (t, u)B(u)x(u)du +
∫
I

Γ (t, u)f (u)du. (25)

If θ < 1, T becomes a contraction and it’s fixed pointx is a bounded solution of inho
mogeneous equation

dz

dt
= [

A(t) + B(t)
]
z + f (t). (26)

Moreover, using (25) we obtain estimation:

‖x‖c � N

1− θ
‖f ‖L, (27)

where

N = max{N1,N2}. (28)

Remark that equalityx = T x defines a bounded and linear operatorL(I,E) 	 f →
x ∈ C(I,E), with norm less thenN/(1− θ).

As P+P = P+, we haveQ+Q = Q, andx(0) ∈ QE impliesx(0) ∈ Q+E. Therefore
x(t) is the unique bounded solution of Eq. (26), starting att = 0 from the subspaceQ+E,
whenI = [0,+∞). Similarly, if I = (−∞,0], thenx(t) starts att = 0 from P−E. From
[2, Proposition 1, p. 22] it follows that projectionsP+(t), Q−(t) are subject to estimates
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and
∥∥P+(t)
∥∥ � N

1− θ
, if t � 0,

∥∥Q−(t)
∥∥ � N

1− θ
, if t � 0.

Now we are able to expose the main result of this section, which is valid in any Ba
space.

Theorem 4.1. If Eq. (1) has an exponential dichotomy(2), then for anyδ satisfying(5),
the perturbed equation(3) exhibits an exponential dichotomy(4), with projectionP̃ = P+
if I = [0,+∞), respectively,P̃ = I − Q− if I = (−∞,0].

Dichotomic constants are: ν̃1 = ν̃2 = ν̃, given by(8), Ñi = KiN/(1− θ), i = 1,2,
Ki given by(9), (10)andN by (28).

Moreover,P̃ is similar toP and we have

∥∥P̃ (t) − P(t)
∥∥ � N(N1 + N2)

1− θ
(see also Theorem3.1 in [6, p. 45]). (29)

5. The roughness on all R

From the last section we have that ifθ < 1, the perturbed equation (3) remains
ponential dichotomic on[0,+∞) with projectionP+, and on(−∞,0] with projection
P− = I − Q−.

From Remark 3.4 it follows that forθ < 1 the perturbed equation (3) does not h
nontrivial bounded solutions on allR. ConsequentlyP+E ∩ Q−E = {0}.

It remains to show that Eq. (3) has an exponential dichotomy on both half lines wi
same projection. This last problem was studied in a lot of papers as for example [4,
11,13].

The best existing result, at our knowledge, for the roughness on allR, in finite di-
mensional, seems to be that in [6, p. 48, Theorem 10.2]. In fact the authors show
perturbed equation (3) is exponential dichotomic on bothR+, R− and has no nontrivia
bounded solutions onR, concluding that (3) has an exponential dichotomy on the w
line.

The next example shows that this type of argument does not suffice to prove t
chotomy onR.

Example 5.1. Equation dx
dt

= 2tx, with Cauchy operatorU(t) = et2
I , has an exponen

tial dichotomy on bothR+, R−, with projectionsP+ = 0, P− = I and has no nontrivia
bounded solutions onR. (This type of dichotomy was calledβ-exponential trichotomy an
was introduced in [13].)

Next lemma will be crucial in the sequel, showing exactly where and why finite
infinite dimensional situation differ.
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Lemma 5.2. Let E be a Banach space. We consider3 couples of bounded compleme
tary projections: P andQ, P+ andQ+, P− andQ−. Suppose further that: P+P = P+,
PP+ = P , P−P = P , PP− = P−.

The following statements are equivalent:

(i) E = P+E ⊕ Q−E (direct sum);
(ii) OperatorS = P+ + Q− is invertible.

Proof. (i) ⇒ (ii). If Sx = 0, thenP+x + Q−x = 0, soP+x = −Q−x ∈ P+E ∩ Q−E ⇒
P+x = Q−x = 0.

We rapidly obtainPx = Qx = 0, and finallyx = 0. This proves thatS is one-to-one.
To prove thatS is surjective takey ∈ E. As E = P+E ⊕ Q−E, there exist (unique

y1 ∈ P+E,y2 ∈ Q−E such thaty = y1 + y2. Putx = y2 + Py1 − Py2. Observe first tha
Q−P = (I − P−)P = 0.

Sx = (P+ + Q−)(y2 + Py1 − Py2)

= P+y2 + P+y1 − P+y2 + Q−y2 = y1 + y2 = y.

So,S is surjective. AsS is bijective, according to Banach theorem, it is invertible.
(ii) ⇒ (i). Put

P̃ = SPS−1. (30)

Then using the arguments following Proposition 1 in [2, pp. 34–35] and relations′),
we have thatE = P̃E ⊕ (I − P̃ )E = P+E ⊕ Q−E. �
Theorem 5.3. A necessary and sufficient condition for the existence of the expon
dichotomy for Eq.(3), on wholeR, wheneverδ satisfies condition(5), is that operator
S = P+ + Q− be invertible. In this case the structural projection isP̃ = SPS−1.

Proof. As δ satisfies (5), Eq. (3) has an exponential dichotomy on both half lines. The
ponential dichotomy on whole line is equivalent toE = P+E ⊕ Q−E, which is equivalen
to the invertibility ofS. �
Corollary 5.4. WhenE is finite dimensional andδ satisfies(5), asP+E ∩ Q−E = {0},
linear operatorS is injective, so invertible. Therefore, condition(5) in finite dimensiona
guarantees that(3) is exponential dichotomic onR, with projectionP̃ .

Next theorem improves the results from Theorem 10.2 in [6, p. 48], giving exac
timations for dichotomic constants of perturbed equation, in finite dimensional s
Meanwhile, we claim we complete its proof, as exposed in [6].

Theorem 5.5 (Roughness onR in finite dimensional space). Suppose thatE is finite dimen-
sional and Eq.(1) has an exponential dichotomy(2) on all R. Then forθ < 1 the perturbed
equation(3) possess an exponential dichotomy(4), with projectionP̃ given by(30). More-
over, estimations on dichotomic constants of Eq.(3) in Theorem4.1, and inequality(29)
remain valid.
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Proof. The existence of exponential dichotomy on wholeR, for Eq. (3), with projectionP̃ ,
follows directly from Corollary 5.4.

To obtain the required estimation for dichotomic constants, we putI = R in Sections 2
and 3, and relations (8)–(10) hold true. IfI is replaced byR in Section 4 andθ < 1,
then for any fixedf ∈ L(R,E), there exist an uniquex ∈ C(R,E) which is a fixed point
of operatorT . Thereforex is the unique solution of inhomogeneous equation (26),
is bounded on allR. If we denote byΓ̃ (t, s) the Green function of Eq. (3) and choo
f ∈ L(R,E), a map vanishing outside an arbitrary interval(−ε; ε), we have that function

y(t) =
ε∫

−ε

Γ̃ (t, u)f (u)du

is a solution of Eq. (26) which is bounded on allR.
Using the same type of argument as in Section 4 and in [2, p. 23], we easily obta∥∥Γ̃ (t, s)

∥∥ � N

1− θ
, etc. �

The situation whenE is infinite dimensional is certainly more complicated, because
der suppositionθ < 1, the operatorS = P+ +Q− may be only injective, but not necessar
surjective (or equivalentE = P+E ⊕ Q−E as a direct sum). AsS = I + P+ − P−, a suf-
ficient condition for the invertibility ofS is that the spectral radius of operatorP+ − P− is
less than one. A stronger condition is that the norm ofP+ − P− is less than one and it wa
used in [2, p. 34]. We prefer using the first condition in order to obtain a better con
for δ, as it was given in [2]. Let us estimate this spectral radius. Put first:

A = −
∞∫

0

QU−1(u)B(u)V (u)P+, then P+ = P + A (in (19) putt = s = 0),

B =
0∫

−∞
PU−1(u)B(u)V (u)Q−, then P− = P − B (in (20) putt = s = 0).

As P+Q = P+(I − P) = 0 andQ−P = (I − P−)P = 0, it follows A2 = B2 = 0.
If we puts = 0 in the first equation (19) and notex(t) = ‖V (t)P+‖, then it is easy to se

thatx(t) verifies inequality (6), withs = 0. Using Lemma 2.1 we obtainx(t) � K1e
−ν̃t ,

and therefore‖V (u)P+‖ � K1e
−ν̃u. Using this type of argument, from the expressions

A andB above, we obtain estimations:

‖A‖ � a = δN1N2

ν̃ + ν2 − δN2
, ‖B‖ � b = δN1N2

ν̃ + ν1 − δN1
.

As A2 = B2 = 0 we have:

(P+ − P−)2n = (AB)n + (BA)n,

(P+ − P−)2n+1 = (AB)nA + (BA)nB,

for anyn ∈ N.
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tically
This yields:

2n

√
‖(P+ − P−)2n‖ � 2n

√
2 · √ab

and also

2n+1
√

‖(P+ − P−)2n+1‖ � 2n+1
√

a + b · √ab.

If r is the spectral radius ofP+ − P− then we have estimation

r �
√

ab.

Therefore if
√

ab < 1, the operatorS is invertible. This is certainly satisfied for anyδ
verifying

δ2N2
1N2

2

(ν̃ + ν1 − δN1)(ν̃ + ν2 − δN2)
< 1. (31)

Our main theorem, that will be exposed below, shows that condition (5) imposedδ,
needs to be sharped in infinite dimensional Banach space.

Theorem 5.6 (The roughness on allR in Banach space). Suppose thatE is a Banach
space and Eq.(1) has an exponential dichotomy(2) on R. Then, forδ satisfying(31), the
perturbed equation(3) has an exponential dichotomy(4) on R, with projectionP̃ similar
to P , and estimations of dichotomic constants in Theorem5.5 remain valid.

Corollary 5.7. If E is a Banach space,I = R, and (1) has an exponential dichotomy(2)
with constantsN1 = N2 = N , ν1 = ν2 = ν, then for anyδ verifying

δ <
2ν

(N + 1)2
(32)

Eq. (3) is still exponential dichotomic.

Observe that the estimation (32) is better than that obtained by Coppel in [2,
Proposition 1], in finite dimensional space.

Corollary 5.8. LetE be a Banach space andI an arbitrary interval. If Eq.(1) is uniformly
asymptotically stable onI, i.e., for some positive constantsN andν, we have∥∥U(t)U−1(s)

∥∥ � Ne−ν(t−s), for t � s,

then forδ < ν/N , the perturbed equation(3) is still uniformly asymptotically stable onI:∥∥V (t)V −1(s)
∥∥ � Ne−(ν−Nδ)(t−s), for t � s.

The statements above holds true if Eq. (1) is supposed to be uniformly asympto
unstable onI. More exactly if∥∥U(t)U−1(s)

∥∥ � Ne−ν(s−t), for s � t,

then if δ < ν/N∥∥V (t)V −1(s)
∥∥ � Ne−(ν−Nδ)(s−t), for s � t.
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6. The case of the finite interval

We believe that this case also needs a special attention. At our knowledge the onl
for this particular situation, clearly exposed, can be found in [2, Proposition 1, p. 42
for E finite dimensional andN1 = N2, ν1 = ν2 (see Section 1).

We need to remember that the result above cannot be extended to infinite dime
Banach space, as the author of [2] used reducibility lemmas in the proof, as alread
mented in Introduction. Therefore, we are obliged to use a different method.

Firstly, observe that Lemma 2.1 in [3, p. 105] is also applicable forI = (a, b) being a
finite interval andδ satisfying (5).

Secondly, we have to consider two cases: whenI = [0, b) or I = (a,0], andI = (a, b).
For example equation

dx

dt
=

√
t

1− t
x

is defined onI = [0,1), meanwhile equation

dy

dt
= 1√

1− t2
y

is defined onI = (−1,1).
Furthermore, equalities (11) and (12) hold true when replacing+∞ by b (respectively,

−∞ by a), and Eq. (13) is also valid. Putr−, r+ the roots of the corresponding charact
istic equation of (13), and set

Φ(t) = α1(s)e
r−(t−s) + α2(s)e

r+(t−s),

Ψ (t) = β1(s)e
r−(t−s) + β2(s)e

r+(t−s).

α1(s) and α2(s) are uniquely determined as solutions of an algebraic linear sy
obtained by substitutingΦ(t) in (13), puttingt = s, thent = b. It is easy to see that

α1 = sup
s∈I

α1(s) < ∞, α2 = sup
s∈I

α2(s) < ∞.

Similarly we obtain constantsβ1 andβ2, using (12).
If we denote by:

K1 = α2e
(r+−r−)(b−a) + α1, (33)

K2 = β2e
(r+−r−)(b−a) + β1, (34)

then we see that Lemma 2.1 in Section 2 holds true forK1, K2 above and̃ν = −r−.
Remark that operatorT in (25) becomes a contraction ifθ < 1, and linear operato

L(I,E) 	 f → x ∈ C(I,E) is bounded, with norm less thenN/(1− θ) (see also rela
tion (27)).

Notice that all constructions in Sections 2 and 3 remain valid, whenI is either[0, b) or
(a,0]. ProjectionsP+ andQ− are obtained by using (18).

Replacings by 0 in the first equality (19) and observing that

d [
U−1(u)V (u)

] = U−1(u)B(u)V (u) (35)

du
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f
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we obtain:

V (t)P+ = U(t)P +
t∫

0

U(t)PU−1(u)B(u)V (u)P+ du

−
b∫

t

U(t)QU−1(u)B(u)V (u)P+ du

= U(t)P + U(t)PU−1(u)V (u)P+|u=t
u=0 + U(t)QU−1(u)V (u)P+|u=t

u=b

= U(t)P + P(t)V (t)P+ − U(t)P

+ Q(t)V (t)P+ − U(t)QU−1(b)V (b)P+.

These considerations lead us to

QU−1(b)V (b)P+ = 0 (as a limit). (36)

Using the first equality (20), the same type of argument yield

PU−1(a)V (a)Q− = 0 (as a limit). (37)

Suppose thatI = [0, b), setP̃ = P+, Q̃ = I − P+ and letΓ̃ be the Green function o
Eq. (3). Takeε ∈ (0, b) and considerf ∈ L(I,E) a map vanishing outside the interv
[0, ε].

Lemma 6.1. The bounded function

y(t) =
∫
I

Γ̃ (t, u)f (u)du (38)

is exactly the fixed point ofT in (25).

Proof. Indeed, using when necessary (36), we successively have:∫
I

Γ (t, u)B(u)y(u)du

=
b∫

0

Γ (t, u)B(u)

( u∫
0

V (u)P̃ V −1(s)f (s) ds −
b∫

u

V (u)Q̃V −1(s)f (s) ds

)
du

=
t∫

0

U(t)PU−1(u)B(u)

u∫
0

V (u)P̃ V −1(s)f (s) ds du

−
t∫
U(t)PU−1(u)B(u)

b∫
V (u)Q̃V −1(s)f (s) ds du
0 u
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−
b∫

t

U(t)QU−1(u)B(u)

u∫
0

V (u)P̃ V −1(s)f (s) ds du

+
b∫

t

U(t)QU−1(u)B(u)

b∫
u

V (u)(Q̃)V −1(s)f (s) ds du

=
t∫

0

U(t)P
[
U−1(u)V (u)

]′ u∫
0

P̃ V −1(s)f (s) ds du

−
t∫

0

U(t)P
[
U−1(u)V (u)

]′ b∫
u

Q̃V −1(s)f (s) ds du

−
b∫

t

U(t)Q
[
U−1(u)V (u)

]′ u∫
0

P̃ V −1(s)f (s) ds du

+
b∫

t

U(t)Q
[
U−1(u)V (u)

]′ b∫
u

Q̃V −1(s)f (s) ds du

= U(t)PU−1(u)V (u)

u∫
0

P̃ V −1(s)f (s) ds

∣∣∣∣∣
u=t

u=0

−
t∫

0

U(t)PU−1(u)P̃ (u)f (u)du

+ U(t)PU−1(u)V (u)

b∫
u

Q̃V −1(s)f (s) ds

∣∣∣∣∣
u=0

u=t

−
t∫

0

U(t)PU−1(u)Q̃(u)f (u)du

+ U(t)QU−1(u)V (u)

u∫
0

P̃ V −1(s)f (s) ds

∣∣∣∣∣
u=t

u=b

+
b∫

t

U(t)QU−1(u)P̃ (u)f (u)du

+ U(t)QU−1(u)V (u)

b∫
u

Q̃V −1(s)f (s) ds

∣∣∣∣∣
u=b

u=t

+
b∫
U(t)QU−1(u)Q̃(u)f (u)du
t
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= P(t)

t∫
0

V (t)P̃ V −1(s)f (s) ds −
t∫

0

U(t)PU−1(u)P̃ (u)f (u)du

− P(t)

b∫
t

V (t)Q̃V −1(s)f (s) ds

−
t∫

0

U(t)PU−1(u)Q̃(u)f (u)du + Q(t)

t∫
0

V (t)P̃ V −1(s)f (s) ds

+
b∫

t

U(t)QU−1(u)P̃ (u)f (u)du

− Q(t)

b∫
t

V (t)Q̃V −1(s)f (s) ds +
b∫

t

U(t)QU−1(u)Q̃(u)f (u)du

=
t∫

0

V (t)P̃ V −1(s)f (s) ds −
b∫

t

V (t)Q̃V −1(s)f (s) ds

−
t∫

0

U(t)PU−1(u)f (u)du +
b∫

t

U(t)QU−1(u)f (u)du

=
∫
I

Γ̃ (t, s)f (s) ds −
∫
I

Γ (t, u)f (u)du

= y(t) −
∫
I

Γ (t, u)f (u)du. �

Using now the same kind of argument as in [2, p. 210], we obtain that

∥∥P̃ (t)
∥∥ � N

1− θ
,

∥∥Q̃(t)
∥∥ � N

1− θ
.

Theorem 6.2. If I = [0, b) or I = (a,0], (1) has an exponential dichotomy(2) and δ

verify(5), then Eq.(3) has an exponential dichotomy(4) with dichotomic constants: ν̃ given
by (8), Ñi = NKi/(1− θ), i = 1,2, Ki given by(33)and(34). If I = [0, b), thenP̃ = P+,
and ifI = (a,0], thenP̃ = I − Q−.

WhenI = (a, b), then the situation is more complicated for two reasons:

1. Equation (1) may have or may have not nontrivial bounded solutions;
2. The spaceE may be finite or infinite dimensional.
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Anyway, the arguments preceding Theorem 6.2 are still valid replacing 0 bya, and
using both (36) and (37). These considerations lead us to the following result:

Theorem 6.3. Suppose thatI = (a, b) and Eq.(1) has an exponential dichotomy(2).

(i) If E is finite dimensional and Eq.(1) does not have nontrivial bounded solutions, th
for anyδ satisfying(5), the perturbed equation(3) has an exponential dichotomy(4)
with projectionP̃ = SPS−1 (S = P+ + Q−), and dichotomic constants as in The
rem6.2.

(ii) If E is infinite dimensional or Eq.(1) has nontrivial bounded solutions, then forδ

satisfying

δ2N1N2K1K2

(ν̃ + ν1)(ν̃ + ν2)
< 1, (39)

Eq. (3) is exponential dichotomic as in(i) above.

Using Corollary 2.2, and also Lemma 7 in [8, p. 568], from all the arguments prec
Theorems 6.2 and 6.3, we easily obtain:

Corollary 6.4. All the statements in the above theorems remain valid when estimatio
constantsKi in (33)–(34)are replaced by those in(9)–(10), and condition(39) changes
in (31).

Remark 6.5. In any intervalI, for N1 = N2 = N , ν1 = ν2 = ν, in any Banach spac
condition (32) imposed toδ, assures the existence of exponential dichotomy for Eq. (3

Notice that this result improves substantially Proposition 1 in [2, p. 42].

Remark 6.6. Condition (5) in all above results, can be weakened as follows:

δ

[
N1

ν1

(
1− e−ν1(b−a)

) + N2

ν2

(
1− e−ν2(b−a)

)]
< 1. (40)

Indeed, when replacing∞ by b, and−∞ by a in Section 3, condition (40) assures th
operatorsK andL are contractions. This fact shows that the admissible perturbatio
Eq. (1) depend on the length of the definition interval.

Final remark. Throughout this paper we considerU(0) = V (0) = I , but instead of 0 we
can choose any fixedt0 ∈ I, asU(t) can be replaced byU(t)U−1(t0), respectivelyV (t)

by V (t)V −1(t0). The only difference is that the constantsNi and Ñi , i = 1,2, may be
different.
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