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Several statistical methods have been developed for analyzing genotype × environment (GE)
interactions in crop breeding programs to identify genotypes with high yield and stability
performances. Four statistical methods, including joint regression analysis (JRA), additive
mean effects and multiplicative interaction (AMMI) analysis, genotype plus GE interaction
(GGE) biplot analysis, and yield–stability (YSi) statistic were used to evaluate GE interaction in
20 winter wheat genotypes grown in 24 environments in Iran. The main objective was to
evaluate the rank correlations among the four statistical methods in genotype rankings
for yield, stability and yield–stability. Three kinds of genotypic ranks (yield ranks, stability
ranks, and yield–stability ranks)were determinedwith eachmethod. The results indicated the
presence of GE interaction, suggesting the need for stability analysis. With respect to yield,
the genotype rankings by the GGE biplot and AMMI analysis were significantly correlated
(P < 0.01). For stability ranking, the rank correlations ranged from 0.53 (GGE–YSi; P < 0.05) to
0.97 (JRA–YSi; P < 0.01). AMMI distance (AMMID) was highly correlated (P < 0.01) with variance
of regression deviation (S2di) in JRA (r = 0.83) and Shukla stability variance (σ2) in YSi (r = 0.86),
indicating that these stability indices can be used interchangeably. No correlation was found
between yield ranks and stability ranks (AMMID, S2di, σ2, and GGE stability index), indicating
that theymeasure static stability and accordingly could be used if selection is based primarily
on stability. For yield–stability, rank correlation coefficients among the statistical methods
varied from 0.64 (JRA–YSi; P < 0.01) to 0.89 (AMMI–YSi; P < 0.01), indicating that AMMI and
YSi were closely associated in the genotype ranking for integrating yield with stability
performance. Based on the results, it can be concluded that YSi was closely correlated with (i)
JRA in ranking genotypes for stability and (ii) AMMI for integrating yield and stability.
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1. Introduction
In crop breeding programs, genotypes are evaluated in multi-
environment trials (METs) for testing their performance
across environments and selecting the best genotypes in
specific environments. Genotype × environment (GE) inter-
action is an important issue faced by plant breeders in crop
breeding programs. A significant GE interaction for a quan-
titative trait such as grain yield can seriously limit progress in
selection. Variance due to GE interaction is an important
component of the variance of phenotypic means in selection
experiments [1]. GE interactions complicate the identification
of superior genotypes [2] but their interpretation can be
facilitated by the use of several statistical modelingmethods.
Thesemethodsmay use linear models, such as joint regression
analysis [3–5], multivariate analytical methods such as AMMI
(additive mean effects and multiplicative interaction) analysis
[6,7], or GGE (genotype plus GE interaction) biplot analysis [8,9].

The linear regression of genotype values on environmental
mean yield [3,4], frequently termed joint regression analysis,
is undoubtedly the most popular method for analyzing GE
interaction, owing to its simplicity and the ready applicability
of its information on adaptive responses to locations other
than the chosen test sites. Earlier, Finlay and Wilkinson [4]
proposed the use of linear regression slopes as a measure of
stability. Eberhart and Russell [5] further proposed that both
regression coefficients and deviations from linear regression
(S2di) should be taken into consideration in identifying stable
genotypes, and suggested that a genotype with b = 1.0 and
S2di = 0 would be regarded as stable.

The AMMI model uses analysis of variance (ANOVA, an
additive model) to characterize genotype and environment
main effects and principal component analysis (a multiplicative
model) to characterize their interactions (IPCA). The AMMI
analysis has been shown to be effective; it captures a large
portion of theGE sumof squares, clearly separating themain and
interaction effects; and the model often provides an agronomi-
cally meaningful interpretation of the data [7]. Another powerful
statistical model that addresses some of the disadvantages of
AMMI is the GGE biplot. The method is effective for identifying
the best-performing cultivar across environments, identifying
the best cultivars for mega-environment differentiation, and
evaluating the yield and stability of genotypes [8,9]. According to
the GGE biplot, a highly stable genotype would have a shorter
projection on to the average environment coordinate (AEC)
abscissa, irrespective of its direction [9].

Recent review articles [10–12] have compared these statistical
models. Gauch [10] and Gauch et al. [12] reviewed the AMMI and
GGE literature, favoring AMMI. Yan et al. [11] responded to those
articles, favoring GGE. Several studies have also been performed
comparing GGE biplots and YSi in bean [13], maize [14], and
durumwheat [15]; GGE biplots and JRA in maize [16] and triticale
[17]; and JRA and AMMI models in cereal crops [18] for stability
analysis. However, little is known about rank correlation among
the four statistical methods (AMMI analysis, GGE biplot, JRA, and
YSi statistic) applied in a single study. Themain objectives of the
present study were to (i) compare the statistical methods (AMMI
analysis, GGE biplot, JRA, and theYSi statistic) in the ranking of 20
winterwheat genotypes for yield, stability, andyield–stability and
(ii) evaluate rank correlations among the statistical methods on
the basis of yield ranks, stability ranks, and yield–stability ranks.
2. Materials and methods

2.1. Experimental data

Grain yield data obtained from 20 winter wheat genotypes,
consisting of 18 breeding lines (G1–G18) and two check cultivars
(G19 and G20, representing the landrace “Sardari” and the
released cultivar “Azar-2”, respectively), grown in eight test
locations representative of winter wheat growing areas in
Iran for three consecutive cropping seasons (2003–2005), were
subjected to analysis of rank correlation among the four
statistical procedures (AMMI, GGE biplot, JRA, and YSi statistic)
in the rankings of genotypes. In each environment (location–
year combination), the experimental layout was a randomized
complete block design with four replicates. The plot size was
7.2 m2 (6 rows, 6 m long, 20 cm row spacing). The fertilizer rate
was 50 kg N ha−1 and 50 kg P2O5 ha−1 applied at planting stage.

2.2. Statistical analysis

Combined analysis of variance (ANOVA) for grain yield datawas
performed to determine the effects of environment, genotype,
and GE interaction. Four statistical methods were applied to
evaluate GE interaction in the wheat MET data. Regression
analysis was performed for each of the 20 wheat genotypes
based on the method of Eberhart and Russell [5]. The perfor-
mance of each genotype in each environmentwas regressed on
the means of all genotypes in each environment. Genotypes
with regression coefficient (b) of unity and variance of regres-
sion deviations (S2di) equal to zero will be highly stable.

The yield stability (YSi) statistic was generated as de-
scribed by Kang [19] and applied for selecting high-yielding
and stable genotypes. Ranks were assigned for mean yield,
with the genotype with the highest yield given a rank of 20.
Similarly, ranks were assigned for the stability parameter with
the lowest estimated value receiving the rank of 1. Stability
ratings were computed as follows: −8, −4, and −2 for stability
measures significant at P < 0.01, 0.05, and 0.10, respectively;
and 0 for the non-significant stability measure. The stability
ratings of −8, −4, and −2 were chosen because they changed
the genotype ranks from those based on yield alone [19].

AMMI analysis was performed with IRRISTAT 5.1 software
[20]. AMMI analysis combines additive components in a
single model for the main effects of genotypes and environ-
ments, as well as multiplicative components for the interac-
tion effect. Genotypes (or environments) with large IPC scores
(either positive or negative) have large interactions, whereas
genotypes (or environments) with IPC1 scores near zero have
small interactions.

To further describe stability using AMMI analysis, the AMMI
statistic coefficient (D) was calculated as follows, [21] and is
referred to as AMMI distance:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
r¼1

γ2
is

vuut i ¼ 1; 2; 3;…;nð Þ



Table 1 – Combined analysis of variance, joint regression,
and AMMI analyses for 20 bread wheat genotypes grown
in 24 environments.

Source df MS %TSS %GE

Genotype 19 4.539 ⁎⁎ 4.4
Environment 23 65.136 ⁎⁎ 75.9
Block 72 0.562 ⁎⁎ 2.1
GE interaction 437 0.347 ⁎⁎ 7.7
Regression 19 0.352 ⁎⁎ 18.6
Deviation 418 0.070 ⁎⁎ 81.4

IPCA1 41 1.134 ⁎⁎ 30.6
IPCA2 39 0.839 ⁎⁎ 21.6
IPCA3 37 0.636 ⁎⁎ 15.5
IPCA4 35 0.286 ⁎⁎ 6.6
Residual 285 0.137 ⁎⁎ 25.7
Error 1368 0.144 ⁎⁎ 10.0
Total 1919

⁎⁎ Significant at 1% level of probability.
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where D is the distance of the interaction principal compo-
nent (IPC) point from the origin in space, N is the number of
significant IPCs, and γis is the score of genotype i in IPC. The
greater the D value of a genotype, the greater the distance of
the genotype from the origin of the IPCs. The genotype with
the lowest value of the D statistic is considered the most
stable [21].

The GGE biplot analysis was generated using the GGE
biplot software [22]. With the GGE biplot model, genotypes are
evaluated for their combined G and GE interaction effects [8].
For genotype evaluation, the basic features of a GGE biplot are
as follows: a small circle in the center of a biplot indicates the
average environment coordinate (AEC) which is the average of
the environmental PC1 and PC2 scores. The single-arrowed
line passing through the small circle and the biplot origin (0, 0)
is called the AEC abscissa with its arrow pointing towards the
increasing yield. The AEC ordinate (the double-arrowed line
perpendicular to the AEC abscissa passing through the biplot
origin) indicates stability/instability. The genotypes are ranked
along the AEC abscissa and their stability is projected as a
vertical line from the AEC abscissa. A highly unstable genotype
will have a longer projection from the AEC abscissa irrespective
of its direction [9,22].

Spearman's rank correlation coefficients were calculated
among the ranks given by the four statistical methods. For
each method three kinds of rank (yield, stability, and yield–
stability ranks) were determined. The ranks were determined
as follows:

In JRA the ranks were assigned as follows: (i) the yield ranks
were determined by giving the best rank (rank of 1) to the
genotype having the highest regression coefficient and the last
rank to the genotype having the lowest regression coefficient;
(ii) the stability ranks were obtained by assigning the highest
rank to the genotype with the lowest S2di; and (iii) the yield–
stability ranksweredetermined as the sumof yield and stability
ranks [16].

In AMMI the ranks were assigned as follows: (i) the yield
ranks were determined by giving the highest rank to the
genotype having the highest “nominal” yield (expected yield
from the AMMI model equation without environmental devia-
tions) [23]; (ii) the stability rankings were obtained by assigning
the highest rank to the genotype with the smallest AMMI
distance (D) and (iii) the yield–stability rankswere determined as
the sum of yield and stability ranks.

In GGE biplot the ranks were assigned as follows: (i) the
yield ranks were determined by giving the best rank (rank of 1)
to the ideal genotype, found at the far right-hand side, and the
last rank to the genotype on the far left-hand side of the
biplot; (ii) the stability ranks were determined as the visual
ratings of the projections of genotypes on the AEC ordinate,
with a shorter projection corresponding to a higher stability
ranking; and (iii) the yield–stability ranks were determined as
the sums of GGE yield and stability ranks [16]. Yield–stability
is also equal to GGE distance, which is a measure of the
distance to the “ideal” genotype. Genotypes are evaluated in
terms of both mean performance and stability [22].

For the YSi statistic, the yield ranks were obtained from the
phenotypic adjusted yield data [19]. The stability ranks were
obtained by assigning the best rank (rank of 1) to the genotype
with the lowest Shukla's [24] stability variance (σ2); and the
yield–stability ranking were determined as the sums of yield
and stability ranks.
3. Results

3.1. Combined ANOVA

The combined analysis of variance (ANOVA) revealed that the
grain yield was significantly affected by the environment,
followed by GE interaction and genotype effects (Table 1).
Environment accounted for 75.9% of the total sum of squares
(TSS), followed by the GE and G effects accounting for 7.7 and
4.4, respectively. Most of the TSS was explained by the
environment, reflecting a much wider range of environment
main effects than genotype main effects.

3.2. Genotype comparison and selection

3.2.1. Joint regression analysis
About one fifth of the significant GE interactionwas attributed to
heterogeneity among regressions, while the remaining variance
was attributed to deviation mean squares (S2di) (Table 1). A
large proportion of the GE interaction was due to a nonlinear
component, which maybe regarded as a very important
parameter for the selection of stable genotypes. The average
grain yield of genotypes over 24 environments varied from
1.891(corresponding to G6) to 2.682 t ha–1 (corresponding to G4).
According to the Finlay and Wilkinson method, genotypes G15,
G17, and G18 were identified as highly stable genotypes, as their
regression coefficients werewithin one standard error (SE) of the
overall average coefficient of regression (Fig. 1). Genotypes G18
and G17 would be considered well suited to the environments
tested, as they had the highest grain yield within the range of
stability. According to Fig. 1, genotypes G4, G10, G1, G20, and
G8 with b > (1.0 + 1SE) had below-average stability and were
adapted specifically to high-performing environments, while
genotypes G9, G6, G13, and G2 with b < (1.0 − 1SE) had below-
average stability and were poorly adapted to all environments
owing to their lowmean yield performance. Using the Eberhart
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and Russell method, G20, G19, and G1 were considered stable
with grain yields above the overall average yield (Fig. 2), and
genotypes G6, G5, andG9with the highest value of S2diwere the
most unstable genotypes, with low yield performance. G8,
followed by G4, G10, G17, and G18 were relatively unstable
genotypes with high yield performance (Fig. 2).

3.2.2. Yield stability (YSi) statistic
Simultaneous selection for yield and stability performances
using the YSi statistic indicated that genotypes G4, G10, G17,
G19, G18, and G1 were both high-yielding and stable. In
addition to these genotypes, G12, G20, G15, and G11 had YSi
values greater than the mean (Table 2) and can be regarded as
desirable genotypes.

3.2.3. AMMI analysis
The choice of theAMMI-1 biplot instead ofAMMI-2wasmade to
allow comparison with the output of other statistical methods
presenting both yield and stability statistics simultaneously. In
the AMMI-1 biplot (Fig. 3), the abscissa represents main effects
(G and E) and its ordinate represents IPC1 scores. It thus
provides a means of simultaneously visualizing both mean
performance (G) and stability (IPC1) of genotypes. The IPC1
accounted for a total of 30.6%of theGE interaction,with 9.4% for
the corresponding interaction degrees of freedom in themodel.
The AMMI-1 biplot accounted for 90.3% of the total SS and is
thus suitable for interpreting the GE interaction and main
effects. Genotypes G1 and G4 withmean yields greater than the
overall mean and low IPC1 scores had a high combination of
yield and stability performances. Genotypes G10 and G17 were
similar to G1 and G4 in themain effect but tended to contribute
more to GE interaction. These genotypes were superior to
Fig. 1 – Scatter plot of regression coefficients against mean yield
environments. The horizontal solid line represents the mean coe
mean grain yield. The standard error (±1SE) is included and repr
coefficients.
the checks (G19 and G20) with respect to yield and stability
performances. The two genotypes G6 and G9, with mean
yields less than the overall mean and with the highest
distance from the IPC1 = 0 level, tended to contribute highly
to GE interaction and accordingly can be regarded as themost
unstable genotypes.

3.2.4. GGE biplot analysis
Fig. 4 shows the ranking of the 20 breadwheat genotypes based
on their mean yield and stability performances. According to
the GGE biplot, the ideal genotype must have a high PC1 value
(high mean productivity) and a PC2 value near zero (high
stability). Thus, based on the graphical interpretation, geno-
types G4 and G10 followed by G18, G11, and G1 with high mean
yield and stability performances can be considered as ideal
genotypes. The other genotypes lying on the right side of the
linewith double arrows had yield performance greater than the
mean and the genotypes on the left side had yields lower than
themean. Genotypes with high yield but low stability were G19,
G20 (control), and G8, while those with average yield and
highest stability were G12, G15, and G7. Since GGE represents
G + GE and since theAEC abscissa approximates the genotypes'
contributions to G, the AEC ordinate must approximate the
genotypes' contributions to GE, which is a measure of their
stability or instability. Thus, G18, G12, and G2 were the most
stable genotypes, as they were located almost on the AEC
abscissa and had a near-zero projection onto the AEC ordinate,
indicating that their ranks were highly consistent across
environments. In contrast, G8, G6, and G9 were among the
genotypes with the lowest stability and with higher (G8) and
lower (G6 and G9) mean yield performances than the overall
mean.
s of 20 bread wheat genotypes (G1–G20) grown in 24
fficient of regression and the vertical solid line denotes the
esented by the dotted lines for both yield and regression



Fig. 2 – Scatter plot of variance of regression deviations (S2di) against mean yields of 20 bread wheat genotypes (G1–G20) grown
in 24 environments. The horizontal solid line represents the mean coefficient of regression and the vertical solid line denotes
the mean grain yield. The standard error (±1SE) is represented by the dotted lines for both yield and S2di values.
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3.3. Comparison of statistical methods in the ranking
of genotypes

The yield, stability and yield–stability ranks for 20 tested
genotypes in 24 environments based on each of the statistical
methods mentioned above are given in Table 3. Comparison
of the statistical methods based on the yield ranks showed
Table 2 – Estimates of the yield–stability (YSi) statistic for 20 bre

Genotype
code

Genotype name Mean yield
(t ha−1)

Yield
rank

G1 Unknown-1 2.612 17
G2 Unknown-2 2.214 3
G3 Unknown-9 2.297 6
G4 Unknown-11 2.682 20
G5 135U8.01 2.250 5
G6 5294 Karaj 98-99 1.891 1
G7 1-27-6149/Sabalan//84.40023 2.377 9
G8 Manning/Sdv1//Dogu88 2.546 14
G9 RECITAL/TIA.2//TRK13 1.955 2
G10 Sardari//Ska/Aurifen 2.646 19
G11 Unknown-3 2.378 10
G12 Unknown-7 2.464 12
G13 Pf 82200/Sardari 2.226 4
G14 Ghafghaz//F9.10/Maya“s” 2.366 8
G15 Khazar/3/Jcam/Emu“s”//Dove 2.429 11
G16 Kvz/Tm71/3/Maya“s”//Bb/Inia/4/Sefid 2.364 7
G17 Anza/3/Pi//Nar/Hys/4/Sefid 2.580 16
G18 Fengkang15/Sefid 2.535 13
G19 Sardari (check) 2.635 18
G20 Azar-2 (check) 2.552 15
Mean 2.400

Adjustment of +1 for mean yield ≥ overall mean yield (OMY), +2 for mean
mean yield ≤ OMY, 2 for mean yield ≤ 1LSD below OMY, and 3 for mean
that the methods generally gave similar results in the
ranking of genotypes. For example, the five top-ranked
genotypes based on AMMI were G4, followed by G10, G19,
G1, and G17; based on the GGE biplot were G4 followed by G10,
G1, G19, and G17; based on JRA were G8, G4, G1 = G12, and
G10; and based on the YSi statistic were G4, G10, G19, G1, and
G17.
ad wheat genotypes over 24 environments.

Adjustment to
rank (Y′)

Adjusted
yield (Y)

Shukla
variance

Stability
rating (S)

YSi = Y + S

2 19 82,470 −4 15
−2 1 32,368 0 1
−1 5 38,929 0 5
2 22 49,892 0 22

−2 3 132,383 −8 −5
−3 −2 216,841 −8 −10
−1 8 54,653 −2 6
2 16 157,411 −8 8
3 5 206,178 −8 −3
3 22 42,809 0 22

−1 9 44,134 0 9
1 13 52,860 0 13

−2 2 81,215 −4 −2
−1 7 51,657 0 7
1 12 48,892 0 12

−1 6 39,335 0 6
2 18 34,958 0 18
2 15 40,057 0 15
3 21 77,413 −4 17
2 17 76,954 −4 13

8.45

yield ≥ 1LSD above OMY, +3 for mean yield ≥ 2LSD above OMY, 1 for
yield ≤ 2LSD below OMY.
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Fig. 3 – AMMI-1 biplot of first IPCA scores vs. genotypic and environmental mean yields. G1–G20 are the genotype codes and
E1–E24 are the environment codes.
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With respect to stability ranks, genotypes G2, G15, G12,
G11, and G17 were found to be stable based on AMMI distance,
whereas the five top-ranked genotypes based on the GGE
biplot were G18 = G12 = G2, G14, and G3, showing that AMMI
and the GGE biplot gave similar results in identifying two of
the five top-ranking genotypes as stable. According to JRA the
most desirable genotypes based on stability ranks were G2,
G17, G10, G16, and G3, and based on the YSi statistic the most
stable genotypes were G2, G17, G3, G16, and G18. Similar
stability ranks were assigned by the JRA method and YSi
statistic, as they identified four of the five top-ranking
genotypes as stable.

For yield–stability, the AMMI analysis identified G10
followed by G17, G3, G15, and G12 as the top-ranking
high-yielding and stable genotypes; whereas G18 followed by
G17 = G12 and G4 = G10 were characterized by the GGE biplot
as high-yielding and stable. According to JRA, the top-ranking
high-yielding and stable genotypes were G10, followed by
G4, G12, G17, and G3, and based on the YSi statistic the
highest-ranking genotypes were G4 = G10, G17, G19, and G1 =
G18. All four methods identified G10 and G17 as among the
five top-ranking high-yielding and stable genotypes.

3.4. Relationships among the statistical methods

Significant rank correlations were found between the statis-
tical methods in the ranking of genotypes for yield, stability
and yield–stability (Table 4).
With respect to yield, the statistical methods were signifi-
cantly correlated (P < 0.01) in the ranking of genotypes. The
correlations varied from 0.72 (JRA–YSi; P < 0.01) to 0.99 (GGE–
AMMI; P < 0.01) indicating that AMMI and the GGE biplot agreed
most closely in ranking genotypes for yield.

The statistical methods were positively correlated in
identifying stable genotypes. The Spearman's rank correla-
tions for stability indices ranged from 0.53 (GGE–YSi;
P < 0.05) to 0.97 (JRA–YSi). The AMMI distance (AMMID) was
highly correlated with the stability indices in JRA (r = 0.83;
P < 0.01) and YSi (r = 0.86; P < 0.01). These three stability
indices (AMMID, S2di, and σ2) showedmoderate correlations
with the stability index in the GGE biplot. The correlations
varied from 0.53 (GGE–YSi; P < 0.05) to 0.56 (GGE–AMMID and
GGE–JRA; P < 0.05).

For yield–stability, rank correlation coefficients between
the statistical methods varied from 0.64 (P < 0.01) for JRA and
YSi to 0.89 (P < 0.01) for AMMI and YSi, indicating that AMMI
and the YSi are better correlated than the other methods for
ranking genotypes based on integrating yield with stability
performance. The GGE biplot had the highest rank correlation
with YSi (r = 0.70; P < 0.01).

Positive rank correlations ranging from 0.55 (for JRA; P < 0.05)
to 0.73 (for AMMI; P < 0.01) were found between yield ranks and
yield–stability ranks, indicating that the yield–stability indices
represent a dynamic concept of stability. Selection based on
yield–stability indices would be most useful if the breeder were
interested primarily in yield. Stable genotypes, according to these



Fig. 4 – GGE biplot showing the ranking of 20 genotypes (G1–G20) for both mean yield and stability based on the “average
environment coordinate” (AEC). The data were not transformed (“Transform = 0”) and were not scaled ( “Scaling = 1”) but were
environmentally-centered (“Centering = 2”). The biplot was based on a genotype-focused singular-value partitioning (“SVP =
1”) and therefore is appropriate for visualizing the similarities among genotypes.
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indices, would be recommended for favorable environments.
With this type of stability, stable genotypes show yield
performance relative to the yield potential of the different
Table 3 – Yield ranks, stability ranks, and yield–stability ran
genotypes across 24 test environments.

Code AMMI ranks GGE biplot ranks

Yield AMMI
distance

Yield–
stability

Yield Stability Yield–
stability

G1 4 15 11.5 3 16 8.0
G2 18 1 11.5 18 2 10.0
G3 15 8 13.5 15 5 10.0
G4 1 11 3.0 1 15 4.5
G5 16 17 17.5 16 19 20.0
G6 20 19 19.5 20 12 19.0
G7 11 13 15.0 11 9 10.0
G8 7 18 16.0 7 20 17.0
G9 19 20 19.5 19 6 15.5
G10 2 7 1.0 2 14 4.5
G11 13 4 6.5 13 11 14.0
G12 9 3 3.0 10 2 2.5
G13 17 16 17.5 17 13 18.0
G14 14 9 13.5 14 4 7.0
G15 10 2 3.0 9 8 6.0
G16 12 6 9.0 12 10 12.5
G17 5 5 2.0 5 7 2.5
G18 8 10 9.0 6 2 1.0
G19 3 14 6.5 4 18 12.5
G20 6 12 9.0 8 17 15.5
environments. However, if selection of stable genotypes
is based on these methods, a genotype with low general
adaptability but high specific adaptability may be discarded.
ks given by each statistical method for 20 winter wheat

JRA ranks YSi statistic ranks

Yield Stability
(S2di)

Yield–
stability

Yield Stability
(σ2)

Yield–
stability

3.5 16 9.0 4.0 16 12
17.0 1 6.0 19.0 1 12
12.5 5 5.0 15.5 3 9
2.0 7 2.0 1.5 9 3
7.0 19 17.0 17.0 17 18

19.0 20 20.0 20.0 20 20
10.0 12 14.0 12.0 12 15
1.0 18 7.5 7.0 18 16

20.0 17 19.0 15.5 19 19
5.0 3 1.0 1.5 6 2

14.0 8 14.0 11.0 7 7
3.5 9 3.0 9.0 11 12

18.0 13 18.0 18.0 15 17
11.0 11 14.0 13.0 10 14
9.0 10 7.5 10.0 8 7

16.0 4 10.5 14.0 4 7
12.5 2 4.0 5.0 2 1
15.0 6 12.0 8.0 5 4
8.0 15 16.0 3.0 14 5
6.0 14 10.5 6.0 13 10



Table 4 – Spearman's rank correlations among four statistical methods based on yield ranks, stability ranks, and yield–
stability ranks for 20 winter wheat genotypes across 24 test environments.

Methods AMMI GGE JRA YSi statistic

Indices Yield AMMID Yield–
stability

Yield Stability Yield–
stability

Yield Stability
(S2di)

Yield–
stability

Yield Stability
(σ2)

Yield–
stability

AMMI Yield 1.00
AMMID 0.16 1.00
Yield–
stability

0.73** 0.72** 1.00

GGE Yield 0.99** 0.17 0.72** 1.00
Stability −0.37 0.56* 0.10 −0.33 1.00
Yield–
stability

0.55* 0.63** 0.74** 0.59** 0.54* 1.00

JRA Yield 0.75** 0.02 0.42 0.73** −0.49 0.27 1.00
Stability
(S2di)

0.22 0.83** 0.65** 0.24 0.56* 0.68** −0.12 1.00

Yield–
stability

0.60** 0.63** 0.72** 0.60** 0.16 0.69** 0.55* 0.67** 1.00

YSi Yield 0.98** 0.13 0.72** 0.97** −0.34 0.55* 0.72** 0.17 0.55* 1.00
Stability
(σ2)

0.18 0.86** 0.62** 0.20 0.55* 0.63** −0.13 0.97** 0.62** 0.12 1.00

Yield–
stability

0.72** 0.62** 0.89** 0.74** 0.09 0.70** 0.25 0.73** 0.64** 0.70** 0.73** 1.00

*, ** significant at 5% and 1% levels of probability, respectively.
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The significant positive correlations (P < 0.01) between σ2,
S2di, and AMMID suggest that these three stability indices
from three statistical methods (YSi, JRA, and AMMI, respec-
tively) were significantly correlated in the ranking of geno-
types for stability. The moderate correlation (P < 0.05) between
the GGE stability index and the three other stability indices
suggests that the GGE biplot was in moderate agreement with
the other three statistical methods for stability rankings.
4. Discussion

The results from this study suggest that a marked degree of GE
interaction is present in the bread wheat MET data. Evaluation
of genotypes using MET data appears to improve genotype
evaluation and would enable the characterization of stability
performance of tested genotypes over unpredictable environ-
ments. For themajority ofMET, environment accounts formost
of variation [9,14,16,25]. The observed pattern of GE interaction
for grain yield in this winter wheat MET supports a hypothesis
of the presence of differentially adapted winter wheat geno-
types and the need for stability analysis.

Owing to its simplicity, the joint regression model has been
the most popular approach for analysis of adaptation [26,27].
However, the method has some statistical limitations. Caution
should be applied with low numbers of genotypes and locations,
especially when extreme values of site mean yield are repre-
sented by just one location [28,29]. Significant rank correlation
(r = 0.72; P < 0.01) was observed between regression correlation
andoriginal yield data, suggesting that JRA resultswere generally
in agreement with the original data.

The GGE biplot mainly allows the visualization of any
crossoverGE interaction, an important advantage for a breeding
program.Moreover, the GGE biplot provides greater insight, as it
illustrates the relationship between the genotype and its GE
interaction [8]. However, the GGE biplot results need to be
validated with the original data. According to the original data,
genotypes G4 and G6 had respectively the highest and lowest
mean yield performances across environments, an inference
supported graphically by fitting the GGE model to the original
data (Fig. 4 and Table 1), suggesting that the GGE biplot results
are in agreement with the original yield data. These results
are in accord with those of other studies [16,17] that found
agreement between GGE biplot results and the original yield
data.

Phenotypic yield stability is a trait of special interest for
plant breeders and farmers. This trait can be quantified if
genotypes are evaluated in different environments [30]. No
correlation was found between yield ranks and stability ranks
that were based onmeasuring GE interaction, including AMMI
distance in the AMMI model; stability index in the GGE biplot;
S2di in the JRA; and σ2 in the YSi statistic, indicating that these
stability indices describe static stability and accordingly could
be used if selection is to be based primarily on stability. This
conclusion is in agreement with other reports on cereal crops
for which stability indices based on measuring GE effects are
not correlated with mean yield in bread wheat, durum wheat
and barley [31]. It is also supported by other reports [32–36].
Helms [32] found that the correlations of oat yield with σ2 and
S2di were poor. Jalaluddin and Harrison [33] reported no
correlation of wheat grain yield with σ2 or S2di. Sneller et al.
[35] also found no relationship of soybean yield with the
statistics AMMI, σ2, and S2di.

Many statistical methods have been developed to analyze
data from MET to gain a better understanding and interpre-
tation of observed GE interaction patterns, with the aim of
identifying outstanding new cultivars with high stability in
crop breeding programs. A worthwhile discussion of many of
these methods and their efficiency in identifying superior
genotypes in MET data can be found in reviews [10–13,16–18].
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Fan et al. [14] and Mohammadi et al. [15] reported high rank
correlations between GGE and YSi and concluded that YSi
should be useful in selecting superior genotypes in the absence
of GGE biplot software. Baxevanos et al. [37] also reported a high
correlation between YSi and GGE distance. Goyal et al. [17]
reported some agreement between JRA andGGE biplotmethods
in identifying stable genotypes with high yield performance.
According to Goyal et al. [17], S2di and GGE biplot models were
not in general agreement in identifyinghigh-yielding and stable
genotypes, a conclusion differing from that of Alwala et al. [16].

Our results suggest that it is advisable to use all methods to
improve efficiency of identifying superior genotypes. Com-
pared to the joint regression and YSi statistics, AMMI and GGE
biplot analysis provide biplots and information on the main
and interaction effects. They provide useful information on
the similarities of locations for genotype adaptive responses,
thereby supporting decisions about the definition of subre-
gions, adaptation targets, and test sites. They allow visual
examination of the relationships among test environments,
genotypes, and GE interaction [11]. However, in this paper our
objective was to evaluate the rank correlations among the
statistical methods for yield, stability and yield–stability. The
four methods result in identifying similar dominant genotypes
with high yield and stability, a trait of special interest for plant
breeders and farmers. However, integrating yield and stability of
genotypes tested in unpredictable environments is a common
breeding objective and would be useful in practice to enhance
yield and stability in breeding programs. Based on the results of
the four statistical models, breeding lines G17, G10, G4, and G18
maybe regarded as themosthighly recommendedgenotypes for
release in rainfed winter wheat-growing areas of Iran.
5. Conclusion

Rank correlation analysis revealed the highest (i) similarity
between the GGE biplot and AMMI in ranking genotypes for
yield, (ii) correlations between JRA, AMMI, and YSi statistic for
ranking genotypes for stability, and (iii) agreement between
AMMI and YSi in ranking genotypes for integrating yield with
stability. Although the four methods gave generally similar
results in identifying superior genotypes, the GGE biplot was
more versatile and flexible, and provided a better understand-
ing of GE interaction, than the othermethods. Positive increases
in yield and yield stability are attributable primarily to the
genetic improvement of wheat breeding lines. Increased yields
have resulted from the trend inwheat breeding programs to test
and develop wheat breeding materials for wide adaptation,
whichhas also increasedyield stability. Theyield stability of the
high-yielding breeding lines evaluated in the present studywas
variable, but a few genotypes combined yield stability with high
yield, indicating that genetic improvement has been made in
both yield and stability performances inwheat breeding lines in
rainfed cold areas of Iran.
Acknowledgments

This work was part of the bread wheat project of the Dryland
Agricultural Research Institute (DARI) and was supported by
the Agricultural Research and Education Organization (AREO)
of Iran. We thank all members of the project who contributed
to the implementation of the field work.
R E F E R E N C E S

[1] A.R. Hallauer, J.B. Miranda, Quantitative Genetics in Maize
Breeding, Iowa State Univ. Press, Ames, IA, 1983.

[2] R.W. Allard, A.D. Bradshaw, Implication of
genotype–environmental interaction in applied plant
breeding, Crop Sci. 5 (1964) 503–506.

[3] F. Yates, W.G. Cochran, The analysis of groups of
experiments, J. Agric. Sci. (Camb.) 28 (1938) 556–580.

[4] K.W. Finlay, G.N. Wilkinson, The analysis of adaptation
in a plant breeding program, Aust. J. Agric. Res. 14 (1963)
742–754.

[5] S.A. Eberhart, W.A. Russell, Stability parameters for
comparing varieties, Crop Sci. 6 (1966) 36–40.

[6] R.W. Zobel, M.J. Wright, H.G. Gauch, Statistical analysis of a
yield trial, Agron. J. 80 (1988) 388–393.

[7] H.G. Gauch, Statistical Analysis of Regional Yield Trials:
AMMI Analysis of Factorial Designs, Elsevier Science
Publishers, Amsterdam, The Netherlands, 1992.

[8] W. Yan, L.A. Hunt, Q. Sheng, Z. Szlavnics, Cultivar evaluation
and mega-environment investigation based on the GGE
biplot, Crop Sci. 40 (2000) 597–605.

[9] W. Yan, M.S. Kang, GGE Biplot Analysis: A Graphical Tool for
Breeders, Geneticists, and Agronomists, CRC Press, Boca
Raton, FL, 2003. 213.

[10] H.G. Gauch, Statistical analysis of yield trials by AMMI and
GGE, Crop Sci. 46 (2006) 1488–1500.

[11] W. Yan, M.S. Kang, B. Ma, S. Woods, P.L. Cornelius, GGE Biplot
vs. AMMI analysis of genotype-by-environment data, Crop
Sci. 47 (2007) 643–655.

[12] H.G. Gauch, H.P. Piepho, P. Annicchiarico, Statistical analysis
of yield trials by AMMI and GGE: further considerations, Crop
Sci. 48 (2008) 866–889.

[13] M.S. Kang, V.D. Aggarwal, R.M. Chirwa, Adaptability and
stability of bean cultivars as determined via yield–stability
statistic and GGE Biplot analysis, J. Crop Improv. 15 (2006)
97–120.

[14] X.M. Fan, M.S. Kang, H. Chen, Y. Zhang, J. Tan, C. Xu, Yield
stability of maize hybrids evaluated in multi-environment
trials in Yunnan, China, Agron. J. 99 (2007) 220–228.

[15] R. Mohammadi, R. Haghparast, A. Amri, S. Ceccarelli, Yield
stability of rainfed durum wheat and GGE biplot
analysis of multi-environment trials, Crop Pas. Sci. 61 (2010)
92–101.

[16] S. Alwala, T. Kwolek, M. McPherson, J. Pellow, D.A. Meyer,
Comprehensive comparison between Eberhart and Russell
joint regression and GGE biplot analyses to identify stable
and high yielding maize hybrids, Field Crop Res. 119 (2010)
225–230.

[17] A. Goyal, B.L. Beres, H.S. Randhawa, A. Navabi, D.F. Salmon, F.
Eudes, Yield stability analysis of broadly adaptive triticale
germplasm in southern and central Alberta, Canada, for
industrial end-use suitability, Can. J. Plant Sci. 91 (2011)
125–135.

[18] P. Annicchiarico, Joint regression vs AMMI analysis of
genotype–environment interactions for cereals in Italy,
Euphytica 94 (1997) 53–62.

[19] M.S. Kang, Simultaneous selection for yield and stability in
crop performance trials: consequences for growers, Agron. J.
85 (1993) 754–757.

[20] IRRI, IRRISTAT Software 5.0 for Windows, International Rice
Research Institute, Manila, Philippines, 2005.

http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0005
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0005
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0010
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0010
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0010
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0015
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0015
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0020
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0020
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0020
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0025
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0025
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0030
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0030
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0035
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0035
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0035
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0040
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0040
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0040
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0180
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0180
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0180
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0050
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0050
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0055
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0055
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0055
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0060
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0060
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0060
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0065
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0065
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0065
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0065
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0070
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0070
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0070
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0075
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0075
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0075
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0075
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0080
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0080
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0080
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0080
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0080
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0085
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0085
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0085
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0085
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0085
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0090
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0090
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0090
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0095
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0095
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0095
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0185
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0185


163T H E C R O P J O U R N A L 2 ( 2 0 1 4 ) 1 5 4 – 1 6 3
[21] Z. Zhang, C. Lu, Z.H. Xiang, Stability analysis for varieties by
AMMI model, Acta Agron. Sin. 24 (1998) 304–309 (in Chinese
with English abstract).

[22] W. Yan, GGE biplot—a Windows application for graphical
analysis of multi-environment trial data and other types of
two-way data, Agron. J. 93 (2001) 1111–1118.

[23] H.G. Gauch, R.W. Zobel, Identifying mega-environment and
targeting genotypes, Crop Sci. 37 (1997) 381–385.

[24] G.K. Shukla, Some statistical aspects of partitioning
genotype-environmental components of variability, Heredity
29 (1972) 237–245.

[25] Y. Zhang, Z. He, A. Zhang, M. van Ginkel, G. Ye, Pattern
analysis on grain yield performance of Chinese and CIMMYT
spring wheat cultivars sown in China and CIMMYT,
Euphytica 147 (2006) 409–420.

[26] H.C. Becker, J. Leon, Stability analysis in plant breeding, Plant
Breed. 101 (1988) 1–23.

[27] I. Romagosa, P.N. Fox, Genotype by environment interaction
and adaptation, in: M.D. Hayward, N.O. Bosemark, I.
Romagosa (Eds.), Plant Breeding: Principles and Prospects
Chapman & Hall, London, 1993, pp. 373–390.

[28] B. Westcott, Some methods of analysing
genotype–environment interaction, Heredity 56 (1986)
243–253.

[29] J. Crossa, Statistical analyses of multilocation trials, Adv.
Agron. 44 (1990) 55–85.
[30] F. Mekbib, Simultaneous selection for high yield and stability
in common bean (Phaseolus vulgaris) genotypes, J. Agric. Sci.
(Camb.) 138 (2002) 249–253.

[31] R. Mohammadi, M. Roostaei, Y. Ansari, M. Aghaee, A. Amri,
Relationships of phenotypic stability measures for
genotypes of three cereal crops, Can. J. Plant Sci. 90 (2010)
819–830.

[32] T.C. Helms, Selection for yield and stability among oat lines,
Crop Sci. 33 (1993) 423–426.

[33] M.D. Jalaluddin, S.A. Harrison, Repeatability of stability
statistics for grain yield in wheat, Crop Sci. 33 (1993) 720–725.

[34] F. Flores, M.T. Moreno, J.I. Cubero, A comparison of univariate
and multivariate methods to analyze environments, Field
Crop Res. 56 (1998) 271–286.

[35] C.H. Sneller, L. Kilgore-Norquest, D. Dombek, Repeatability of
yield stability statistics in soybean, Crop Sci. 37 (1997)
383–390.

[36] R. Mohammadi, S.S. Pourdad, A. Amri, Grain yield stability of
spring safflower (Carthamus tinctorius L.), Aust. J. Agric. Res. 59
(2008) 546–553.

[37] D. Baxevanos, C. Goulas, S. Tzortzios, A. Mavromatis,
Interrelationship among and repeatability of
seven stability indices estimated from commercial
cotton (Gossypium hirsutum L.) variety evaluation
trials in three Mediterranean countries, Euphytica 161 (2008)
371–382.

http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0100
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0100
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0100
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0105
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0105
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0105
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0110
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0110
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0115
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0115
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0115
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0120
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0120
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0120
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0120
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0125
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0125
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0190
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0190
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0190
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0190
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0130
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0130
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0130
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0135
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0135
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0140
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0140
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0140
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0145
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0145
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0145
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0145
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0150
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0150
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0155
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0155
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0160
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0160
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0160
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0165
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0165
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0165
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0170
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0170
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0170
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0175
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0175
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0175
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0175
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0175
http://refhub.elsevier.com/S2214-5141(14)00011-7/rf0175

	Rank correlation among different statistical models in ranking of winter wheat genotypes
	1. Introduction
	2. Materials and methods
	2.1. Experimental data
	2.2. Statistical analysis

	3. Results
	3.1. Combined ANOVA
	3.2. Genotype comparison and selection
	3.2.1. Joint regression analysis
	3.2.2. Yield stability (YSi) statistic
	3.2.3. AMMI analysis
	3.2.4. GGE biplot analysis

	3.3. Comparison of statistical methods in the ranking �of genotypes
	3.4. Relationships among the statistical methods

	4. Discussion
	5. Conclusion
	Acknowledgments
	References


