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Abstract

This work is concerned with the null-controllability of semilinear parabolic systems by a single
control force acting on a subdomain.
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1. Introduction

We consider a general reaction–diffusion system which arises in mathematical biology:

ψt = Δψ + f1(ψ,w) in QT = Ω × (0, T ),

wt = Δw + f2(ψ,w) + χωg in QT , (1)

ψ = w = 0 on ΣT = ∂Ω × (0, T ),

ψ(x,0) = ψ0, w(x,0) = w0, x ∈ Ω, (2)
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where Ω is a bounded domain of Rn with smooth boundary ∂Ω , fi (i = 1,2) are smooth
real functions (let us say C2 functions) and g is a control in L2(QT ). Let g∗ in L2(QT )

(with QT = Ω×]0, T [), and (ψ∗
0 ,w∗

0) ∈ L2(Ω)2. Suppose that there exists a (ψ∗,w∗)
satisfying (1) in C(]0, T ]×L2(Ω))2 with (ψ(0),w(0)) = (ψ∗

0 ,w∗
0). Therefore, by setting:

ψ = ψ̄ − ψ∗, w = w̄ − w∗,

where (ψ̄, w̄, ḡ) satisfies (1), one gets:

ψt = Δψ + f1(ψ̄, w̄) − f1(ψ
∗,w∗) in QT ,

wt = Δw + f2(ψ̄, w̄) − f2(ψ
∗,w∗) + χωg in QT ,

ψ = w = 0 on ΣT ,

ψ(x,0) = ψ0, w(x,0) = w0, x ∈ Ω,

where g = ḡ − g∗. We write this last system in the following form:

ψt = Δψ + a(ψ,w)ψ + b(ψ,w)w in QT ,

wt = Δw + c(ψ,w)ψ + d(ψ,w)w + χωg in QT , (3)

ψ = w = 0 on ΣT ,

ψ(x,0) = ψ0, w(x,0) = w0, x ∈ Ω, (4)

where:

a(ψ,w) =
1∫

0

∂f1

∂ψ
(sψ + ψ∗, sw + w∗) ds,

b(ψ,w) =
1∫

0

∂f1

∂w
(sψ + ψ∗, sw + w∗) ds,

c(ψ,w) =
1∫

0

∂f2

∂ψ
(sψ + ψ∗, sw + w∗) ds,

d(ψ,w) =
1∫

0

∂f2

∂w
(sψ + ψ∗, sw + w∗) ds.

Our aim is, for any (ψ0,w0) belonging to a suitable space, to find a control g ∈ L2(QT )

such that the associated solution of (3)–(4) satisfies

ψ(T ) = w(T ) = 0 on Ω.

This is the null-controllability or the controllability to the trajectories property.
For reaction–diffusion systems, this question has been considered in Anita–Barbu [4]

with

fi(x,ψ,w) = αia(x)ψw, i = 1,2,
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where the αi are positive constants and a ∈ L∞(Ω) is such that a � a0 > 0 a.e. in Ω . The
authors proved a local exact controllability with two localized (in space) control functions
(one for each equation). Another connected question is tackled by Barbu–Wang [6]. In
their paper, these last authors prove, by way of direct techniques, the stabilization of sys-
tem (1). As they pointed out, local null-controllability implies (local) stabilization but the
first property is still an open problem. Our work is just concerned by this problem (null-
controllability). We prove in this paper that, under an assumption (which does not seem
very restrictive (see (34) below in Theorem 6), this property holds for system (1). Our ap-
proach is based on earlier works on the local and global null-controllability of phase-field
systems and abstract parabolic-like systems (see [2,3]).

This paper is in keeping with the idea of controlling or stabilizing systems using the least
control forces possible: works in this direction dealing with various systems governed by
partial differential equations or equations in an abstract framework can be found in [1,7].

The paper is organized as follows. We set and prove the local null-controllability of
system (1) in Section 4. Before this, we first prove in Section 2 a crucial observability esti-
mate for the linearized problem (see Theorem 3 below). In Section 3, we use this estimate
to prove the null-controllability of a linearized system derived from (3).

2. Observability estimate

We consider in this section the problem:

ut = Δu + au + bv in QT ,

vt = Δv + cu + dv + χωg in QT , (5)

u = v = 0 on ΣT ,

u(x,0) = u0, v(x,0) = v0, x ∈ Ω, (6)

and its adjoint problem:

−ϕt = Δϕ + aϕ + cw in QT ,

−wt = Δw + bϕ + dw in QT , (7)

ϕ = w = 0 on ΣT ,

ϕ(x,T ) = ϕ0, w(x,T ) = w0, x ∈ Ω, (8)

where a, b, c, d ∈ L∞(QT ).
Following [9], let us introduce some notations. Let ω′ � ω be a subdomain of ω and let

β be a C2(Ω̄) function such that

min
{∣∣∇β(x)

∣∣, x ∈ Ω\ω′} > 0 and
∂β

∂n
� 0 on ∂Ω, (9)

where n denotes the outward unit normal to ∂Ω . Moreover, we can always assume that β

satisfies

min
{
β(x), x ∈ Ω̄

}
� max

(
3‖β‖L∞(Ω), ln(3)

)
. (10)
4
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Finally, we introduce the following functions with parameters λ > 0 and τ > 0:

ρ(t, x) := eλβ(x)

t (T − t)
, (t, x) ∈ QT , (11)

α(t, x) := τ
e

4
3 λ‖β‖L∞(Ω) − eλβ(x)

t (T − t)
, (t, x) ∈ QT . (12)

Note in particular that ρ > 4/T 2.
Then the following result holds (Carleman estimate):

Theorem 1. [9, Theorem 7.1, p. 288] There exist λ0 > 0, τ0 > 0 and a positive constant C

such that ∀λ � λ0, ∀τ � τ0 and ∀s � −3 the inequality∫
QT

(
1

λ
|zt |2 + 1

λ

∣∣D2
xz

∣∣2 + λτ 2ρ2|∇z|2 + λ4τ 4ρ4z2
)

ρ2s−1e−2α dx dt

� C

(
τ

∫
QT

|zt ± Δz|2ρ2se−2α dx dt + λ4τ 4

T∫
0

∫
ω′

z2ρ2s+3e−2α dx dt

)
, (13)

holds for any function z satisfying homogeneous Dirichlet condition and such that the
right-hand-side of (13) is finite. Moreover, the constants C and λ0 depend only on Ω

and ω′. The constant τ0 is of the form

τ0 = c0(Ω,ω′)
(
T + T 2).

The explicit dependence in time of the constants is not given in [9]. We refer to [10]
where the above formula for τ0 is obtained.

In the sequel, the symbol C will stand for various constants independent of T and
a, b, c, d .

Let us introduce the following notation: for given λ and τ as in Theorem 1, we set
δ = τρ and consider the functional

I (s, z) =
∫

QT

(
1

λ
|zt |2 + 1

λ
|Δz|2 + λδ2|∇z|2 + λ4δ4z2

)
δ2s−1e−2α dx dt. (14)

On the other hand, we set

‖a, b, c, d‖∞ = (‖a‖2∞ + ‖b‖2∞ + ‖c‖2∞ + ‖d‖2∞
)1/2

.

Lemma 2. Let λ0 > 1, C being the constant given in Theorem 1. Then ∀λ � λ0, ∀τ � τ1 =
T 2

4 ( 4C

λ4 )1/3‖a, b, c, d‖2/3∞ and ∀s � −3, the solution (ϕ,w) of (7)–(8) satisfies the estimate:

I (s, ϕ) + I (s,w) � Cλ4

T∫ ∫
′

(
ϕ2 + w2)δ2s+3e−2α dx dt. (15)
0 ω



932 F. Ammar Khodja et al. / J. Math. Anal. Appl. 320 (2006) 928–943
As a consequence, we get

I

(
−3

2
, ϕ

)
+ I

(
−3

2
,w

)
� Cλ4

T∫
0

∫
ω′

(
ϕ2 + w2)e−2α dx dt. (16)

Proof. Applying Theorem 1, we get with our notations:

I (s, ϕ) + I (s,w)

� 2C

[ ∫
QT

((‖a‖2∞ + ‖b‖2∞
)
ϕ2 + (‖c‖2∞ + ‖d‖2∞

)
w2)δ2se−2α dx dt

+ λ4

T∫
0

∫
ω′

(
ϕ2 + w2)δ2s+3e−2α dx dt

]
.

Choosing then

τ � τ1 = T 2

4

(
4C

λ4

)1/3

‖a, b, c, d‖2/3∞ ,

which implies

2C‖a, b, c, d‖2/3∞ � 1

2
λ4δ3,

we deduce (15) and therefore (16). �
This lemma already implies the null-controllability of (5) by two control forces (i.e., in

the case where a second force χωf occurs in the first equation of (5)). So, now, the problem
is to get rid of the term

∫ T

0

∫
ω′ ϕ2e−2α dx dt in the right-hand side of (16) and the main idea

is to use the second equation in (7) to estimate this integral in terms of
∫
QT,ω

e−rαw2 dx dt .
The construction of the functional (21) below turns around this idea. Our crucial result is
the following:

Theorem 3. With the hypotheses of Lemma 2, assume moreover that there exist a constant
b0 > 0 and a domain ωb such that

ωb � ω, (17)

|b| � b0 in ωb × (0, T0), (18)

for some T0 > 0. Then for all r ∈ [0,2) there exists a constant C = Cr,T such that

T∫
0

∫
ω′

(
ϕ2 + w2)e−2α dx dt � C

T∫
0

∫
ω

e−rαw2 dx dt, (19)

for all ω′ such that ω′ � ωb � ω.
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As an immediate consequence, it follows that for all r ∈ [0,2) there exists a constant
C = Cr,T such that

I (−3/2, ϕ) + I (−3/2,w) � C

T∫
0

∫
ω

e−rαw2 dx dt. (20)

Remark 1. We will see later that it is important to be able to choose r > 1. It seems that r

cannot be equal to 2: this is the “cost” of the control by a single force.

Remark 2. Of course, assumption (18) will imply a restriction on (ψ∗,w∗, g∗) satisfy-
ing (1) (see (34)).

Proof. The main idea is to estimate
∫ T

0

∫
ω′ ϕ2 e−2α dx dt by

∫ T

0

∫
ω

e−rαw2 dx dt for some
r ∈ [0,2) using the second equation of (7). To do this, we first localize the system in space,
multiply the second equation by −β0e

−2αηϕ and manage the “bad” terms appearing (see
Λ(t) in (21) and [3] for the construction of this function in an abstract setting).

Let ξ ∈ C∞(Rn) be a truncation function satisfying⎧⎨
⎩

ξ(x) = 1, ∀x ∈ ω′,
0 < ξ(x) � 1, ∀x ∈ ω′′,
ξ(x) = 0, ∀x ∈ Rn\ω′′,

where ω′ � ω′′ � ωb � ω � Ω .
Assume for example that b � b0 > 0 in ωb × (0, T ) and introduce the function η := ξ6.

For real numbers β0, β1,p, q > 0, which will be chosen below, set

Λ(t) =
∫
Ω

(
e−pαη4/3ϕ2 − β0e

−2αηϕw + β1e
−qαη2/3w2)dx, (21)

and remark that Λ(T ) = Λ(0) = 0.
Note that if instead of b � b0 > 0 we have −b � b0 > 0 in (17) then the expression of Λ

must be modified by taking (β0e
−2αηϕw) instead of (−β0e

−2αηϕw) for its second term.
Differentiating Λ with respect to t and replacing ϕt and wt by their expressions given

by (7), we obtain

Λ′ =
∫
Ω

(−pe−pαη4/3ϕ2 + 2β0e
−2αηϕw − β1q e−qαη2/3w2)αt dx

−
∫
Ω

2e−pαη4/3ϕ(Δϕ + aϕ + cw)dx

+ β0

∫
Ω

e−2αη
[
ϕ(Δw + bϕ + dw) + w(Δϕ + aϕ + cw)

]
dx

−
∫

2β1 e−qαη2/3w(Δw + bϕ + dw)dx. (22)
Ω
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Let us, at this level, throw light on the construction of Λ. The main point is contained in
the third integral of (22): we have multiplied the second equation in (7) by β0e

−2αηϕ (in
order to get

∫
QT

e−2αηbϕ2 dx) and the first equation in (7) by β0e
−2αηw. After integrating

by parts (in space) this integral, some terms containing in particular ∇ϕ and ∇w appear and
in order to manage these “bad” terms, we have again multiplied the two equations of (7) by
e−pαη4/3ϕ and e−qαη2/3w respectively getting terms of the form |∇ϕ|2 and |∇w|2 with
good signs. The three other integrals in (22) just come from these computations. Of course,
in the forthcoming lines, we verify that this “strategy” works.

Coming back to (22) and recalling that Λ(0) = Λ(T ) = 0, the integration of (22) over
(0, T ) yields

β0

∫
QT

e−2αηbϕ2 dx

=
∫

QT

{
(pαt + 2a)e−pαη4/3ϕ2 + [

β1(qαt + 2d)e−qαη2/3 − β0e
−2αηc

]
w2

− [
β0(2αt + a + d)e−2αη − 2β1e

−qαη2/3b − 2e−pαη4/3c
]
ϕw

}
dx dt

+ 2
∫

QT

e−pαη4/3ϕΔϕ dx dt − β0

∫
QT

e−2αη(ϕΔw + wΔϕ)dx dt

+ 2β1

∫
QT

e−qαη2/3wΔw dx dt

= J1 + J2 + J3 + J4. (23)

Here appears clearly why we need the assumption (18). Now we estimate each of the
four terms J1, . . . , J4.

For J1, in order to estimate β0(2αt + a + d)e−2αηϕw in terms of e−2αηϕ2, we need
an upper-bound for (2αt + a + d)2e−2αη2/3w2. So, since αt /∈ L∞(QT ), we introduce
r ∈ [0,2) and write e−2α = e−(2−r)αe−rα . Assuming that

p > 2, q > 1 + r

2
, r < 2, (24)

and that β0, β1 � 1 and using the Cauchy–Schwarz inequality together with the fact that
‖η‖∞ � 1 and T � Cτ , we get

J1 �
(

1

2
+ ∥∥(pαt + 2a)e−(p−2)αη1/3

∥∥∞

) ∫
QT

e−2αηϕ2 dx dt

+
{

1

2

∥∥β0(2αt + a + d)e−(1− r
2 )αη1/3 − 2e−(p−1− r

2 )αη2/3c

− 2β1e
−(q−1− r

2 )αb
∥∥2

∞

+ ∥∥β1(qαt + 2d)e−(q−r)αη1/3 − β0e
−(2−r)αη2/3c

∥∥∞

} ∫
η1/3e−rαw2 dx dt
QT
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� C

[(
1 + ‖a‖∞ + ∥∥αte

−(p−2)α
∥∥∞

) ∫
QT

e−2αηϕ2 dx dt

+ ((
1 + ‖a + d‖2∞ + ‖c‖2∞ + ∥∥αte

−(1− r
2 )α

∥∥2
∞

)
β2

0

+ (
1 + ‖b‖2∞ + ‖d‖2∞ + ∥∥αte

−(q−r)α
∥∥2

∞
)
β2

1

) ∫
QT

η1/3e−rαw2 dx dt

]

� C

[(
1 + ‖a‖∞ + τ 2

T 4

) ∫
QT

e−2αηϕ2 dx dt

+ |β|2
(

1 + ‖Df∗‖2∞ + τ 4

T 8

) ∫
QT

η1/3e−rαw2 dx dt

]
(25)

where C = C(p,q,‖η‖L∞(Ω)), ‖Df∗‖2∞ = ‖a, b, c, d‖2∞ = ‖a‖2∞ + ‖b‖2∞ + ‖c‖2∞ +
‖d‖2∞ and |β|2 = β2

0 + β2
1 .

Concerning J2, we have that

J2 = 2
∫

QT

e−pαη4/3ϕΔϕ dx dt

= −2
∫

QT

e−pαη4/3|∇ϕ|2 dx dt − 2
∫

QT

ϕ∇ϕ.∇(
e−pαη4/3)dx dt

= −2
∫

QT

e−pαη4/3|∇ϕ|2 dx dt +
∫

QT

ϕ2Δ
(
e−pαη4/3)dx dt

= −2
∫

QT

e−pαη4/3|∇ϕ|2 dx dt +
∫

QT

(
e−2αηϕ2)e2αη−1Δ

(
e−pαη4/3)dx dt.

We have

Δ
(
e−pαηl

) = e−pα
[(

p2|∇α|2 − pΔα
)
ηl + (Δη − 2p∇α.∇η)ηl−1

+ p(p − 1)|∇η|2ηl−2],
so

e2αη−1Δ
(
e−pαη4/3) = e−(p−2)α

[(
p2|∇α|2 − pΔα

)
η1/3

+ 4

3
(Δη − 2p∇α.∇η)η−2/3 + p(p − 1)|∇η|2η−5/3].

Note that

∇η

η5/6
= 6∇ξ ∈ L∞(Ω),

∇η

η2/3
= 6ξ∇ξ ∈ L∞(Ω),

Δη

2/3
= 30|∇ξ |2 + 6ξΔξ ∈ L∞(Ω).
η
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It follows from this last computation and p > 2 that

∥∥e2αη−1Δ
(
e−pαη4/3)∥∥∞ � C

(
1 + τ 2

T 4

)
where C = C(p,‖η‖L∞(Ω)). Coming back to J2, we get

J2 � −2
∫

QT

e−pαη4/3|∇ϕ|2 dx dt + C

(
1 + τ 2

T 4

) ∫
QT

e−2αηϕ2 dx dt. (26)

We now estimate J3. We have

J3 = −
∫

QT

β0e
−2αη(ϕΔw + wΔϕ)dx dt

= −
∫

QT

β0e
−2αη

(
Δ(ϕw) − 2∇ϕ.∇w

)
dx dt

= −β0

∫
QT

Δ
(
e−2αη

)
ϕw dx dt + 2

∫
QT

β0e
−2αη∇ϕ.∇w dx dt.

Proceeding as previously, thanks to the assumption r < 2, we get∣∣∣∣β0

∫
QT

Δ
(
e−2αη

)
ϕw dx dt

∣∣∣∣
� C

( ∫
QT

e−2αηϕ2 dx dt + β2
0

(
1 + τ 4

T 8

) ∫
QT

η1/3e−rαw2 dx dt

)
.

Thus it appears that

J3 � C

( ∫
QT

e−2αηϕ2 dx dt + β2
0

(
1 + τ 4

T 8

) ∫
QT

η1/3e−rαw2 dx dt

)

+ 2
∫

QT

β0e
−2αη∇ϕ.∇w dx dt. (27)

Finally, we estimate J4:

J4 = 2β1

∫
QT

e−qαη2/3wΔw dx dt

= −2β1

∫
QT

e−qαη2/3|∇w|2 dx dt + β1

∫
QT

Δ
(
e−qαη2/3)w2 dx dt.

Again, in the same way, we get using the condition q > r and the definition of η:∣∣∣∣
∫

Δ
(
e−qαη2/3)w2 dx dt

∣∣∣∣ � C

(
1 + τ 2

T 4

) ∫
η1/3e−rαw2 dx dt.
QT QT
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Thus

J4 � −2β1

∫
QT

e−qαη2/3|∇w|2 dx dt + Cβ1

(
1 + τ 2

T 4

) ∫
QT

η1/3e−rαw2 dx dt.

(28)

Then from (22) and (25)–(28), we get with τ � τ0, conditions (24) and β1 � 1:

β0b0

∫
QT

e−2αηϕ2 dx dt

� C

(
1 + ‖a‖∞ + τ 2

T 4

) ∫
QT

e−2αηϕ2 dx dt

+ C|β|2
(

1 + ‖Df∗‖2∞ + τ 4

T 8

) ∫
QT

e−rαη1/3w2 dx dt

− 2
∫

QT

e−pαη4/3|∇ϕ|2 dx dt − 2β1

∫
QT

e−qαη2/3|∇w|2 dx dt

+ 2β0

∫
QT

e−2αη∇ϕ.∇w dx dt.

But fixing now β0 = 2C
b0

(1 + ‖a‖∞ + τ 2

T 4 ), we obtain∫
QT

e−2αηϕ2 dx � CT,‖a‖∞

∫
QT

η1/3e−rαw2 dx dt − 2

β0

∫
QT

e−pαη4/3|∇ϕ|2 dx dt

− 2β1

β0

∫
QT

e−qαη2/3|∇w|2 dx dt + 2
∫

QT

e−2αη∇ϕ.∇w dx dt.

Consider the three last terms in the right-hand side of the previous inequality. Assume
moreover that

p � 4 − q.

With this assumption, for β1 � 1
2β2

0 , we have that(
β0e

−2αη
)2 � 2

(
e−pαη4/3)(β1e

−qαη2/3) on QT ,

which implies

− 2

β0

∫
QT

e−pαη4/3|∇ϕ|2 dx dt − 2β1

β0

∫
QT

e−qαη2/3|∇w|2 dx dt

+ 2
∫

e−2αη∇ϕ.∇w dx dt � 0.
QT
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To summarize, we have∫
QT

e−2αηϕ2 dx dt � C

(
1 + ‖Df∗‖2∞ + τ 4

T 8

)
(β2

1 + β2
0 )

β0

∫
QT

η1/3e−rαw2 dx dt

and all the computations are valid with the following conditions:

r < 2, p > 2, q > 1 + r

2
, p � 4 − q,

β0 = 2c

b0

(
1 + τ 2

T 4
+ ‖a‖2∞

)
, β1 � 1

2
β2

0 , τ � τ1. (29)

It is clear that there is a nonempty set of (p, q, r) satisfying all the conditions in (29):
for instance, (2+ 1

16 ,2− 1
8 , 3

2 ) satisfies this condition. With may be a modified constant C,
we get the following final estimate:∫

QT,ω′

e−2αϕ2 dx dt � C

∫
QT,ω

e−rαw2 dx dt,

where QT,ω = (0, T ) × ω and C = C(T ,‖Df∗‖∞). This final estimate ends the proof of
the theorem. �

3. Null controllability of (5)

For ε > 0 and r ∈ (0,2), we define:

Jε(g) = 1

2

∫
QT

erαg2 dx dt + 1

2ε

∥∥(u, v)(T )
∥∥2

L2(Ω)
,

where g ∈ L2(QT ) and (u, v) is the associated solution of (5) with given X0 = (u0, v0) ∈
H 1

0 (Ω) × H 1
0 (Ω). Introduce also the dual functional (see [8]):

J ∗
ε (Y0) = 1

2

T∫
0

∫
ω

e−rαw2 dx dt + ε

2
‖Y0‖2

L2(Ω)
+

∫
Ω

Y(0).X0 dx,

where Y = (ϕ,w) is the solution of the backward linear system (7) with data Y0 =
(ϕ0,w0) ∈ L2(Ω) × L2(Ω).

By classical arguments, the minimization problems

min
g

Jε(g) and min
Y0

J ∗
ε (Y0),

have both exactly one solution gε and Y0ε , respectively. Moreover, by the maximum prin-
ciple (or see for instance [8]):

gε = χωe−rαwε on QT ; Y0ε = −1
(uε, vε)(T ) on Ω, (30)
ε
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where (uε, vε) (respectively (ϕε,wε)) is the solution of (5) (respectively (7)) associated
with gε (respectively Y0ε). Since J ∗

ε (Y0ε) � 0, we get

1

2

T∫
0

∫
ω

e−rαw2
ε dx dt + 1

2ε

∥∥(uε, vε)(T )
∥∥2

L2(Ω)
�

∥∥(ϕε,wε)(0)
∥∥

L2(Ω)
.‖X0‖L2(Ω).

(31)

To obtain an uniform estimate, we will need the following results:

Lemma 4. With the hypotheses of Theorem 3, for r ∈ (0,2), any solution pair of (7) satis-
fies the estimate

∥∥(ϕ,w)(0)
∥∥2

L2(Ω)
� CT

T∫
0

∫
ω

e−rαw2 dx dt,

with

CT = exp

(
C

(
1 + 1

T
+ (

1 + ∥∥(a, b, c, d)
∥∥∞

)
T + ∥∥(a, b, c, d)

∥∥4/3
∞

))
,

where ‖(a, b, c, d)‖∞ = (‖a‖2∞ + ‖b‖2∞ + ‖c‖2∞ + ‖d‖2∞)1/2.

Proof. The proof of this lemma is by now classical and very similar to the equivalent
lemma in [2]. �

For N � 1, let qN such that

N + 2

2
< qN < 2

N + 2

N − 2
if N � 3, qN ∈ (2,+∞) if N = 1,2. (32)

Lemma 5. With the hypotheses of Lemma 4, for any X0 = (u0, v0) ∈ (H 1
0 (Ω) ∩

W
2(1− 1

qN
),qN

(Ω))2, there exists ((u, v), g) ∈ (L2(0, T ;H 1
0 (Ω)) ∩ W

2,1
qN

(QT ))2 ×
LqN (QT,ω) satisfying (5) and

(u, v)(T ) = 0 on Ω,

‖χωg‖2
LqN (QT ) � CT ‖X0‖2

L2(Ω)
,

where CT is defined in Lemma 4.

Proof. From (31) and (32), we get for all ε > 0:

1

2

T∫
0

∫
ω

e−rαw2
ε dx dt + 1

2ε

∥∥(uε, vε)(T )
∥∥2

L2(Ω)
� CT ‖X0‖2

L2(Ω)
.

We should obtain from this last estimate a control in L2(QT ) just by passing to the limit
in ε. But we will prove that our control is in LqN (QT ) because we will need this property
in the following section. So let us introduce ζε = e−rαwε . It satisfies by (7):
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⎧⎨
⎩

(ζε)t + Δζε = fε in (0, T ) × Ω = QT ,

ζε = 0 on (0, T ) × ∂Ω = ΣT ,

ζε(T ) = 0 in Ω,

with

fε = −2r∇α.
(
e−rα∇wε

) + (
Δ

(
e−rα

) + (
e−rα

)
t
− de−rα

)
wε − be−rαϕε.

By parabolic regularity, we have

‖ζε‖W
2,1
2 (QT )

� C‖fε‖L2(QT ).

On the other hand, setting

I1 =
∫

QT

e−2rαϕ2
ε dx dt

we have, using (20) in Theorem 3,

I1 =
∫

QT

(
e−2(r−1)α

)(
e−2αϕ2

ε

)
dx dt �

∥∥e−2(r−1)α
∥∥∞

∫
QT

e−2αϕ2
ε dx dt

� CT

T∫
0

∫
ω

e−rαw2
ε dx dt.

Of course, ‖e−2(r−1)α‖∞ is finite if we assume

r � 1

and the same remark holds in the sequel. In the same way, setting

I2 =
∫

QT

∣∣∇α.
(
e−rα∇wε

)∣∣2
dx dt,

I3 =
∫

QT

∣∣(Δ(
e−rα

) + (
e−rα

)
t
− de−rα

)
wε

∣∣2
dx dt,

we prove by the same kind of computations that

I2, I3 � CT

T∫
0

∫
ω

e−rαw2
ε dx dt.

It follows from these last inequalities and (33) that

‖ζε‖2
W

2,1
2 (QT )

� CT

T∫ ∫
e−rαw2

ε dx dt.
0 ω
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Now, by the embedding W
2,1
2 (QT ) ↪→ LqN (QT ) (see for instance [11, Lemma 3.2, p. 80]):

‖ζε‖2
LqN (QT ) � CT

T∫
0

∫
ω

e−rαw2
ε dx dt.

Going back to our control, we get using (33):

‖gε‖2
LqN (QT ) = ‖χωζε‖2

LqN (QT ) � C

T∫
0

∫
ω

e−rαw2
ε dx dt � CT ‖X0‖2

L2(Ω)
. (33)

From (33) and [11, Theorem 10.4, p. 621], it follows, at least for a subsequence, that for
ε → 0:

gε ⇀ g weakly in LqN (QT ),

(uε, vε) ⇀ (u,v) weakly in L2(0, T ;H 1
0 (Ω)

) ∩ W 2,1
qN

(QT ),

and ((u, v), g) satisfy (5) with (u, v)(T ) = 0 and ‖χωg‖2
LqN (QT )

� CT ‖X0‖2
L2(Ω)

. �

4. Local null controllability of (1)

Our main result is the following:

Theorem 6 (Local controllability to the trajectories). Assume that fi ∈ C2(R2,R) for
i = 1,2, and let T > 0, 1 � N < 6. Assume also that there exists a global trajectory
(ψ∗,w∗, g∗) of (1) such that

∂f1

∂w
(ψ∗,w∗) � μ > 0 a.e. on ωb × (0, T0)

for some 0 < T0 < T and ωb � ω. Then there is ρ > 0 such that if ψ0, w0 ∈ H 1
0 (Ω) ∩

W
2(1− 1

qN
),qN

(Ω) (qN is defined in (32)) with ‖(ψ0, w0)‖L∞(Ω) � ρ, one can find g ∈
LqN (QT ) such that there exists (ψg,wg) solution of (3) with ψg, wg ∈ W

2,1
qN

(QT ) and
satisfying:

ψg(T ) = 0, wg(T ) = 0.

Remark 3. It should be said that ωb and T0 are arbitrary in the assumption (34) and, so,
it seems not to be a real restriction on the trajectory (ψ∗,w∗, g∗) of (1). For example, this
hypothesis is satisfied by steady-state solutions of (1) if the nonlinearities f1 and f2 are
sufficiently smooth.

Proof. For R > 0, set

KR = {
(ψ,w) ∈ (

L∞(QT )
)2; ∥∥(ψ,w)

∥∥ ∞ < R
}

L (QT )
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and consider the problem (5) with a fixed (ψ,w) ∈ KR in a, b, c and d . Since fi ∈
C1(R2,R) and thanks to (34), b will satisfy the assumptions of Theorem 3 for a suffi-
ciently small R > 0.

For each (ψ,w) ∈ KR , thanks to (34), we apply Lemma 5 and consider the set
�(ψ,w) ⊂ L2(QT ) of all the solutions ug, vg ∈ L2(0, T ;H 1

0 (Ω))∩W
2,1
qN

(QT ) associated
with any control g ∈ LqN (QT ) such that (ug, vg)(T ) = 0 a.e. Ω and ‖χωg‖2

LqN (QT )
�

CT ‖X0‖2
L2(Ω)

. The set �(ψ,w) is a nonempty closed convex subset of L2(QT ). On the

other hand, �(KR) is relatively compact in L2(QT ) and exactly as in [5], � is semicontin-
uous using [11, Theorem 10.4]. To prove that � has a fixed point (clearly, a fixed point of
� is a solution of (3)), it remains to show that there exists R > 0 such that �(KR) ⊂ KR .

To do this, we first prove that∥∥(ug, vg)
∥∥2

L∞(QT )
� CT ‖X0‖2

L∞(Ω). (34)

Exactly as in [2], we get

∥∥(ug, vg)(t)
∥∥

L∞(Ω)
� C

(
‖X0‖L∞(Ω) + T

− N+2
2qN

+1‖χωg‖LqN (QT )

+ (
1 + ∥∥(a, b, c, d)

∥∥
L∞(QT )

) t∫
0

∥∥(ug, vg)g(τ )
∥∥

L∞(Ω)
dτ

)

and from Gronwall’s inequality:∥∥(ug, vg)
∥∥

L∞(QT )
� Ce

C(1+‖(a,b,c,d)‖L∞(QT ))T

× (‖X0‖L∞(Ω) + T
− N+2

2qN
+1‖χωg‖LqN (QT )

)
, (35)

and (34) follows from (35) and Lemma 5.
The local controllability follows from (34) by taking the initial data sufficiently

small. �
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