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Herpes simplex virus type-1 (HSV-1) induces new lymphatic vessel growth (lymphangiogenesis) in the
cornea via expression of vascular endothelial growth factor by virally infected epithelial cells. Here, we
extend this observation to demonstrate the selective targeting of corneal lymphatics by HSV-1 in the
absence of functional type I interferon (IFN) pathway. Specifically, we examined the impact of HSV-1
replication on angiogenesis using type I IFN receptor deficient (CD118�/�) mice. HSV-1-induced
lymphatic and blood vessel growth into the cornea proper was time-dependent in immunocompetent
animals. In contrast, there was an initial robust growth of lymphatic vessels into the cornea of HSV-1-
infected CD118�/�mice, but such vessels disappeared by day 5 postinfection. The loss was selective as
blood vessel integrity remained intact. Magnetic resonance imaging and confocal microscopy analysis of
the draining lymph nodes of CD118�/� mice revealed extensive edema and loss of lymphatics compared
with wild-type mice. In addition to a loss of lymphatic vessels in CD118�/� mice, HSV-1 infection
resulted in epithelial thinning associated with geographic lesions and edema within the cornea, which
is consistent with a loss of lymphatic vasculature. These results underscore the key role functional type
I IFN pathway plays in the maintenance of structural integrity within the cornea in addition to the
anti-viral characteristics often ascribed to the type I IFN cytokine family. (Am J Pathol 2013, 183:
1233e1242; http://dx.doi.org/10.1016/j.ajpath.2013.06.014)
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The primary function of the lymphatic system is to drain fluid
andmacromolecules from peripheral tissue and return them to
the blood circulation to maintain appropriate peripheral tissue
pressure.1 Antigen, antigen-presenting cells, and soluble
factors drain from the site of inflammation to the regional
lymph nodes (LNs).1 This process is due to structural differ-
ences between blood and lymphatic capillaries. The endo-
thelial cells of blood capillaries form tight junctions are
surrounded by a basement membrane and by vascular smooth
muscle cells,1 whereas lymphatic capillaries are composed of
a single layer of endothelial cells connected loosely by button-
like junctions that facilitate the uptake of CCR7þ immune
cells via CCL21 expression by lymphatic endothelial cells
(LECs).2 Therefore, the lymphatic system plays a crucial role
bridging the innate immune response at the site of inflam-
mation to the generation of an adaptive immune response in
the draining LN. However, under pathological conditions
lymphangiogenesis or the impairment of proper lymphatic
stigative Pathology.
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drainage can contribute to tumor metastasis, chronic inflam-
mation, or lymphedema. Blood and lymphatic vessels are
critical for tissue maintenance; however, certain tissues, such
as the central cornea, are avascular. The absence of blood and
lymphatic vessels in the cornea is necessary for visual acuity.
However, hemangiogenesis and lymphangiogenesis can
occur after inflammation or transplantation. With the identi-
fication of novel lymphatic vessel markers [lymphatic vessel
endothelial hyaluronan receptor 1 (LYVE-1), prospero
homeobox 1 (Prox1), and podoplanin], corneal lymphangio-
genesis has been investigated using wound healing and
corneal transplantation models. In these studies, corneal
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lymphangiogenesis was associated with hemangiogenesis
contributed by inflammatory cells through vascular endo-
thelial growth factor (VEGF)-C/VEGF receptor 3 signaling.3

The presence of lymphatic vessels in the cornea before
transplantation significantly reduced graft success via the
trafficking of graft antigens to the regional LNs.3 Moreover,
excision of the draining LNs before transplantation increased
graft survival to 90%, even under high-risk settings.4

Herpes simplex virus type-1 (HSV-1) is among the most
successful of human pathogens with a seroprevalence rate
between 50% to 80%.5 Regardless of treatment, infection is
lifelong due to the virus establishing a latent infection in
sensory neurons, thereby evading immune detection.6 On
reactivation, the virus replicates and travels by anterograde
transport to the primary site of infection or other epithelial
surfaces fed by the infected sensory nerve fibers.6 The most
common clinical manifestation of HSV-1 infection is oro-
labial lesions; however, the virus can also be transported
to the cornea resulting in recurring bouts of inflammatory
keratitis.7 The clinical signs of herpes stromal keratitis include
stromal opacity, edema, and neovascularization.7 The oc-
currence of corneal edema is believed to allow for easier
growth of new vessels between collagen lamellae.8 Recent
studies have highlighted the importance of DNA sensor
IFI-16/p204-driven type 1 interferon (IFN) signaling by
infected corneal epithelial cells in controlling viral replication
through the recruitment of inflammatory monocytes.9,10

The development of lymphatic vessels into the central
cornea after ocular HSV-1 infection has been described
recently.11 Ocular infection with HSV-1 was found to elicit
resident epithelial cell expression of the pro-lymphangiogenic
factor, VEGF-A, in the cornea that required binding of the
HSV-1 encoded immediate to early transcription factor, ICP4,
to Sp1 sites within the VEGF-A promoter.12 Subsequent
release of VEGF-A by HSV-1einfected corneal epithelial
cells during acute infection is thought to lead to robust lym-
phangiogenesis in the cornea proper, preceding the develop-
ment of blood vessels.11 It has also been noted that HSV-1
drives vascularization of the cornea by reducing the expres-
sion of soluble VEGFR1, which functions as a VEGF-A trap,
blocking any downstream signaling.13

We show that impairment of type 1 IFN signaling results
in extensive corneal edema and loss of epithelial layers due
to robust replication of the virus within the tissue and
skewed leukocyte recruitment pattern. Moreover, HSV-1
selectively targets lymphatic vessels, but not blood vessels
during acute infection in both the cornea and draining LN.

Materials and Methods

Mice, Cells, and HSV-1 Infection

C57BL/6 wild-type (WT) mice were obtained from The
Jackson Laboratory (Bar Harbor, ME). C57BL/6 congenic
CD45.1 mice were obtained from National Cancer Institute
(Frederick, MD). Mice deficient in the type I IFN receptor
1234
a chain (CD118�/� mice)14 on a WT CD45.2 background
were maintained at Dean McGee Eye Institute (Oklahoma
City, OK). Animal treatment was consistent with the
National Institutes of Health Guidelines on the Care and Use
of Laboratory Animals. All procedures were approved by the
University of Oklahoma Health Sciences Center and Dean
McGee Eye Institute Institutional Animal and Care and Use
Committee. To establish infection, HSV-1 (strainMcKrae) or
green fluorescent protein (GFP)-expressing HSV-115 were
used to infect age- and sex-matched mice as previously
described.9 HSV-1 viral titers were determined in the
designated tissue at postinfection (p.i.) times by plaque assay.
Blood endothelial cell (BEC) and LEC (ATCC, Manassas,
VA) co-cultures were infected with GFP-expressing HSV-1
at a multiplicity of infection of 5 for 24 hours.

Slit-Lamp Examination of the Corneas

At indicated times p.i. with 103 PFU of HSV-1 (McKrae
strain), a Micron III imaging platform with a slit-lamp
attachment (Phoenix Research Laboratories, Pleasanton,
CA) was used for anterior segment imaging of anesthetized,
HSV-1-infected WT, and CD118�/� mice with a slit beam.
To visualize the corneal epithelial integrity, the corneas of
infected WT and CD118�/� mice were treated with topical
sodium fluorescein (Wilson Ophthalmic, Mustang, OK) and
images captured under cobalt illumination, using the Micron
III system (Phoenix Research Laboratories).

Measurement of Corneal Thickness and Weight

As previously described,16 an ultrasound pachymeter (Corneo-
Gage Plus; Sonogage, Cleveland, OH) that allowed
perpendicular alignments between the probe and central
cornea was used for central corneal thickness measurements
of anesthetized uninfected and infected WT and CD118�/�

mice at the indicated time p.i., as suggested by the manu-
facturer. After these experiments, a group of infected WT
and CD118�/� mice were euthanized on days 3 and 4 p.i.,
and their corneas were dissected at the margin of the limbus,
blotted with tissue paper, and weighed for comparison.
For histological assessment of corneal thickness, uninfected

and infectedWT and CD118�/� whole eyes were harvested at
the indicated time p.i. The eyes were then fixed for 24 hours at
room temperature and transferred to 70% ethanol. After
paraffin embedding, 5 mm sections were mounted on slides
and stained with H&E. Images were then captured with
a Nikon (Melville, NY) Eclipse E800 epifluorescence micro-
scope, and the number of epithelial layers and total corneal
thickness were measured in representative central areas.

Flow Cytometry

Leukocyte infiltration into the cornea proper or residing in
the mandibular lymph nodes (MLN) of uninfected and
infected mice was performed as previously described.10
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Bone Marrow Chimeras

Bone marrow chimeras were created by irradiating WT
CD45.2 and CD118�/� CD45.1 mice with two 600-Gy
doses of g-irradiation spaced 4 hours apart. Irradiated
mice were then retro-orbitally injected with 3 � 106 bone
marrow cells from WT or CD118�/� mice. The injected
bone marrow cells were allowed 10 weeks to reconstitute
the hematopoietic compartment. Chimerism was verified by
flow cytometry on circulating leukocytes in which recipients
were found to be composed of 90% to 95% donor bone
marrow cells.

Immunofluorescence Microscopy and Quantitative
Analysis of Lymphangiogenesis

Corneas from infected and uninfectedmicewere removed and
processed as previously described.11MLNwere prepared and
stained for specific antigens as previously described.17 MLN
images were obtained with a 10� objective and aggregated
using Photoshop CS4 (Adobe Systems, Inc., San Jose, CA) to
visualize whole LNs. LYVE-1 expression was quantified as
previously described using MetaMorph Imaging Suite
version 7.7 (Molecular Devices Inc., Sunnyvale, CA).11

Human BEC and LEC were fixed and imaged in the same
manner as cornea samples, except the cells were stained with
anti-Prox1 primary antibodies. To quantify HSV-1 infection
of BEC and LEC 24 hours p.i., cells positive for GFP (indi-
cating HSV-1 infection) in the visual field were counted using
a masked observer. BEC/LEC images were obtained with
a 200� objective. Cells positive for Prox1 (indicating LEC) or
negative for Prox1 (indicating BEC) in the same visual field
were counted and total cells (indicated by DAPI stain) were
enumerated. The number of cells counted was then compared
with the total number of cells in each visual field to calculate
percentage of HSV-1 positive cells. All samples were imaged
using an Olympus IX81-FV500 epiflourescence/confocal
laser-scanning microscope (Olympus, Center Valley, PA).
Images were analyzed with Fluoview software (Olympus).

Magnetic Resonance Imaging

WT and CD118�/� mice were subjected to gas anesthesia
(1.5% to 2.5% isoflurane, 0.8 L/min O2). At the indicated
time p.i., mice were imaged using a Bruker Biospec 5.0
imaging system to capture T2-weighted images. Areas of
fluid accumulation were calculated by drawing regions of
interest around the pharyngeal region that were then analyzed
using Paravision software version 5.0.

Suspension Array and Real-Time PCR

At the indicated p.i. time, mice were euthanized and corneas
were harvested, processed, and evaluated for CXCL1,
CXCL-9, and CXCL-10, or VEGF-A (Millipore, Billerica,
MA) by a Bioplex suspension array system (BioRad,
The American Journal of Pathology - ajp.amjpathol.org
Hercules, CA) as previously described.18 VEGF-C was
measured by ELISA (eBiosciences Rat VEGF-C ELISA
Kit; Bender MedSystems Gmbh, Vienna, Austria) according
to the manufacturer’s instructions. The weight of each tissue
was used to normalize the amount of cytokine/chemokine
per milligram of tissue weight.

For real-time RT-PCR, corneas were harvested and
mRNA was isolated and converted into cDNA as previously
described.11 The abundance of VEGF-A, VEGF-C, and
VEGF-D cDNA relative to the housekeeping gene b-actin
was calculated as 2-DDCt.

Statistical Analysis

The statistical module Prism version 5.0 (GraphPad Software,
Inc., San Diego, CA) was used to perform unpaired two-tailed
Student’s t-test with group sizes of two or analysis of variance
with Tukey’s t-test for larger group sizes. Where indicated,
outliers were identified and removed using a Grubbs’ test.

Results

Loss of IFN Signaling Results in Substantial Corneal
Pathology after HSV-1 Infection

Type I IFN production elicited by HSV-1 driven IFI16/p204
sensor activation in corneal epithelial cells is critical for virus
surveillance.10 Still, how the type I IFN pathway regulates
tissue pathology in the cornea is not understood. To profile
the corneal pathology during acute HSV-1 infection in the
absence of IFN signaling, WT and CD118�/� mice were
infected with HSV-1 and their corneas were subjected to
pathology assessment.

Slit-lamp examination on day 5 p.i. revealed thatCD118�/�

mice presented with complete opacification of their corneas
associated with stromal keratitis and haze, andminimal visible
anterior chamber and iris details (Figure 1A). In comparison,
their WT counterparts showed faint corneal scars and clear
irises, indicating a rather translucent cornea outside of the area
of the scar (Figure 1A). Slit-lamp imaging on days 4 and 5 p.i.
revealed a loss of the corneal epithelium integrity, as shown by
almost complete fluorescein staining of the corneal surface of
CD118�/� mice (Figure 1B) compared with the infected WT
cornea (Figure 1B). Consistent with this finding, CD118�/�

mice had >30% increase in central corneal thickness as
measured by pachymetry on days 3 and 4 p.i. (Figure 1C) and
a significant increase in corneal mass on day 3 p.i. (Figure 1D)
compared with the infected WT counterparts. Histological
analysis revealed a loss of epithelial layers of the infected
cornea of CD118�/� mice on days 3 and 5 p.i. with increased
overall corneal thickness on day 5 p.i. (Figure 2, AeD). Such
epithelial cell loss was inversely correlated with the content of
infectious virus recovered from CD118�/� mouse corneas
(Figure 2E).

HSV-1 infection of the cornea results in leukocyte infil-
tration, including monocytes, macrophages, neutrophils, and
1235
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Figure 1 Loss of type I IFN signaling predis-
poses mice to extensive corneal pathology
including the development of edema and loss of
epithelial integrity after HSV-1 infection. A:
Representative slit-lamp images of two CD118�/�

and two WT mice on day 5 p.i. (D5) with 103 PFU of
HSV-1. B: Representative slit-lamp images of
CD118�/� and WT corneas topically stained with
fluorescein dye on days 4 and 5 p.i. (D4 and D5,
respectively) with 103 PFU of HSV-1. C: Pachymetry
measurements of corneal thickness comparing
uninfected (UI) and infected WT (grey bars) and
CD118�/� (black bars) mice. D: Comparison
between cornea weight of WT (grey bars) and
CD118�/� (black bars) mice on days 3 and 4 p.i.
(D3 and D4, respectively) with 103 PFU of HSV-1.
By day 4 p.i., CD118�/� had >30% increased
weight compared to the WT group. The values are
presented as the means � SEM from three corneas
per time point group. *P < 0.05 comparing WT
with CD118�/� by unpaired t-test comparison.

Bryant-Hudson et al
natural killer (NK) cells.19e21 To compare the phenotype
of the innate immune response in the HSV-1-infected
CD118�/� with WT mouse corneas, flow cytometry anal-
ysis was performed. On days 3 and 5 p.i., CD118�/�

mouse corneas contained fewer NK cells (Figure 3A), as
well as inflammatory monocytes (Figure 3B), compared
Figure 2 CD118 deficiency results in histological and pathological findings and
of HSV-1 or remained uninfected (UI) as controls. Eyeballs were collected at days
Representative images of H&E stained cross sections of the eye of WT infected (A
epithelial layers (C) and corneal thickness (D), both in CD118�/� and WT mice, we
show in A and B. E: Quantitative correlation between the viral content (black bars
assay and histological measurements, respectively, in CD118�/� corneas at the ind
three experiments per group of two to four eyes per group per experiment. *P <

comparison.
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with infected WT mouse cornea samples. By day 5 p.i., the
macrophage infiltrate was nearly absent in the CD118�/�

mouse corneas (Figure 3C), whereas there was a significant
increase in the number of neutrophils (Figure 3D). No
significant change in the number of total leukocytes
(defined as CD45Hi) was observed (Figure 3E).
epithelial loss. WT and CD118�/� mice were ocularly infected with 103 PFU
3 and 5 p.i. (D3 and D5, respectively), fixed, and processed for histology.
) and CD118�/� infected (B) corneas on day 5 p.i. The number of corneal
re each quantified using images captured from H&E histological sections as
) and the number of corneal epithelial layers (red line) assessed by plaque
icated time points p.i. Results are presented as the means � SEM of two to
0.05, **P < 0.01 comparing WT with CD118�/� mice by unpaired t-test
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Figure 3 HSV-1 infected CD118�/� mice have an altered leukocyte profile in the cornea proper. WT and CD118�/� mice were ocularly infected with 103 PFU
of HSV-1 or remained uninfected as controls (D0). On days 3 and 5 p.i. (D3 and D5, respectively), corneas were harvested, digested, and phenotyped by flow
cytometry for NK cells (A), inflammatory monocytes (B), tissue macrophages (C), neutrophils (D), and CD45Hi total leukocytes (E). Results are presented as the
means � SEM of two to three experiments of two to four corneas per group per experiment. *P < 0.05, **P < 0.01 comparing WT with CD118�/� by unpaired
t-test comparison.

Lymphedema and HSV-1 Infection
Because changes in the influx of leukocytes were
observed in the cornea of infected CD118�/� mice, one
explanation could be reflected by changes in chemokine
expression. As such, we examined CXCL1, CXCL9, and
CXCL10 (Figure 4), all of which have been found to be
expressed in the cornea of HSV-1-infected mice and/or
influence the trafficking of monocytes and NK cells,22,23

T cells,24e27 and neutrophils.28,29 The results showed an
aberrant chemokine profile observed in the CD118�/�

mouse corneas. Consistent with a reduction in the infiltra-
tion of NK cells and inflammatory monocytes, CXCL10
expression levels were significantly reduced on days 3 and 5
p.i. in the CD118�/� mouse corneas (Figure 4C). In
contrast, there was a significant increase in CXCL1
expression by day 5 p.i. that correlated with a significant
increase in the number of neutrophils residing in the tissue
(Figure 4A). CXCL9 levels were not different between the
CD118�/� and WT groups (Figure 4B).

Loss of Lymphatic Vessels in the Cornea of CD118�/�

Mice in Response to HSV-1

As previously shown, CD118�/� mouse corneas present as
edematous with a noticeable increase in mass and unabated
virus spread after infection (Figure 2). We propose
that because HSV-1-driven lymphangiogenesis in the
cornea requires virus-encoded ICP4 induction of VEGF-A
Figure 4 The chemokine profile after HSV-1 infection is altered in the CD118�

ocularly infected with 103 PFU of HSV-1 or remained uninfected as controls (D0)
homogenized, and processed for measurements of chemokines including CXCL1 (A
SEM of three independent experiments of two to three mice per group per experime
comparison.
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expression12 and CD118�/� mice possess a greater viral
burden in the cornea, CD118�/� mice would display exten-
sive lymphatic vessel development in comparison with WT
mice. Indeed, this notion was found to be correct on day 3
p.i., wherein CD118�/� mice had significantly more LYVE-
1þ lymphatic vessel area (Figure 5, A and B). However, by
day 5 p.i., the lymphatic vessels were absent in CD118�/�

mice (Figure 5, A and B). The loss was selective for
lymphatic endothelium because blood vessels remained
intact (Figure 5A). Furthermore, infection ofCD118�/�mice
with GFP-expressing HSV-1 revealed localization of the
virus in the peripheral cornea on day 5p.i., where lymphatic
vessels previously existed (Supplemental Figure S1). To
determine whether a tropism for LECs existed compared
with BECs, human LEC and BEC were co-cultured in vitro
and infected with GFP-expressing HSV-1. The percentage of
HSV-1epositive LEC and BEC cells was similar, indicating
equal susceptibility to infection in vitro (Figure 5C). This is
in direct contrast to what was observed in vivo, wherein blood
vessel integrity was maintained after infection, suggesting
structural differences exist in vivo that protect blood vessels
and not lymphatic vessels (Figure 5A). The data suggest
unencumbered viral spread eventually results in the loss of
lymphatic vessels in the cornea. To evaluate this possibility,
WTmice were infected with an increasing inoculum of HSV-
1. As seen in Figure 5D, WT mice infected with 106 PFU
display a diminution in lymphatic vessel integrity compared
/� mouse cornea. WT (white boxes) and CD118�/� (black boxes) mice were
. On days 3 and 5 p.i. (D3 and D5, respectively), corneas were harvested,
), CXCL9 (B), and CXCL10 (C). Results are presented as pg/mg per cornea �
nt. *P < 0.05, **P < 0.01 comparing WT with CD118�/� by unpaired t-test
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Figure 5 Lymphangiogenesis after HSV-1
corneal infection in CD118�/� mice. A: LYVE-1
(green) and CD31 (red) expression in the cornea
of WT mice and CD118�/� mice infected with103

PFU of HSV-1 on days 3 and 5 p.i. B: Lymphatic
vessel area within the cornea proper were quanti-
fied and expressed as the percent area positive for
LYVE-1 (n Z 4 to 6 corneas per group per experi-
ment). Error bars represent SEM. *P < 0.05,
****P < 0.0001. Uninfected corneas (day 0)
served as controls. C: LECs and BECs were co-
cultured and infected with GFP-expressing HSV-1.
Scale bars: 100 mm. Cells were subsequently stained
for Prox1 expression. Cells positive for Prox1
(indicating LEC) or negative for Prox1 (indicating
BEC) in the same visual field were counted as were
the total cells (indicated by DAPI stain). The
number of cells enumerated was then compared
with the total number of cells in each visual field to
calculate percentage of HSV-1epositive cells. Error
bars represent SEM of 30 fields of view from two
independent experiments. D: WT mice were infec-
ted with indicated PFU of HSV-1. On day 5 p.i.,
corneas were harvested and stained for LYVE-1
(red). Images are representative of two indepen-
dent experiments with two to three mice per group.
Scale bars: 200 mm. White lines show demarcation
between the limbus and cornea proper.

Bryant-Hudson et al
with mice infected with 104 PFU. Possible mechanisms for
a reduction in lymphangiogenesis include reduced expres-
sion of pro-lymphangiogenic factors such as VEGF-A,
VEGF-C, and VEGF-D. However, real-time RT-PCR anal-
ysis revealed an increase in both pro-angiogenic VEGF-A
and VEGF-C gene expression in CD118�/� mice
(Figure 6A). Furthermore, VEGF-A protein levels were also
significantly elevated after HSV-1 infection of CD118�/�

mice (Figure 6B). VEGF-C protein levels were not elevated
above uninfected controls for either group (data not shown).
Therefore, it would appear that the pro-angiogenic factor that
drives lymphangiogenesis after HSV-1 infection, VEGF-A,
was elevated in the CD118�/� mice compared with WT
animals. Another possible explanation for a loss of lymphatic
vessel genesis is the expression of the receptors that respond
to the principal factor that drives HSV-1-induced lym-
phangiogenesis during acute infection, VEGFR2.11 Analysis
of VEGFR2 expression revealed no gross changes in expres-
sion comparing WT to CD118�/� mice (data not shown).
1238
Resident Cornea But not Hematopoietic-Derived Cells
with a Functional Type I IFN Pathway Is Required to
Maintain HSV-1eInduced Lymphatic Vessels

To further examine the targeting of lymphatic vessels byHSV-
1, the contribution of resident (corneal stroma and epithelial
cells) and bone marrow-derived cells (infiltrating leukocytes)
was evaluated using CD118�/� and WT mouse chimeras.
Cornea samples fromWTmouse recipients ofCD118�/� BM
(CD118�/� BM>WT) and CD118�/� mouse recipients of
WT BM (WTBM>CD118�/�) possessed significantly more
virus than WT mouse recipients of WT BM (WTBM>WT)
indicating both resident cells and infiltrating leukocytes are
important in viral surveillance in the cornea (Figure 7A).
Lymphatic vessel genesis was preserved in mice in which the
resident cell population possessed a fully competent type I IFN
pathway (Figure 7, B and C). Taken together, these results
suggest that in addition to virus and levels of the pro-
angiogenic cytokines VEGF-A, VEGF-C, and VEGF-D,
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 HSV-1 infected CD118�/� mice are not deficient in VEGF-A or
VEGF receptor 2 expression. A: Cornea levels of VEGF-A, VEGF-C, and VEGF-D
were quantified by real-time RT-PCR and normalized to the housekeeping
gene b-actin on day 5 p.i. (n Z 3 to 6 per group). B: VEGF-A levels in the
cornea were determined by suspension array before and after HSV-1
infection of WT and CD118�/� mice (n Z 5 per group). Error bars repre-
sent SEM. *P < 0.05, **P < 0.01, ***P < 0.0001.

Lymphedema and HSV-1 Infection
extraneous factors responsive to type I IFN signaling within
resident cells facilitate the maintenance of lymphatic vessels
within the cornea after HSV-1 infection.

HSV-1 Infection in CD118�/� Mice Leads to a Loss of
Resident Lymphatic Vessels in the Draining LN
Resulting in Fluid Accumulation and Edema

The susceptibility of CD118�/� mice to ocular HSV-1
infection results in the dissemination of the virus to the
draining MLN within 2 days p.i.18 Because the virus is
Figure 7 Contribution of resident cells and infiltrating leukocytes to HSV-1 res
of HSV-1. A: Corneas were harvested on day 5 p.i. and evaluated for viral titer b
mouse chimeras were stained for LYVE-1. Scale bars: 200 mm. C: Lymphatic vessel
area positive for LYVE-1 (n Z 4 to 6 corneas per group per experiment). Error b

The American Journal of Pathology - ajp.amjpathol.org
not detectable in the bloodstream until after day 5 p.i. in
CD118�/� mice,30 it is likely that the virus traffics to the
MLN either directly or via resident dendritic cells that
migrate via the lymphatics to the MLN after local CCL21
signaling. The result of localized MLN infection is reflected
by a significant enlargement of the lymphoid tissue compared
with WT animals (Figure 8A). The increase in weight is not
due to the expansion of lymphoid cell numbers because the
initial proliferation of cells is lost by day 5 p.i.18 Rather,
magnetic resonance imaging analysis revealed extensive
edema in the MLN region of CD118�/� mice compared with
WT mice (Figure 8, B and C). Similar to what is found in the
cornea, we hypothesized that the destruction of LN lymphatic
vessels by unhindered HSV-1 replication and spread may
lead to fluid accumulation. Therefore, LN lymphatic vessels
from infected WT and CD118�/� mice were visualized via
confocal microscopy (Figure 8D). Quantification of LYVE-
1-stained vessels revealed a significant reduction in the area
occupied by lymphatic vessels in the CD118�/� mice
compared with WT mice (Figure 8E). Consequently, the loss
of lymphatic vessel occupancy in the MLN of CD118�/�

mice corresponds with the edematous pathology likely due to
i) an inability to drain the fluid via the efferent lymphatics as
a result of discontinuity in the lymphatic structural system, ii)
a structural blockage of the efferent lymphatics created by
a massive loss of cells, or iii) a combination of the two events.
Discussion

An unencumbered visual axis is due, in part, to the trans-
lucent nature of the avascular cornea and the immune-
privileged environment established at the onset of ocular
development that ultimately makes surgical procedures such
as keratoplasty (cornea transplant) one of the most successful
types of solid tissue transplantation.31 However, a breach in
the regulatory mechanisms that maintain this quiescent state,
including trauma or infection, can have devastating results on
visual acuity. To this end, the current study provides data
istance and lymphangiogenesis. Mouse chimeras were infected with 103 PFU
y plaque assay (n Z 8 to 14 corneas per group). B: Corneas from infected
area within the cornea proper were quantified and expressed as the percent
ars represent SEM. *P < 0.05, **P < 0.01.
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Figure 8 Edema and selective loss of lymphatic vessels in the draining LNs. AeE: WT and CD118�/� mice were infected with 103 PFU of HSV-1 and analyzed
on day 5 p.i. A: Gross morphology and weight of WT and CD118�/� MLN chains (n Z 4 to 6 per group). B: Mice were imaged using a Bruker Biospec (The
Woodlands, TX) MRI imaging system to capture T2-weighted images. C: Areas of fluid accumulation were calculated by drawing regions of interest around the
pharyngeal region and measured using Paravision software version 5.0 (n Z 3 per group). D: Representative images of MLNs from WT and CD118�/� mice
showing the distribution of LYVE-1þ lymphatic vessels (green) and CD31þ blood vessels (red). Scale bars: 200 mm. E: Lymphatic vessel area was quantified and
expressed as the percent area positive for LYVE1 for the reconstructed LN images (n Z 6 per group). One outlier for each group was identified and removed
using a Grubb’s test. *P < 0.05. ****P < 0.0001.

Bryant-Hudson et al
illustrating the cascade of events that transpire in the devel-
opment of corneal pathology during acute HSV-1 infection
that are exacerbated in the absence of a functional type I IFN
pathway. The pathology comparing WT with CD118�/�

mice are quite distinct. Although the HSV-1-infected WT
mice presented with a relatively translucent cornea, the
corneas of the infected CD118�/�mice were edematous with
significant loss of epithelial cells. The epithelial defect was
likely the result of virus replication due to the inability of
CD118�/�mice to contain viral spread. In addition, epithelial
cell loss and opacity may also be a consequence of the
pronounced increase in neutrophil influx observed by day 5
p.i., along with the corresponding increase in matrix
metalloproteinase-9 levels (data not shown).

In addition to neutrophils, other leukocyte populations
residing in the cornea were found to be skewed between WT
and CD118�/� mice. Specifically, NK cells, inflammatory
monocytes, and macrophages were all elevated in the cornea
of WT mice. Such results are consistent with the central role
1240
of inflammatory monocytes in HSV-1 surveillance in the
cornea early during acute infection.10 The recruitment of
these cells includes expression of vascular addressins such
as intercellular adhesion molecule 1 (ICAM-1), which were
previously found to be necessary to manage ocular HSV-132

and chemokines.33 Previously, we reported that the
expression of CXCL10, but not CXCL9, was suppressed,
whereas CXCL1 was elevated in the ganglion of CD118�/�

mice after HSV-1 infection, similar to what is reported in
the current study.18 Whether the influx of immune cells into
the cornea is directly related to this expression or due to
additional chemokines and/or other factors is not resolved.
Relative to CXCL1, we do know that the expression alone
does not drive neutrophil influx into the cornea after HSV-1
infection, as determined using CXCL1-deficient mice.34

In the current study, we provide several unique examples
of lymphatic vessel loss due to HSV-1 replication. In the
context of HSV-1, low levels of the virus can promote
lymphangiogenesis in the cornea; however, as the virus
ajp.amjpathol.org - The American Journal of Pathology
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replicates, lymphatic vessel integrity is compromised. The
diminished presence of lymphatic vessels observed in the
cornea of CD118�/� mice is not due to reduced expression
of pro-lymphangiogenic factors or impaired leukocyte
recruitment. CD118�/� and WT mouse chimeras revealed
that the increased viral load alone does not account for
lymphatic vessel loss. Rather, additional host factors that
depend on type I IFN signaling must be required to maintain
lymphatic signaling.

Ocular infection of CD118�/� mice with HSV-1 results in
the rapid dissemination of the virus to the MLN as early as
day 2 p.i.18 Results from the current study indicate that the
loss in LN lymphatics results in edema. The specific LN
lymphatic vessels (cortical sinus, medullary sinus, or efferent
lymphatic vessels) that are lost or compromised are currently
unknown. During ocular HSV-1 infection, CD118�/�

corneal lymphatics are destroyed by day 5 p.i. However, we
predict that the lymphatic afferent vessels from other tissues
will continue to drain into the MLN because lymphatic
vessels are not completely lost in the draining LN and,
therefore, some preservation of integrity is retained even in
the presence of HSV-1.

LN lymphatic vessel destruction can occur via direct
infection of LEC with HSV-1. However, we speculate that
other factors may also contribute to the reduction of lymphatic
vessels in MLN. Previous studies have shown that VEGF-A
produced in chronically inflamed tissues can influence lym-
phangiogenesis in the downstream LN.35 Nevertheless, the
increasedVEGF-A found inCD118�/�mouse corneas did not
correlate with an increase in LN lymphangiogenesis. We
propose that HSV-1maymodify the expression of several pro-
lymphangiogenic factors by infecting various cell typeswithin
the MLN. Previous studies have indicated B cells and fibro-
blastic reticular cells as possible sources of VEGF-A within
the inflamed LN.36,37 Other important factors that could
influence lymphangiogenesis include VEGF-C, fibroblast
growth factor 2, and lymphotoxin alpha.2 Furthermore, the
destruction of LEC by HSV-1 may result in reduced CCL21
levels and subsequently the recruitment of CCR7þ dendritic
cells to theLN, thereby impairing the generation of an adaptive
immune response.

Our initial experiments in the cornea and LN indicate that
HSV-1 high viral titers can target lymphatic vessels result-
ing in tissue edema. We suspect the structural differences
that exist between blood and lymphatic capillaries may
account for the selective loss in lymphatic vessels within the
cornea and MLN. Blood vessel endothelial cells form tight
junctions and are surrounded by a basement membrane and
layer of smooth muscle cells, whereas lymphatic capillaries
lack a complete basement membrane and display gaps
between endothelial cells.1 Furthermore, previous work has
suggested that the basement membrane restricts the spread
of HSV.38 With these findings, we propose a model for
HSV-1 vesicle formation at low viral burdens, in which
HSV-1 positively influences lymphangiogenesis through
VEGF-A/VEGFR2 and fluid movement out of the infected
The American Journal of Pathology - ajp.amjpathol.org
tissue is unhindered. However, as the virus replicates locally
to high concentrations, HSV-1 disrupts lymphatic, but not
blood capillaries, through direct infection of LEC resulting
in a loss of vessel integrity and fluid accumulation. This
scenario may also function in the formation of skin vesicles
or cold sores, one of the most common clinical manifesta-
tions of HSV-1 reactivation in the human population.
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