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SUMMARY

Age-associated thymic involution results in dimin-
ished T cell output and function in aged individuals.
However, molecular mediators contributing to the
decline in thymic function during early thymic involu-
tion remain largely unknown. Here, we present tran-
scriptional profiling of purified thymic stromal sub-
sets from mice 1, 3, and 6 months of age spanning
early thymic involution. The data implicate unantici-
pated biological functions for a subset of thymic
epithelial cells. The predominant transcriptional
signature of early thymic involution is decreased
expression of cell-cycle-associated genes and E2F3
transcriptional targets in thymic epithelial subsets.
Also, expression of proinflammatory genes increases
with age in thymic dendritic cells. Many genes previ-
ously implicated in late involution are already deregu-
lated by 3–6 months of age. We provide these thymic
stromal data sets, along with thymocyte data sets,
in a readily searchable web-based platform, as a
resource for investigations into thymocyte:stromal
interactions and mechanisms of thymic involution.

INTRODUCTION

The thymus is spatially organized into cortical and medullary re-

gions containing heterogeneous stromal cells, including thymic

epithelial cells (TECs), dendritic cells, macrophages, fibroblasts,

and endothelial cells (Love and Bhandoola, 2011). As thymo-

cytesmature, theymigrate through distinct thymicmicroenviron-

ments, where they undergo bidirectional crosstalk with local

stromal cells, essential for the generation of a diverse and self-

tolerant T cell pool (Petrie and Zúñiga-Pflücker, 2007). Signals

provided by developing thymocytes are also required for differ-

entiation and maintenance of thymic stromal cells (Nitta et al.,

2011). Although somemolecular signals responsible for this bidi-

rectional signaling have been characterized, many remain to be

identified.
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Thymocyte:stromal cell crosstalk first occurs in the cortex

where thymocyte progenitors encounter cortical TECs (cTECs)

that express NOTCH1 ligands, SCF, and interleukin-7 (IL-7),

which are essential for thymocyte survival, proliferation, and

commitment to the T cell lineage (Anderson and Takahama,

2012; Petrie and Zúñiga-Pflücker, 2007). In addition, cTECs

display self-peptide:major histocompatibility complex (MHC)

complexes thatpromotepositive selectionof self-MHC-restricted

thymocytes and apoptosis of autoreactive cells (McCaughtry

et al., 2008). Reciprocally, unidentified signals from early thymo-

cyte progenitors are critical for cTEC differentiation (Klug et al.,

1998).

Following positive selection, thymocytes migrate into the

medulla, where they interact with medullary thymic epithelial

cells (mTECs). mTECs can be subdivided into mTEClo and

mTEChi subsets, based on differential expression of CD80

and MHC class II. The mTEChi subset expresses the chro-

matin modulator AIRE, which promotes expression of tissue-

restricted antigens (TRAs), genes otherwise expressed in a

limited number of differentiated tissues, such as the pancreas

or retina (Anderson et al., 2002; Klein et al., 2011). When med-

ullary thymocytes engage TRAs on mTECs, they undergo

apoptosis or differentiate into regulatory T cells, thus establish-

ing central tolerance to peripheral self-antigens. Conversely,

mTEClo cells must engage thymocytes entering the medulla,

via tumor necrosis factor superfamily members, to drive differ-

entiation to the mTEChi stage (Nitta et al., 2011). Thus, bidirec-

tional signaling in the medulla between TECs and maturing

thymocytes is critical for thymocyte tolerance and medullary

stromal organization.

Thymic dendritic cells also play a critical role in central toler-

ance. Conventional thymic dendritic cells can be subdivided

into Sirpa�CD8+CD11b� (DC) and Sirpa+CD8�CD11b+ (DCS)

subsets (Li et al., 2009). Thymic dendritic cells can acquire

TRAs from mTECs to mediate deletion of autoreactive thymo-

cytes (Klein et al., 2011). In addition, DCS traffic peripheral anti-

gens into the thymus to mediate negative selection or induction

of regulatory T cells (Bonasio et al., 2006; Proietto et al., 2008).

Thymic dendritic cells require chemotactic signals from mTECs

to accumulate in the medulla and function properly (Lei et al.,

2011), underscoring the complex interplay between thymocytes
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and various stromal subsets required to ensure production of a

self-tolerant T cell repertoire.

The thymus involutes in an age-dependent manner, resulting

in diminished TEC cellularity and turnover (Gray et al., 2006),

disrupted thymic architecture, decreased thymic output, and

reduced T cell function (Chinn et al., 2012; Haynes and Maue,

2009; Nikolich-�Zugich et al., 2012). Both hematopoietic age-

related dysfunction and degeneration of the thymic stromal

compartment likely contribute to thymic involution (Berent-

Maoz et al., 2012; Chinn et al., 2012). Although reduced levels

of the transcription factor Foxn1 contribute to TEC atrophy

(Chen et al., 2009) and genetic manipulation of cell-cycle regula-

tors can maintain thymic mass in aged mice (Garfin et al., 2013;

Robles et al., 1996), specific molecular pathways driving degen-

eration of the thymic stroma early in the process of involution

remain to be discerned. Furthermore, whereas manipulation of

sex steroids or growth factor levels in aged individuals can tran-

siently increase thymic size (Min et al., 2007; Sutherland et al.,

2005), the resultant thymi are not functionally equivalent to young

thymi and may be incapable of maintaining central tolerance

(Griffith et al., 2012). Thus, identifying molecular pathways that

regulate stromal changes associated with involution remains

an important goal.

Here, we present global transcriptional profiling of purified

thymic stromal subsets from mice at 1, 3, and 6 months of

age, enabling the community to query stromal subset-specific

gene expression before and during early thymic involution. Grif-

fith et al. (2009, 2012) previously reported transcriptional profiles

of nonsorted thymic stroma from the cortex, medulla, and cor-

tico-medullary junction, enabling evaluation of regionalized

gene expression in young and aged thymi. The current resource

provides complementary information about gene expression in

specific stromal cell types during early thymic involution. Our

data reveal predicted, as well as unexpected, expression of

genes in different thymic stromal subsets that suggest unantici-

pated stromal cell functions. Interestingly, decreased expression

of cell-cycle genes and downregulation of E2F3 activity are ma-

jor hallmarks of early thymic involution in the TEC compartment.

Upregulation of proinflammatory genes in thymic dendritic cell

subsets also occurs over this time course. Analysis of genes pre-

viously implicated in late thymic involution reveals that some of

these factors may contribute to early involution, whereas others

are likely sequelae of the aging process. To facilitate use of this

resource, we provide our thymic stromal gene expression data,

along with our previous thymocyte transcriptional profiling

data, as an in silico model in the readily searchable web-based

platform Gene Expression Commons (GExC) (Seita et al.,

2012; https://gexc.stanford.edu/model/475). Exploration of our

data sets on this user-friendly interface will enhance elucidation

of the molecular pathways mediating thymocyte-stromal cell

crosstalk and age-associated thymic stromal changes.

RESULTS

Transcriptional Profiling of Thymic Stromal Subsets at
1, 3, and 6 Months of Age
Using fluorescence-activated cell sorting (FACS), we purified

thymocyte stromal subsets from mice over the course of early
thymic involution to identify subtype-specific and age-regulated

transcriptional profiles. Thymic cTEC, mTEClo, mTEChi, DC,

DCS, and fibroblast populations were FACS purified from

C57BL/6J male mice at 1, 3, and 6 months of age as follows:

cTEC (Epcam+CD11c�UEA1�MHCII+Ly51+), mTEClo (Epcam+

CD11c�UEA1+MHCIIloCD80lo), mTEChi (Epcam+CD11c�UEA1+

MHCIIhiCD80hi), DC (MHCII+Epcam�CD11c+Sirpa�CD80+),
DCS (MHCII+Epcam�CD11c+Sirpa+CD80+), and fibroblasts

(MHCII�CD45�Ter119�CD31�; Figure 1A). During the sort

setup, we ensured that all Epcam+ TECs were included in the

initial MHCII+ gate (Figure S1A). Purified mRNA from biological

duplicates of each subset at each age was analyzed on Affyme-

trix Mouse 430 2.0microarrays. Resultant data were uploaded to

the GExC platform for normalization (Seita et al., 2012), and

resultant normalized signal intensity values were used for all

subsequent bioinformatics analyses herein.

To assess consistency between duplicate data sets and

to globally compare transcriptional profiles between stromal

subsets, we performed unsupervised hierarchical clustering

and principal components analysis (PCA) on the 30% of genes

most variable in expression across subsets (Figures 1B and

1C). Duplicate data sets clustered closely together, indicating

reliability of the data. Stromal subtypes clustered together

regardless of age (Figure 1B), demonstrating that each stromal

subset maintains its transcriptional identity during thymic invo-

lution. Stromal subsets at 6 months of age were further from

their 1- and 3-month counterparts, indicative of age-related tran-

scriptional changes in the data. Interestingly, age-associated

changes were implicated not only in TEC subsets, which have

been suggested to be drivers of involution, but also in dendritic

cells and fibroblasts. Overall, PCA was consistent with hierarchi-

cal clustering (Figure 1C) and showed that mTEChi were distal to

other TEC subsets, likely due to expression of diverse TRAs. As

expected, dendritic cell subtypes clustered together, whereas

fibroblasts were distinct from other stromal subsets.

To validate our data, we queried genes previously reported to

be differentially expressed in distinct stromal subsets (Figure 1D).

TECs expressed cytokeratins and the transcription factor Foxn1,

confirming their identity (Blackburn et al., 1996; Klug et al., 1998).

As expected, cTEC and mTEClo expressed high levels of Il7

(Repass et al., 2009; Ribeiro et al., 2013), whereas Ccl25,

Cxcl12, Dll4, Enpep/Ly51, Ly75/CD205, and Psmb11/b5t were

predominantly expressed by cTECs (Murata et al., 2007; Plotkin

et al., 2003; Wurbel et al., 2000). Aire, Cldn3, and Cldn4 were

expressed specifically in mTEChi cells, as expected (Hamazaki

et al., 2007). MHCII genes were expressed by dendritic cells

and TECs, consistent with their roles in antigen presentation,

whereas dendritic cells and mTEChi expressed high levels of

Cd80 and Cd86. ItgaX (CD11c) was expressed uniquely by den-

dritic cells, with Sirpa and Xcr1 (Lei et al., 2011) expressed

uniquely in the DCS and DC subsets, respectively. Fibroblasts

expressed Pdgfra and Pdgfrb and the extracellular matrix

(ECM) component Col6a3, as anticipated for mesenchymal cells

(Foster et al., 2008). To further validate our data, we sorted an

additional biological replicate of thymic stromal subsets from

mice 1 month of age and confirmed subset-specific expression

of 25 genes by quantitative RT-PCR (qRT-PCR) analysis on the

Fluidigm platform (Figure S1B). Altogether, these analyses
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validate the data sets and demonstrate that thymic stromal sub-

set identity is maintained during aging.

Differentially Expressed Genes Suggest Distinct
Functions of Thymic Stromal Subsets
We identified differentially expressed genes (DEGs) in each stro-

mal subset as those genes uniquely up- or downregulated by >2-

fold relative to all other stromal subsets of the same age, with an

adjusted p value < 0.01 (Table S1). As expected from PCA anal-

ysis, mTEChi and fibroblast subsets had the most unique DEGs

at each age (Figure 2A).We next investigated common functional

characteristics of unique DEGs in each subset. The top Gene

Ontology (GO) term hit for DEGs from 1-month-old fibroblasts

was ‘‘cell adhesion,’’ with ‘‘extracellular matrix’’ appearing as

well, suggesting that, although fibroblasts were sorted based

on the absence of markers in other subsets, the population is

greatly enriched in mesenchymal cells. A heatmap of genes in

the GO term cell adhesion category reveals ECM components

and integrins that are likely relevant substrates for adhesion

and migration in the thymus (Figure 2B).

The large number of DEGs and dissimilarity in overall tran-

scriptional relatedness of mTEChi relative to other stromal sub-

sets (Figures 1C and 2A) may have been due to expression of

diverse TRAs (Derbinski et al., 2001). To address this possibility,

we identified Aire-regulated genes by analyzing published

expression data from Aire-deficient versus wild-type mTEChi

cells (Derbinski et al., 2005). After excluding genes not shared

between microarray platforms, we compared the list of Aire-

regulated genes to mTEChi-upregulated DEGs. Of the 560

mTEChi-upregulated DEGs, only 150 (37%) were Aire regulated

(Figure 2C), suggesting many mTEChi DEGs are Aire indepen-

dent. Furthermore, comparison against a list of TRAs identified

on the basis of limited tissue expression (Griffith et al., 2012) re-

vealed overlap with only 9% of mTEChi DEGs (Figure 2D). Thus,

many mTEChi DEGs may have a biological function, rather than

serving as TRAs. Interestingly, the top GO hit term for 1-month

mTEChi DEGs was ‘‘defense response’’ (p value: 8 3 10�7),

which included chemokines (Ccl20, Cxcl13, and Cxcl3), defen-

sins (Defb19, Defb3, Defb5, Defb6, Defb8, Defa21, and

Defa22), and cytokines (Il1f6, Il23a, and Il5; Figure 2E). Only 15

of 55 defense response genes were identified as TRAs (not

shown). Thus, mTEChi cells may promote defense responses

in the thymus. Consistent with a unique biological state of the

mTEChi subset, Aire has been shown to regulate differentiation

of mTEChi cells (Yano et al., 2008).

Because of the transcriptional relatedness of cTEC to mTEClo

and DC to DCS (Figures 1B and 1C), few DEGs were identified

in these subsets (Figure 2A). Although these DEGs are likely

important for the unique biology of these subsets (Figure S2B;

Table S1), the number of DEGs was too low to proceed with

downstream bioinformatic analyses. Therefore, we identified
Figure 1. Expression Profiling of Thymic Stromal Subsets

(A) Strategy for sorting thymic stromal subsets (gated on live events; frequencies

(B and C) Hierarchical clustering (B) and PCA (C) were carried out on the top 30%

single array.

(D) Expression of known thymic stromal subset-specific genes is presented as a h

with a dynamic range R3 (in GExC) were displayed if multiple probe sets were p
additional DEGs in cTEC after omitting mTEClo and in DC after

omitting DCS from the comparisons and vice versa (Figure S3).

GO analyses of these DEGs confirmed epithelial characteristics

of cTEC and mTEClo subsets (Figure 3A). The ‘‘epithelium

development’’ and ‘‘cell adhesion’’ terms contained previously

known as well as unreported genes in cTEC and mTEClo sub-

sets (Figures 3B and S4), including several genes involved in

Wnt signaling, such as Wnt4 and the receptors Fzd2 and Fzd3

(consistent with Bredenkamp et al., 2014, Griffith et al., 2012,

and Min et al., 2007). Cldn8 was expressed in cTECs, whereas

Cldn9 and Cldn12 were expressed in cTEC and mTEClo sub-

sets, demonstrating TEC subset specificity of claudin family

members, consistent with expression of Cldn3 and Cldn4 in

mTEChi cells (Table S1; Hamazaki et al., 2007). The top hit

from GO analyses of DC and DCS DEGs was ‘‘immune

response’’ (Figure 3A), including Toll-like receptors, cytokines,

and chemokines (Figures 3C and S5), consistent with the central

role for dendritic cells in eliciting and modulating immune

responses.

Thymic Involution Is Associated with Downregulation of
Cell-Cycle Genes in the mTEClo Subset and Decreased
Activity of E2F3 in cTEC and mTEClo Cells
Thymocyte and thymic stromal cellularity are greatest in mice

around 1 month of age and subsequently decline as the

thymus involutes (Gray et al., 2006). To evaluate transcriptional

changes associated with early thymic involution, we compared

gene expression in stromal subsets from mice at 1, 3, and

6 months of age. We identified aging-associated DEGs as

those genes modulated by R2-fold, with an adjusted p value

% 0.01 in pairwise comparisons of each subset at the three

ages. Using these criteria, no aging-associated DEGs were

identified in fibroblasts or cTECs, with only 1 DEG in mTEChi

(Igha). In contrast, a significant number of DEGs were identified

in DC, DCS, and mTEClo subsets (Figure 4A; Table S2). Over

90% of the DEGs in DC and DCS were upregulated with age,

whereas DEGs in mTEClo were both up- and downregulated

with similar frequencies. We conducted K-means clustering

on DEGs from each subset to identify groups of genes up- or

downregulated as aging progresses from 1 through 6 months

of age. Cluster 3 from mTEClo contained genes progressively

and significantly downregulated with age (Figures 4B and 4C).

We performed GO term analyses on each cluster to identify

biological functions associated with age-related changes and

found significant hits only for mTEClo cluster 3. Genes in this

cluster were associated with the cell cycle (Figure 4D), impli-

cating a progressive decrease in expression of cell-cycle regu-

lators, such as Aurkb, Cdc20, Cdc6, and Ccnb1, in mTEClo

during involution (Figure 4E).

We next utilized gene set enrichment analysis (GSEA) to identify

aging-associated gene sets, without imposing an arbitrary
within gates displayed).

of genes most variable in expression. Each symbol in the PCA represents a

eatmap, using the average of biological duplicates for each subset. Probe sets

resent for one gene.
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Figure 2. Mesenchymal Signature of Fibroblasts and Defense Response Function of mTEChi Revealed by DEGs

(A) The number of stromal subset-specific DEGs, identified by pairwise comparisons between stromal subsets of the same age, is displayed.

(B) The heatmap displays the relative expression of select upregulated DEGs from 1-month fibroblasts that overlapwith the ‘‘cell adhesion’’ GO term (the heatmap

of all overlapping genes is in Figure S2A).

(C) Overlap between Aire-regulated genes (Derbinski et al., 2005) and 1-month mTEChi-upregulated DEGs, shared between microarray platforms.

(D) Overlap between TRAs (Griffith et al., 2012) and 1-month mTEChi-upregulated DEGs.

(E) A heatmap displaying the relative expression of upregulated mTEChi DEGs that overlap with the ‘‘defense response’’ GO term hit.
fold-change cutoff. Strikingly, E2F3 target genes (Kong et al.,

2007) were significantly downregulated with age in both cTEC

andmTEClo subsets (Figure 4F). This declinewas gradual inmTE-

Clo cells from 1 to 6 months but precipitous in cTECs between 1

and 3 months (Figure 4G). E2F3 is a transcription factor critical

for normal cellular proliferation (Humbert et al., 2000), and many

target genes are regulators of the cell cycle, such as Cdc6,

Ccna2, Aurka, and Cdc7 (Figure 4H). Together, these analyses

suggest that a decline in E2F3activity results in decreased cell-cy-

cleprogression incTECandmTEClocells, likelycontributing to the

decline in TEC cellularity early in the process of thymic involution.
406 Cell Reports 9, 402–415, October 9, 2014 ª2014 The Authors
DC and DCS Have an Increasingly Proinflammatory
Signature with Age
AlthoughGO term analyses did not yield significant hits for aging-

associated DEGs in DC and DCS subsets, GSEA revealed an

increasingly proinflammatory signature with age. Genes induced

after lipopolysaccharide (LPS) simulation in human monocytes

were upregulated with age in thymic DC and DCS (Figure 5A;

Dower et al., 2008). Aging is associated with increased inflamma-

tion (Chung et al., 2009), and inflammatory cytokines become

elevated in human thymi with age (Sempowski et al., 2000). Both

previously described and unreported proinflammatorymolecules,



Figure 3. Epithelial Identity of cTEC/mTEClo and Immune Response Function of DC/DCS Revealed by DEGs

(A) GO term analyses of DEGs from cTEC/mTEClo confirm the epithelial identity of these subsets. GO term analysis of DEGs identified in DC/DCS reveal immune

response and inflammatory signatures. See Figure S3.

(B) The heatmap displays the relative expression of select upregulated DEGs in cTEC/mTEClo that overlap with the ‘‘morphogenesis of an epithelium’’ and

‘‘epithelium development’’ (top) and ‘‘cell adhesion’’ (bottom) GO term hits (the heatmap of all overlapping genes is in Figure S4).

(C) The heatmap displays the relative expression of select upregulated DEGs in DC/DCS that overlap with the immune response GO term hit (the heatmap of all

overlapping genes is in Figure S5).
including Il1a, Il1b,Cxcl2, Il6, Il12b, Il18, andTnf,wereupregulated

in thymic dendritic cells at 6months of age (Figure 5B), suggesting

that an increasingly inflammatoryenvironment generatedbyaging

dendritic cells contributes to early thymic involution.

Diminished Niche Activity, Declining TEC Homeostasis,
and a Decrease in Growth Factors Are Associated with
Early Thymic Involution
We analyzed pathways and genes previously implicated in late

thymic involution to determine if their expression was altered in

stromal subsets during the early stages of thymic degeneration.

Dll4, Il7, and KitL, which are all required for a functional thymo-

cyte progenitor niche, were expressed at the highest levels by

cTECs. Only Dll4 expression diminished over 1–6 months (Fig-

ure 6A), suggesting a decline in Notch signaling contributes to

early thymic involution.

Several studies have implicated decreased Foxn1 expression

as a major contributor to thymic involution (Bredenkamp et al.,

2014; Chinn et al., 2012). Foxn1 was not identified as an aging-

associated DEG because it did not meet the <0.01 p value crite-

rion. However, Foxn1 expression declined �2-fold in both cTEC
and mTEClo subsets from 1 to 6 months of age (Figure 6B),

consistent with previous findings at later stages of involution

(Bredenkamp et al., 2014; Ortman et al., 2002). Two recent

studies associated late thymic involution with altered expression

of Wnt pathway genes (Bredenkamp et al., 2014; Griffith et al.,

2012). Consistent with these studies, Wnt3a and Wnt4 were

downregulated in early thymic involution, specifically in cTEC

and mTEClo cells, whereas Wnt10a was upregulated in the

mTEClo subset (Figure 6B). Consistent with Griffith et al.,

Wnt5b was slightly upregulated by 6 months; however, this in-

crease occurred in fibroblasts. Taken together, some Wnt family

members and Foxn1 are deregulated early in thymic involution,

suggesting that TEC homeostasis is impaired, consistent with

decreased TEC proliferation and E2F3 activity described above.

Inflammatory cytokines are upregulated in aging human thymi

(Sempowski et al., 2000). Similarly, Lif, Il6, and Osm were upre-

gulated in murine thymic dendritic cell subsets over 1–6 months

(Figure 6C). Furthermore, Tnf, Il1a, and Il1b were upregulated by

DCS. Interestingly, the activating receptor Il1r1 was expressed

by all TECs and fibroblasts, whereas the IL-1 antagonists Il1rn

and Il1r2 were expressed by mTECs, suggesting IL-1 likely
Cell Reports 9, 402–415, October 9, 2014 ª2014 The Authors 407
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Figure 5. Increased Expression of Proin-

flammatory Genes in Aging DC and DCS

Subsets

(A) GSEA analysis reveals a positive correlation

between LPS-stimulated genes and genes upre-

gulated with age in DC and DCS (NOM p value =

0.054, NES = 1.51 for DC; NOM p value = 0.025,

NES = 1.6 for DCS).

(B) The heatmap displays the relative expression

of some LPS-induced genes that are positively

correlated with aging in DC and DCS (the heatmap

of all overlapping genes is in Figure S6).
impinges preferentially on cTECs and fibroblasts. We also note a

trend of increased Csf1 expression by mTEClo over 1–6 months,

which can drive dendritic cell differentiation (Fancke et al., 2008).

Sex steroids and growth factors can modulate thymic size

(Lynch et al., 2009). For example, castration transiently increases

thymic size and output (Griffith et al., 2012; Sutherland et al.,

2005). Androgen receptor, Ar, is expressed predominantly on

cTECbut is not upregulated over 1–6months (Figure 6D). Admin-

istration of growth hormone and KGF also induce growth of

involuted thymi (Lynch et al., 2009). Expression of the growth

hormone receptor Ghr was not altered over 1–6 months in

TECs (Figure 6D); however, it was decreased with age in fibro-

blasts, which expressed the highest levels of Ghr at 1 month.

The expression of Fgfr2/Kgfr on cTEC and mTEClo cells did

not decline over 1–6 months. However, expression of the ligand

Fgf7/Kgf diminished in both mTEChi cells and fibroblasts be-

tween 3 and 6 months (Figure 6D). Taken together, our data

suggest that reduced growth factor signaling during early involu-

tion could affect both TECs and fibroblasts.

A Searchable Web-Based Platform Containing
Thymocyte and Thymic Stromal Cell Gene
Expression Data
To make our thymic stromal expression data easily accessible,

we have uploaded the data sets to the web-based platform
Figure 4. Cell-Cycle Genes and E2F3 Target Genes Are Significantly Downregulated in mTEClo

(A) The number of up- or downregulated DEGs identified from pairwise comparisons of stromal subsets at d

(B) The heatmap displays K-means clustering of all age-associated DEGs identified in the mTEClo subset.

(C) The boxplot displays expression levels of mTEClo DEGs in cluster 3 from (B), which are progressively do

(D) The top five GO term hits from cluster 3 of mTEClo DEGs reveal downregulation of cell-cycle-associated

(E) The heatmap displays the relative expression of downregulated age-associated DEGs inmTEClo that overl

(F) GSEA reveals expression of E2F3 target genes is downregulated with age in mTEClo and cTEC subsets

enrichment score [NES] = �2.48; mTEClo NOM p value < 10�3, NES = �3.39).

(G) The box-and-whisker plot shows expression levels of E2F3 target genes in stromal subsets at 1, 3, and 6m

genes is apparent in aging cTEC and mTEClo subsets. Whiskers represent data within 1.5 of the interquarti

(H) Relative expression of E2F3 target genes in cTEC and mTEClo subsets at 1, 3, and 6 months of age.

Cell Reports 9, 402–415
GExC, where we have generated an on-

line model containing both thymic stro-

mal microarray data sets and our previ-

ously published thymocyte data sets

(Seita et al., 2012; https://gexc.stanford.

edu/model/475). Users can readily query

expression of genes of interest in thymo-

cyte or thymic stromal subsets (Fig-

ure 7A). One of the most-powerful fea-
tures of this platform is that data are normalized against a

common reference of �12,000 diverse data sets; thus, gene

expression values can be compared against the full dynamic

range of expression values for each probe set (Seita et al.,

2012). In addition to normalized signal intensity values, ‘‘gene

expression activity values’’ are provided on GExC. After using

a step function to determine the threshold of expression for

each probe set, each intensity value above and below this cutoff

was assigned a percentile rank, reflecting the distribution of

values in the common reference, as seen in the histograms (Fig-

ures 7C and 7D). For example, if a 30% gene expression activity

value is obtained, the subset queried expresses the gene at a

level above the first 30% of the common reference data sets

over the threshold and below the remaining 70%. This enables

users to determine how robustly a gene is expressed relative

to the range of expression values across diverse tissues. A sec-

ond key advantage is the ability to readily search for expression

patterns of interest, such as genes uniquely expressed in cTEC

(Figure 7B). Finally, the combination of thymic stromal data

with our previously published thymocyte data (Seita et al.,

2012) will enable users to search for partner genes, such as re-

ceptors and ligands, that may contribute to thymocyte:stromal

cell crosstalk. For example, the chemokine receptor Cxcr4 is ex-

pressed in cortical double-negative and double-positive thymo-

cytes, as well as in thymic dendritic cells and fibroblasts,
and cTEC Subsets in Early Thymic Involution

ifferent ages is shown.

wnregulated with age (p value < 2.2 3 10�16).

genes during aging.

ap with the ‘‘M phase of mitotic cell cycle’’ GO term.

(cTEC nominal [NOM] p value < 10�3, normalized

onths of age. Decreased expression of E2F3 target

le range of the first and third quartiles.

, October 9, 2014 ª2014 The Authors 409

https://gexc.stanford.edu/model/475
https://gexc.stanford.edu/model/475


Figure 6. A Subset of Genes Implicated in Late Thymic Involution Are Deregulated in Thymic Stroma by 3–6 Months
Graphs display the relative expression levels of genes involved in (A) thymocyte progenitor niche activity, (B) TEC homeostasis, (C) inflammation, and (D) sex

steroid and growth hormone signaling in the thymus. For all graphs, expression values are normalized to the subset expressing the highest level of each gene at

1 month of age. The color graphs on the left display expression levels of genes of interest for each stromal subset at 1 month. The grayscale graphs on the right

display expression levels of the same genes from 1 to 6 months for the indicated thymic stromal subsets. Graphs depict the mean plus or minus range of

expression values.
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Figure 7. GExC Platform for Exploring Expression Data from Thymocytes and Thymic Stromal Subsets

(A) The ‘‘complete thymocyte:stromal interaction’’ model in GExC (https://gexc.stanford.edu/model/475). Eleven thymocyte subsets (at 1 month of age) and six

thymic stromal subsets (at 1, 3, or 6 months of age) are represented as boxes, with colors representing the average expression level of data from biological

replicates (n = 3 and n = 2 replicates for thymocyte and stromal subsets, respectively).

(B) In this example of the pattern search feature on GExC, high expression in cTECs relative to all other subsets will be queried.

(C) The database is useful for querying ligand-receptor pairs involved in thymocyte:stromal cell crosstalk. For example, the chemokine Cxcr4 is expressed by

cortical thymocytes, as well as dendritic cells, whereas the ligandCxcl12 is expressed at high levels by cTEC. The dynamic range of each probe set is displayed as

a histogram, enabling users to ascertain expression levels relative to the range of values in publically available biological space (>12,000 diverse data sets are

represented).
whereas its ligand Cxcl12 is highly expressed by cTECs (Fig-

ure 7C). This in silico model should greatly facilitate discovery

of molecular mediators of thymocyte:stromal cell crosstalk,

thymic stromal function, and altered gene expression in stromal

cells during early thymic involution.

DISCUSSION

We present global gene expression data from six thymic stromal

subsets over the course of early thymic involution (1, 3, and

6 months of age) on a web-based platform as a resource

for the scientific community (https://gexc.stanford.edu/model/

475). Unsupervised clustering reveals the data sets are highly

consistent (Figure 1), and qRT-PCR analyses on independently

sorted samples validate the microarray expression data (Fig-
ure S1B). Nonetheless, there are several potential caveats to

consider when querying the GExC database. First, thymic fibro-

blasts were sorted based on the absence of markers on hemato-

poietic cells, erythrocytes, and endothelial cells, enhancing the

possibility for contamination with other cell types. Nevertheless,

strong transcription of adhesion molecules, ECM components,

and platelet-derived growth factor receptors reveals this popula-

tion is highly enriched in mesenchymal cells. Second, the sorted

populationsmay be heterogeneous. The transcriptional profile of

rare TEC progenitors included in cTEC or mTEClo subsets would

be entangled in the larger population. As additional TEC subsets

are identified, it will be important to compare their transcrip-

tional profiles against the parental TEC population. Third, when

viewing gene expression activity values in GExC, it is important

to remember that gene expression activity values are scaled
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relative to the large common reference. This can cause a visual

flattening of expression changes; for example, because Foxn1

is uniquely expressed in TECs, the �2-fold decrease in expres-

sion over 1–6 months in cTEC and mTEClo cells (Figure 6B)

is not as visually striking as the high expression in TECs relative

to all other cell types. Also, gene expression activity values

can be saturated (seen as 100%), as in the case of Psmb11/

b5t in cTEC, obscuring the 20- to 50-fold increase in expression

relative to other TEC subsets. In both cases above, it is impor-

tant to compare the normalized signal intensity values, pro-

vided for download or on the ‘‘list’’ tab of GExC, to assess

relative changes in expression with age or between subsets,

respectively.

Surprisingly, our analyses revealed a significant association of

mTEChi DEGs with the defense response GO term. mTEChi

is the most distal thymic stromal population by PCA analysis

(Figure 1C), and its distinct transcriptional profile could result

from expression of diverse TRAs. TRA expression is largely

driven by Aire (Anderson et al., 2002), and 38%of genes uniquely

expressed in mTEChi overlapped with Aire-regulated genes

(Figure 2C). However, not all Aire-regulated genes are TRAs

(Derbinski et al., 2005), and the remaining 62% of mTEChi

DEGs may serve a function beyond elimination of autoreactive

thymocytes. The GO term category defense response includes

genes such as defensins and cytokines (Figure 2E), which are

critical for early innate immune responses against pathogens.

Some of these genes (Defb8 and Defb3) are expressed at high

levels in mTEChi relative to canonical TRAs (Crp and Gad67;

not shown), which tend to be expressed at low levels (Derbinski

et al., 2001, 2008). Therefore, we speculate that these defense

response genes may serve a functional role in mTEChi biology,

perhaps to protect the thymus against infection.

Thymic involution results in diminished T cell output, leading

to decreased immune function with age (Chinn et al., 2012;

Lynch et al., 2009). Both CD4+ and CD8+ T cells generated in

aged mice have impaired effector functions (Haynes and

Maue, 2009; Nikolich-�Zugich et al., 2012). These deficiencies

can be attributed in part to the impact of an aged thymic envi-

ronment, as fully functional T cells were generated when bone

marrow precursors from aged mice were transferred into young,

but not old, recipients (Eaton et al., 2008). Therefore, it is impor-

tant to understand the cellular and molecular drivers of thymic

involution, with the ultimate goal of restoring functional T cells

to aged individuals or patients following cytoablative therapies

or infections.

Unbiasedanalysesof aging-associated transcriptional changes

during early thymic involution revealed that cell-cycle-related

genes and E2F3 transcriptional targets were significantly downre-

gulated in themTEClo and cTECsubsets (Figure 4). This is consis-

tent with the reduced proportion and number of cycling TECswith

age (Gray et al., 2006) and the finding that overexpression of

cyclinD1 or inactivation of Rb family members prevents thymic

involution (Garfin et al., 2013; Robles et al., 1996). Our data add

the perspective that E2F3 target genes, many of which are

required for cell-cycle progression, are downregulated in both

cTEC and mTEClo subsets by 6 months of age, suggesting that

diminished cell-cycle progression in TECs is an early hallmark of

thymic involution. A recent study revealed that Foxn1 is an E2F3
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target gene (Garfin et al., 2013). Thus, diminished E2F3 activity

could directly reduce Foxn1 levels, consistent with the reduction

in Foxn1 expression in TECs by 6 months of age (Figure 6B).

Foxn1 is a critical regulator of thymic involution, as diminished

Foxn1 expression results in premature involution (Chen et al.,

2009), whereas enforced re-expression in aged TECs increases

TEC cellularity and function and thymocyte output (Bredenkamp

et al., 2014). However, maintenance of Foxn1 expression in

TECs was insufficient to prevent thymic involution (Zook et al.,

2011), suggestingmodulation of other E2F3 targets and pathways

contribute to involution. Foxn1 has also been implicated in regu-

lating genes associated with cell cycle, such as Ccnd1 (Breden-

kamp et al., 2014); thus, there is likely a complex feedbackmech-

anism driving both diminished cell-cycle progression and Foxn1

levels. Expression of E2f3 itself is not significantly altered in

cTEC and mTEClo from 1 to 6 months (not shown), suggesting

that E2F3 activity is modulated over the course of thymic involu-

tion. Identifying initial drivers of reduced E2F3 function will likely

reveal critical regulators of thymic involution.

Diminished expression of Wnt pathway genes has also been

implicated in age-associated TEC degeneration (Bredenkamp

et al., 2014; Griffith et al., 2012). In agreement with these

studies, we find that Wnt3a is diminished �1.5-fold in cTEC

and mTEClo at 6 months, whereas Wnt4 is decreased �2-fold

in cTEC (Figure 6B). AsWnt4 can induce Foxn1 expression (Bal-

ciunaite et al., 2002) and Wnt3a is implicated in epithelial prolif-

eration (Liu et al., 2010), diminished expression could contribute

to impaired TEC homeostasis. Furthermore, the subtle increase

in expression of Wnt5b by fibroblasts, which may drive adipo-

genesis (van Tienen et al., 2009), suggests thymic mesen-

chymal cells could promote the age-associated increase in ad-

ipose tissue early in involution. We did not find evidence for

altered expression of other Wnt family members (not shown),

suggesting that deregulation of some Wnts (Bredenkamp

et al., 2014; Griffith et al., 2012) may occur late in the involution

process.

Reduced potency of the thymocyte progenitor niche may

also impair thymopoiesis during involution. IL-7, Dll4, and Kitl,

expressed by TECs, are all critical for promoting survival and dif-

ferentiation of early thymocyte progenitors (Anderson and Taka-

hama, 2012). Of these niche factors, only expression of Dll4 was

diminished in cTECs by 6 months of age (Figure 6A), suggesting

the thymic niche may have a reduced capacity to stimulate

Notch signaling, thus impairing thymopoiesis in early involution.

IL-7 levels are reduced in late thymic involution (Ortman et al.,

2002); however, the lack of transcriptional downregulation over

6 months suggests that diminished IL-7 may be due to reduced

cTEC numbers in the involuted thymus.

Signaling via sex steroids and growth hormones has also been

implicated in thymic involution (Lynch et al., 2009). Our data

do not reveal altered expression levels of Ar in TECs over

1–6 months (Figure 6D) or in estrogen or progesterone receptors

(not shown). Taken together with the findings that sex steroid

ablation induces only transient and partial regeneration of the

thymus (Griffith et al., 2012) and that sex steroids diminish with

age, whereas the thymus continues to involute (Chinn et al.,

2012), our data do not suggest that sex steroids play a significant

role in early thymic involution. However, it is possible that altered



sensitivity to signaling by sex steroid hormones in aging TECs

could promote involution. Our data suggest that altered growth

factor signaling could contribute to early thymic involution

because Ghr and Fgf7/Kgf expression was decreased in fibro-

blasts by 6 months (Figure 6D). Because both TECs and fibro-

blasts expressGhr, thymic rebound induced by growth hormone

(Chen et al., 2003) may be due to signaling in both stromal

subsets. Reduced expression of Fgf7/Kgf by aging fibroblasts

may diminish signaling through Fgfr2 on cTEC and mTEClo

cells, contributing to TEC atrophy. Consistent with this notion,

treatment with KGF causes transient thymic regeneration (Min

et al., 2007).

Unbiased analyses of our data revealed an increasingly

proinflammatory signature of DC and DCS with age (Figure 5).

A previous study demonstrated that expression of Osm, Lif,

Scf, and Il6 increased in aged human thymi, and administration

of these cytokines promoted thymic atrophy in mice (Sempow-

ski et al., 2000). Our analyses add further insight that Osm, Lif,

and Il6 are upregulated by thymic dendritic cells early in the

course of involution, though we found no evidence for

increased Scf, either due to species or temporal differences.

We also identified additional genes associated with inflamma-

tion that are upregulated by thymic dendritic cells by 6 months

of age (Figure 5). Il1a and Il1b are strikingly upregulated by

thymic dendritic cells, whereas activating, but not inhibitory,

Il-1 receptors are expressed on cTEC and fibroblasts (Fig-

ure 6C). IL-1 administration promotes thymic atrophy (Morris-

sey et al., 1988), and Nlrp3-deficient mice, which cannot

generate active IL-1, preferentially maintain the cTEC compart-

ment with age (Youm et al., 2012). Altogether, these data sug-

gest that IL-1 produced by thymic dendritic cells is likely a

potent mediator of early thymic involution, signaling to both

cTEC and thymic fibroblasts. Interestingly, Csf1, which can pro-

mote dendritic cell differentiation, is upregulated in mTEClo at

6 months (Figure 6C). Thus, a feedback loop may exist in which

aging TECs promote differentiation of dendritic cells, whose in-

flammatory cytokines in turn promote TEC degeneration.

Further elucidation of the mechanisms driving DCs to adopt a

proinflammatory signature and causing TECs to reduce E2F3

activity and cycling will be key to understanding the etiology

of age-associated thymic involution.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6J mice were housed at the UT Austin animal facility, under conditions

approved by the Institutional Animal Care and Use Committee.

FACS Isolation of Thymic Stromal Subsets and Transcriptional

Profiling

Thymi from 1-, 3-, and 6-month-old male C57Bl/6J mice were enzymatically

digested and FACS purified by double sorting to >95% purity on a FACSAria

(BD Biosciences). Stromal subsets were collected directly in TRIzol (Life Tech-

nologies), and RNA was purified, amplified, and hybridized on Mouse Genome

430 2.0 arrays (Affymetrix). Data were uploaded to GExC (Seita et al., 2012)

for robust multiarray analysis normalization (McCall et al., 2010). Gene expres-

sion data from thymic stromal subsets and previous thymocyte subsets

(GSE34723) are available in GExC (https://gexc.stanford.edu/model/475)

and the NCBI Gene Expression Omnibus (GEO; GSE56928). See the Supple-

mental Experimental Procedures.
Bioinformatics Analyses

Identification of DEGs was performed in R using ‘‘limma’’ and ‘‘affy’’ packages,

and theMolecular Signature Database was queried for GSEA. See the Supple-

mental Experimental Procedures.

RT-PCR on the Fluidigm Platform

FACS-purified stromal subsets were subject to high-throughput qPCR on the

Fluidigm platform, using manufacturer’s reagents and procedures (Fluidigm).

See the Supplemental Experimental Procedures.
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