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Abstract-This note shows that several nonsmooth equation based methods proposed recently for 
atline variational inequalities converge finitely under some standard assumptions. 

Many algorithms for variational inequality related problems can be regarded as Newton-type algo- 
rithms applied to the nonsmooth equation formulation of the corresponding problems 
(e.g., [1,2]). See [3] f or a brief survey and related literatures. Recently, following the pioneer 
work by Pang [4], a family of new algorithms, also based on the nonsmooth equation approach, 
has been proposed to solve the same class of problems [3,5,6]. Unlike traditional Newton-type 
methods for these problems (see [l,?]), th e new algorithms not only converge fast locally [S], but 
also converge globally with the help of line search procedure [4,9]. In addition, they solve sub- 
problems of lower dimension at each iteration and usually take very few iterations to converge. 
Computational studies [3,6,9,10] indicate that the new algorithms are very efficient. This note 
shows that under some standard assumptions these new algorithms converge finitely for afline 
variational inequality problems (VIP) which include linear complementarity problems (LCP) and 
quadratic programs (QP). 

Let f : R” -+ R be a given affine function and S be a polyhedra1 set. The affine variational 
inequality is to find a vector x E S such that for al1 y E S 

(y - X)Tf(X) 2 0. (1) 

Suppose that S is defined by a system of equalities and inequalities: 

S = {x E R" : g(x) 5 0, h(x) = 0}, 

whereg:Rn+Rmandh:Rn -) R' are both affine functions. It is well known that the VIP (1) 
can be formulated as a system of nonsmooth equations. Two such equations will be considered 
in this note, both of which have been investigated in literature [5,6]. 

The first formulation, called Formulation 1, uses a min operator. Let HI : Rn+m+' + Rn+m+' 
be a function defined by 

Hi(s) = 

( 

f(x) + Vg% + VhTv 

min {-g(x),u] 

-h(x) 1 

, (2) 

where z = (x, u, v) E Rn+m+r and the min operator is taken component-wise. Then x solves the 
affine VIP if and only if it satisfies the equation HI(Z) = 0 for some u >_ 0 and v. 
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The second formulation, called Formulation 2, uses the Minty-map. Denote 

2Q = max {26i,O}, Z&f = min {?Q,O), i= l,... ,m; 

u+ = (U+ I,.‘. ,7&k)‘, u- = (UT ,‘.. ,U,)? 

Let Hz : R*+“+’ + R*+“*I be a function defined by 

( 

f(x) + Vg%+ + VhTv 
H2(55) = -g(x) +u- 

-h(x) 1 

a (3) 

Then x solves the affine VIP if and only if it solves the equation Hz(z) = 0 for some u and v. 
All the nonsmooth-equation based algorithms proposed so far differ either in the (nonsmooth) 

equation used or in the subproblems, which rely on certain index sets defined below. At a given 
vector z = (x, u, v), the index sets of Formulation 1 (for refined definition, see [5] are defined by: 

o(2) = {i : -g(x) < WI, 

P(z) = {i : -g(x) = Uj}, 

r(z) ={i : -g(x) > %I, 

while those of Formulation 2 are defined by 

(4) 

o(z) = {i : uj > O}, 

P(z) = {i : uj = O}, (5) 

y(Z) = {i : Ui < 0). 

For each iterate z, a corresponding subproblem is constructed based on the above index sets. 
It could be a system of linear equations (see, for example, [8], a mixed linear complementarity 
problems [5,6], a quadratic program [3], or some combination of these problems [S]. We refer to 
the references for details of these constructions. The following general algorithm is designed to 
simplify the analysis in this note. 

ALGORITHM 1. 

Step 0. (Initialization) Starting with some vector z* (which may have to satisfy certain con- 
ditions). 

Step 1. (Subproblem) Given zk, the subproblem generates Sk = G(zk), where G(.) is a sub- 
problem operator. 

Step 2. (Line Search) z k+l = zk f A”(?;” - zk), where 0 < Xk < 1 is determined by a line 
search rule (assuming unit step size is adapted whenever-possible). 

Step 3. (Convergency Test) If zk satisfies a prescribed tolerance, stop. Otherwise k = k + 1, 
go to Step 1. 

In Step 1, the subproblem operator G may differ from one algorithm to another algorithm. To 
simplify the notation, denote 

s* = s(z*), Sk = S(Zk), s = cr,/?,-y. 

where z* is a solution of the VIP, We now present the finite convergence result for Algorithm 1 
assuming the operator G satisfies the following condition. 

CONDITION 1. z* = G(zk) provided that 

THEOREM 1. Suppose the sequence {z”} generated by Algorithm 1 converges to a solution z* 
and the operator G satisfies Condition 1. Then there exists an integer K > 0 such that zK = z*. 
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PROOF. Since {zk} converges to z* and the index sets cr and p are defined by strict inequalities, 
there exists an integer A’ > 0 such that relation (6) holds for all k >_ li’ - 1. Then ZK-’ = z* 
since the operator G satisfies Condition 1. By the assumption of the line search rule, AK-’ = 1 
and zK = z*. I 

In the rest of the paper, we present several subproblems: some of them have been used in 
algorithms studied before and others are potentially useful for future algorithms. We then verify 
that the operator G defined by these subproblems satisfies Condition 1 and consequently establish 
the finite convergence for these algorithms. The following concept of b-regularity is important for 
our proof. 

DEFINITION 1. A vector z (with index sets cry, /3 and y given by either (4) or (5)) is said to 
be b-regular for the functions Hi, i = 1,2, if for every index set 7) c p the following matrix is 
nonsingular: 

[ 

Of Vg:,, VhT 

-V&o, 0 0 . (7) 
-Vh 0 0 1 

TWO functions are defined in order to describe the subproblems. Let ~1, ~2,173 be mutually 
exclusive index sets such that r,ri u q2 u q3 = (1,. . . , 
fi, : R”+m+l 

m}. For Formulation 1, define a function 
+ R”+‘+’ by 

‘f(x) + “!$ uql + Vg+,, + VhTv 
-g,,(x) 

mm {--gqa(x), uqa} 
%s 

-h(x) 1. 
Similarly, let ~1, ~2,713 be mutually exclusive index sets such that ~1 U ~2 U 77s = { 1, . . . , m}. For 
Formulation 2, define a function fis : R”+m+’ ---f Rn+m+’ by 

i 

f(x) + Vg$u,, + Vgrz max (0,~~~) + VhTv 

H2(~,~1,712,73)= 

-gql (x) 
-g,,(X) + I-in V4U,,I 

-g"&W;% 

X 1. 

Notice that the functional form of I&, i = 1,2, depends on the index sets. 
We now describe the subproblems. The iteration index k of z, cr, /3, y is omitted for simplicity. 

SUBPROBLEM 1. G(z) = (5 : fil(2,a U ,81,@2,P3 U 7) = 0}, where pl,p2,/?3 are mutually 
exclusive subsets of /? and ,f?~ U /32 U @3 = ,B. 

Subproblem 1 is designed for Formulation 1. It summarizes those algorithms that solve linear 
equations or a mixed linear complementarity problem at each iteration based on Formulation 1. 
If Pi = /3s = 0, it reduces to a mixed linear complementarity problem, which is the subproblem 
described in [5]. If @Z = 0, it becomes a system of linear equations described in [8], it is also 
similar to the heuristic procedure described in [lo] for solving linear complementarity problems. 

SUBPROBLEM 2. G(z) = {B : fi2(ka u Pl,P2rP3 uy) = 01, where flljP2,p3 are mutu& 

exclusive subsets of /3 and ,f3i U ,B2 U p3 = p. 

Subproblem 2 parallels Subproblem 1 and is designed for Formulation 2. If ,& = pz = 0, it 
reduces to a mixed linear complementarity problem, which is the subproblem described in [S]. 

SUnPnonLEM 3. G(z) = argmin {Il~ir,(,,(rUp,,p2,p3Ur)l12 (Sk UaupIup3u7 >&Up, = o)}, 

where PI, P2, P3 are mutually exclusive subsets of ,8 and pi u p2 u p3 = p. 

Subproblem 3 applies to Formulation 1 only and the constraints are optional. With the con- 
straints, it is a generalized version of the NE/SQP algorithm for nonlinear complementarity 
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problems described in [3]. Without the constraints, if & = 0, one can solve subproblem (6.3) 
of [8] by solving Subproblem 3 for all subsets ,&, ps of p. 

SUBPROBLEM 4. G(z) = argmin {III&( z,a U P1,0,P2 u r)l12 (s.t. upI L O,up, I O)l, where 

pl, /32 are mutually exclusive subsets of p and ,& U p2 = ,B. 

Subproblem 4 applies to Formulation 2 only and the constraints are optional. It has not 
appeared in literature and could be used as a supplement of Subproblem 2 in case the latter fails 
to generate a new iterate that satisfies the line search rule. 

The following result shows that the operator G defined by the above four subproblems satisfies 
Condition 1 under the b-regularity assumption. 

PROPOSITION 1. If z* is a b-regular vector, the operator G defined by Subproblem i, i = 1,2,3,4 
satisfies Condition 1. 

PROOF. The proofs for the first two subproblems are similar. It suffices to show that if (6) holds, 
z* is the unique solution of equations 

~11(z,aiuPl,Pz,P3uY)=o, (8) 

~2(z,~~ul,P2,P3uY)=o~ (9) 

By direct verification, one can see that z* is a solution of equations (8) since relation (6) is true 
and by definition ui. = -gp.(x*) = 0. For Subproblem 1, suppose 2 is another solution of 

equation (8). Without loss of generality, assume that 

$3, > 0, ii& = 0, whereP4nP5=0, p4up5=p2, 

then u& = 0 = iip, since p C p’. Substitute z* and 11 into equation (8) and subtract the 

resulting identities from each other. Taking into consideration the fact that t.(x) = Vtx + t(0) 
for any affine function t, we have 

Vf VgLp,up, V”’ x - x* 

-Vg,,p,up, 0 

)( 

_ 
UffUPlUP1 - %“pl”p, = 0. 

-Oh 0 0 v - v* 

Since CX* C (Y U /31 U ,& c a* Up’ by relation (6), the matrix on the left hand side is nonsingular 
by the assumption of b-regularity. Therefore, 

Consequently, 

%UY = gp,u#) = gp,ur(xC) = u&uy, 

since ,&lJ7 C ,f3*~7*. Summarizing the above argument, we obtain s = z* for Subproblem 1. For 
Subproblem 2, suppose E is another solution of equation (9), then iipa = 0 = u;j3 by definition of 

the index set p, the definition of function fi2 in (9), and the fact p C /3*. The rest of the proof 
is identical to that of Subproblem 1. 

The prooh for the last two subproblems are essentially the same. Similar to the proof for 
Subproblem 1,2, one can verify that z* is a solution of the quadratic programs in Subproblem 3,4 
and the corresponding objective function values are zeros. Suppose Z is another solution, we 
must have 

Hl(z*,crUpl,Pz,P3UY)=~~(z,aUpl,Pz,P3U7)=0, 

H2(z3,~UP1,0,P2 UY) = fi2(74UP1,0,/32u7) = 0. 

Using the result for Subproblem 1,2, we have I = z*. 1 

Notice that if p = 8 and the matrix (7) associated with index set Q* is nonsingular, then Z* 

is b-regular and the above finite convergence result holds. 
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The above finite convergence result can be extended easily to strictly convex QPs and LCPs. If 
f(x) is a gradient of some strictly convex quadratic function, the affine VIP reduces to a strictly 
convex QP and k-regularity becomes the familiar assumption that the binding constraints are 
linearly independent. Consequently, we have the following results. 

COROLLARY 1. Let {z”) be a sequence generated by Algorithm 1 with its subproblem defined by 
Subproblem i, i = 1,2,3,4. Suppose that {z”} converges to the solution z* of a strictly convex 

QP and that the rows of Vg,.,p., Vh are linearly independent. Then there exists an integer K 
such that zK = z*. 

When set S is restricted to a nonpositive orthant, the affine VIP reduces to an LCP: finding a 
vector x such that 

f(x) 2 0, x 2 0, xTf(x) = 0. 

The corresponding nonsmooth equation formulations become 

HI(X) = min {f(x),x} = 0 and Hz(x) = f(x+) + x- = 0, 

respectively. The index sets are defined similar to (4) and (5) except that u is replaced by x. 

The concept of b-regularity is simplified accordingly: 

DEFINITION 2. A vector x is said to be b-regular for function Hi, i = 1,2, if for every index set 
f3 C_ 9 E cr U p, the matrix V,_fi, is nonsingular. 

By definition, any vector x associated with the LCP defined by a nonsingular matrix or a P- 
matrix is kegular but the reverse is not necessarily true. The functions fii : R” + R”, i = 1,2, 
used in subproblems are simplified as follows: 

Hdx, ~1, ~2,713) = 

where % = (xql, max (0, x,,~ ), O,,) E R”. The following result can be shown in the same manner 
as for the affine VIP and the detailed proof is omitted. 

COROLLARY 2. Let {xk} be a sequence generated by Algorithm 1 with its subproblem defined 
by Subproblem i, i = 1,2,3,4. Suppose that {xk} converges to a solution x* of the LCP and 
that X* is b-regular. Then there exists an integer K such that xK = x*. 

Obviously, if strict complementarity holds at the solution (p’ = 0) and the matrix Va.fa= is 
nonsingular, x* is b-regular and the finite convergence result holds. 
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