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This paper is part of a series dealing with the control theory of hyperbolic 
partial differential equations (see [1], [2]). In this series we have restricted 
ourselves to the study of the control of such processes with control parameters 
which are finite dimensional vector functions of time only. In actual applica- 
tions the controls used to stabilize a vibrating body will of necessity be of this 
type. Moreover, it turns out that such controls are of considerable mathe- 
matical interest. 

This paper is concerned with the controllability of such systems in the 
case where control is exercised by means of a force whose spatial distribution 
is fixed but whose sign and amplitude is variable with time. To avoid undue 
complexity the greater part of the paper treats the case of the nonuniform 
string. Nevertheless the methods used are also applicable to many other 
distributed parameter control problems as we shall show in the concluding 
section. 

The work presented here was originally motivated by a very practical 
question which arises in control engineering. How can one control a finite 
number of modes of vibration in a distributed parameter system without 
adding undue amounts of energy to the neglected modes? In addition to 
results of more or less purely mathematical interest, we will provide at least a 
partial answer to this question. 

As our method reduces essentially to the study of a moment problem, it 
would seem appropriate to note the differences between our work and that of 
A. G. Butkovskii [3]. Butkovskii makes an assumption, whose verification is 
not at all trivial, which in effect amounts to the assumption of controllability 
in finite time with a bounded control function and then proceeds to character- 
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ize the time optimal control. Our goal is quite different, we pose an initial 
value problem and ask whether there is any control, bounded or not, which 
will reduce these initial conditions to zero in a given finite time interval. 
Thus our work is, logically, a necessary preparation for the study of 
Butkovskii’s problem. 

A second paper of Butkovskii [4] treats the case where p(x) and p(x) (see 
Section 1) are constant. This case is substantially less complicated than the 
problem which we shall consider in this paper. 

1. STATEMENT OF THE CONTROL PROBLEM AND PRINCIPAL REWLTS 

We consider the equation 

(l-1) 

which describes forced motion of a string with density p(x) and modulus of 
elasticity p(.~). The function g(x) is an element of the space L,[O, I], the 
interval [0, l] being the spatial extent of the string, and will be called the 
force distribution function. The functions p(x) and p(x) are positive and twice 
continuously differentiable on [0, 11. A functionf(t) is an admissible control 
on the interval [0, T] if it is an element of L,[O, T]. 

We will assume that u(x, r) obeys the boundary conditions 

A,u(O, t> -I- B, 2 (0, t) = 0, 

A&l, t) L- B, 2 (1, t) = 0, (1.2) 

where A,, B, , A,, and B, arc real constants with A,,:! + Bo2 # 0, 
Al2 + B12 # 0. 

The set of initial conditions which we will consider is the linear space I 
consisting of pairs of functions 

such that (1.2) is satisfied at time t = 0 while d2u,,(x)/dx2 and der,(x)/& are 
functions in L,[O, 11. 

PROBLEM A. Let initial conditions (1.3) be given in the space I and let 
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T > 0. Does there exist an admissible controlf (t) on [0, II’] such that the solution 
of (IJ), (1.2) which satisfies these initial conditions also satisfies 

u(x, T) = 0, $ (x, T) := 0, x E [O, 1] ? (1.4) 

If for fixed 7’ ;> 0 the answer in Problem A is “yes” for all initial conditions 
in the space I, we will say that the system (1.1) (1.2) is controllable in time T. 

It will be convenient to simplify the equation (1.1) by means of trans- 
formations of the variables. We set 

u* - 5qqqzj 11, x* = p(5) d(, 
PM (l-5) 

and we obtain a new equation in u* involving derivatives with respect to x* 
and t. Reverting to the use of II and x rather than IL* and x*, this equation is 

g - y(x) u - g = y(x)f(f), 

where Y(X) is continuous on the interval 

(1.6) 

and y(x) EL&]. We have new boundary conditions 

a&O, t) + b, !$ (0, t) = ap(L, t) + b, g (k, t) = 0 (1.8) 

and again ao2 = bo2 # 0, aI2 + b12 # 0. For (1.6) we pose the same control 
problem as we did for (l.l), replacing the boundary conditions (1.2) by (1.8) 

and L,[O, 11 by L2P, 4. 
In the next section we will make a basic assumption on r(z). With this 

assumption our results will consist of three theorems whose proof occupies 
the greater part of the remainder of this paper. 

THEOREM 1. Zf T < 28 the system (1.6) (equivalently the system (1.1)) 
tk not controllable in time T. 

THEOREM 2. Zf T > 28 the system (1.6) (equivalently the system (I. I)) 
is controllable in time T and for each set of initial conditions in Z the Problem A 
has infinitely many solutions f (t) E L,[O, T]. 
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THEOREM 3. If T = 2L’, then 

(i) when b, = 6, = 0 th e system (1.6) is controllable in time T = 2d and 

for each set of initial conditions in I the solution set for Problem A is of the form 
f(t) + E, where f(t) is a uniquely determined solution of Problem A and E 
is a fixed (for all initial conditions in I) one dimensional subspace of L,[O, 20; 

(ii) when exactly one of the numbers b, , b, is dilferent from zero, the system 
(1.6) is controllable in time T -= 2! and for each initial condition in I the Prob- 
lem -4 has a unique solution; 

(iii) when neither ojthe numbers b, , 1 b is equal to zero, the system (1.6) is not 
controllable in time T = 2t!’ but becomes controllable ;f we replace I by a sub- 

space f  C I whose complement in I is one-dimensional. 

2. A MO~IENT PROBLEM IN L,[O, T] 

Our approach to the above posed control problem uses the familiar method 
of separation of variables. We seek for solutions of the homogeneous equa- 
tion corresponding to (1.6) of the forms 11(x, t) = a(t)#x). Then for some 
constant h we must have 

and 

p + r(x) 4(x) + Xf$(x) = 0. 

(2-l) 

(2.2) 

We wish to find numbers h, such that for h = h, the Eq. (2.2) possesses a 
nontrivial solution which satisfies the same boundary conditions as imposed 
on 11(x, t) in (1.8). This is the Sturm-Liouville eigenvalue problem for which 
a vast literature exists. Briefly, it is known in the present case that there exists 
a strictly increasing sequence {hk} of non-negative real numbers, k = 0, 1,2,..., 
such that for h = h, the boundary value problem possesses a unique solution 
&(x) with 

where 6,/ is Kronecker’s delta. The $k(~) form an orthonormal basis for 
L,[O, 4, i.e., given 4(x) ELJO, e] we have 

(2.4) 
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the convergence being with respect to the L,[O, e] norm, and 

(2.5) 

Now let U(X, t) be a solution of (1.6) which satisfies a set of initial conditions 
U(X, 0) = z+,(x), (&/at) (x, 0) = V,,(X), 0 < x < t, in I and the boundary 
conditions (1.8). We expand U(X, t), U,,(X), q,(x) and y(x) as series in the &(x): 

Then the pk(t) are solutions of 

w + Akflk(t) = rkf@) 

(2.6) 

(2.7) 

for k = 0, 1, 2,... and satisfy the initial conditions 

flk(O) = Pk 3 f (0) = vk . (2.8) 

Problem A may then be replaced by 

PROBLEM B. Determine f(t) ELJO, T] suck that for k = 0, 1,2,... the 
solutkms /lk(t) of (2.7), (2.8) also satisfy 

,k&(T) = 2 (T) = 0. (2.9) 

We now examine the numbers prc and yk more closely. We have 

f 

t 

pk = vk = ’ 2)&)#&) dx. (2.10) 
0 0 



NON?IARMONfC FOURIER SERXES IN CONTROL THEORY 547 

Since &(x) is an eigenfunction of the operator L(4) = (&c$/&?) + r(x)+ 
corresponding to the eigenvalue A, , we have, for A, # 0, 

Substituting (2.11) into the first equation of (2.10) and integrating twice by 
parts, making use of the boundary conditions, we arrive at 

(2.12) 

Then making use of well ‘known estimates on A, (see, e.g., [5] or [6]) and the 
definition of I, we have 

pk=;Pt. (2.13) 

where 

1 @k2 < 03. 
k=O 

(2.14) 

On the other hand, if we substitute (2.11) into the second equation of (2.10), 
integrate by parts once, use the asymptotic formulas for d+,(r)@ found 
in [6] and the definition of Z we see that 

where 

k=O 
(2.16) 

To complete our discussion of the coefficients arising out of the equations 
(2.6) we make the following basic assumption. 

ASSUMPTION. The coe~cients Yk satisfy 

liF?fh]rkI >O, (2.17) 

and 

Yk f 0, h = 0, 1, 2 ,... . (2.18) 

This assumption is satisfied, for example by y(x) E x when b, = 6, = 0. 
Now let us set 

Wk = q2, h = 0, 1, 2,... (2.19) 
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and use the variations of parameters formula to see that the solutions ,~?{~(t) 
of (2.7), (2.8) satisfy, for wk # 0, 

/3Jt) = pk cos (wpt) + J$ sin (w$) -+ 
s 

I$- sin (~+(t - s))f(s) ds, (2.20) 
k 

4%(t) _ -- 
dt 

- pkuk sin (wkt) + vk cos (o+t) + 
s 

t yk cos (wr(t - s))f(s) ds. 
0 

(2.21) 

If in (1.2) we have A, = A, = 0 there is an eigenvalue ho = 0. In this case 

Bo(t> = ~0 + vat + j: Yo(t - s)f(s) 4 (2.22) 

! ! c ! !?B = v + 
.r 

t y,f(s) d-s 
dt ’ o . 

(2.23) 

If at time t = T > 0 the solutions &(t) of (2.7), (2.8) are to satisfy the ter- 
minal condition (1.4), it is clear that we must have 

s T sin (mk(T - s))f(s) ds = - 7 cos (WIT) - 2 sin (wlcT), (2.24) 
0 

.c 
’ cos (w,(T - s))f(s) ds = 7 sin (c+T) - z cos (w,T) 
0 

(2.25) 

for wk # 0, and in the case w. = 0 

s 
= (T - s)f(s) ds = - 5 - f$ T, (2.26) 
0 

(2.27) 

Let us set 7 = T - s and for each control functionf(t) let a corresponding 
function h(7) be defined by 

h(7) -f( T - 7) -f(s). (2.28) 

Then, using (2.13)-(2.16) together with the well-known estimate 

% = W), (2.29) 

we see that Problems A and B finally reduce to the following. 
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MOMENT PROBLEM. Let sequences {ck} and {dk}, of real numbers be given 

satisfying 

c $2 < m, 1 dk2 < 03. (2.30) 
k=O It=0 

Let T > 0 be given. Does there exist a real-valued function h(t) E L,[O, T] such 
that, for wk # 0 

I 
T  

sin (qt) h(t) dt = cK , 
0 

(2.31) 

/-‘cm (a@) h(t) dt = dk , (2.32) 
JO 

and in the case w. = 0 

I 
T  

th(t) dt = co , 
0 

(2.33) 

I 
T  

h(t) dt = do ? 
0 

(2.34) 

We remark that the solution of this problem is easy when Y(X) = 0 and 
either a, = a, = 0 or b, = b, = 0, for in those cases the wk are all multiples 
of a fixed positive number and familiar results from the theory of Fourier 
series may be used. The essence of the present paper is the solution of the 
above moment problem when the wk do not obey any such simple relation- 
ship. In order to accomplish this objective we shall first find it necessary to 
summarize the results available in the theory of so-called nonharmonic 
Fourier series. 

2. NONHARMONIC FOURIER SERIES 

Our task in this section is to examine the functions in the set 

S = {eW, e-‘“k’ 1 k = 0, I,2 ,... } 

or, in the case w. = 0, 

(3.1) 

S = {I, t, e”+‘, eciyt 1 k = 1, 2 ,... } (3.2) 

as elements of the space L,[O, T], T > 0. The set S will be called complete 
if the smallest closed subs@ack of L,[O, T] which contains S is L,[O, T] itself; 
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excessive if a proper subset of S is complete in L,[O, T]; linearly independent 

if S possesses a biorthogonal set in Z,,[O, ‘I’], i.c., if there exist two scqucnccs 

h(t)>, b4t)) in &IO, Tl with 

/‘eiwll &c(t) dt = 0 = ,I e-Wjl(t) dt, k,L = 0, 1, 2 )... (3.4) 
0 

and similar equations in the case where S is given by (3.2); a basisfbrL,[O, T] 
if S is both complete and linear independent; deficient if S is contained in a 
proper closed subspace H of L,[O, T]. 

The sequence of non-negative real numbers {wk} has density D if 

k 
lim - = D. 
k-m wk 

The same sequence possesses an asymptotic gap r if 

(3.5) 

lir?f (f++i - WJ = r. 

We will proceed under the assumption that the sequence {wk} possesses a 
positive density D and that r -= l/D. This assumption is always satisfied by 
the wk introduced in the preceding section. 

We will indicate how the properties listed above for S depend upon the 
relationship which the density D bears to the length I’ of the fundamental 
interval under consideration. The first important question is whether T 
is less than, greater than or equal to 277D. 

The Case T ~2~0 

It is known in this case (see, e.g., Levinson [7], p. 3) that S is excessive in 
L,[O, T] when given by either (3.1) or (3.2). As a result, the moment problem 
(2.31)-(2.34) has, in general, no solution. 

The Case T >2xD 

The treatment of this case is not as straightforward as that of T < 2aD. 

In his paper [8] of 1942, L. Schwartz conjectured that the set S, as given 
by (3.1), could not be complete in LJO, T] if T > 2xD. To the author’s 
knowledge, this conjecture remains unproven unless somewhat stronger 
hypotheses are given. 

In 1950 R. M. Redheffer, [9], proved that if 

lim sup Rm sup A@ + Y, - ‘@) < s 
y-m DC0 Y 

(3.7) 



NONHARMONIC FOURIER SERIES IN CONTROL THEORY 551 

the set S, as given by (3.1) is not complete inL,[O, T]. Here n(x) denotes the 
number of wk which are < x. He shows that there is a function 

G(w)=H(w)fi (1 --$ i 
k-0 

which belongs to L2( - co, co), H(0) f 0, and a function g(t) f 0 on [0, T] 
such that g(t) ELJO, T] and 

C(W) 7 S’g(t) eiwt dt. (3.9) 
0 

It is clear then that g(t) is a nonzero element of &JO, T] orthogonal to all of 
the functions in S and hence S is not complete in Ls[O, T]. If w. = 0, one 
employs the function 

G(w) = wH(w) fi (’ -.-- -$) 
k-l 

instead of (3.8). As a result we see that if t is removed from S as given by 
(3.2) then S is not complete in L,[O, T]. 

It is clear that one may adjoint to S, as given by (3-l), or to S as given by 
(3.2) without t, any finite number of functions of the form eiot not already 
in the set and still fail to obtain a set complete in L,[O, T], for no finite number 
of w’s can alter (3.7). As long as S does not span L,[O, T] its members are 
linearly independent. (Schwartz, [S]). It follows that S as given by (3.2) 
including t, is also not complete in L,[O, T] since the deficiency of that set 
without t is infinite. 

For S, as given by (3. l), the property of incompleteness in L,[O, T] implies, 
according to Schwartz, [8], the existence of a biorthogonal set for S in 
L,[O, T]. What can we say about S as given by (3.2)? Let us note that for 
wo > 0 

lim 
eiuet _ e-iuot 

qpo+ 2iw, = t 

uniformly for t E [0, T]. It follows that 

(3.11) 

Jj$+ I)) 
eiuot _ etwOt 

2iw, dt = I =g(t) i dt. 
0 

But then, using (3.9) with G(w) given by (3.10), 

(3.12) 

I 
T  

Gbo) - G(- wo) = . dG(w) -z- = -iH(O)#O. 
0 

g(t) dt = $r& 
0 2zLJ, dw w-0 

(3.13) 
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Thusg(t), regarded as a linear functional onL,[O, T], vanishes on all elements 
of S, as given by (3.2), except the elcmcnt t. Thus this set S is linearly 
independent and possesses a biorthogonal set. Of course, such a biorthogonal 
set is not, in general, uniquely determined whether S is given by (3.1) or 
(3.2). A unique biorthogonal set can be specified by requiring that its elements 
have norm as small as possible in L,[O, ‘I’], i.c., by requiring that the elements 
of the biorthogonal set lie in the closed subspace of L,[O, T] spanned by S. 
It is in this sense that we will refer to “the” biorthogonal set for S. 

We are now ready to study the moment problem in this context. We do so, 
assuming in addition to (3.7) that 

(3.14) 

Let square summable sequences {Ek ] k .- 0, l,... }, {& I K = 0, I,... } of 
complex numbers be given. We wish to find an element h(t) in L,[O, T] such 
that 

I 
‘h(t) eiukf dt = E, , k = 0, 1, 2 )... ) 
0 

I 

T  

h(t) e-W dt = dk , k = 0, 1, 2 ,... , (3.16) 
0 

if none of the wk are zero. If w. = 0, 

First of all, it is clear that we can obtain at least a jormul solution of this 
moment problem by setting 

(3.19) 

where the plc(r) and qk(t) are the elements of the biorthogonal set for S. We 
say formal because we do not know as yet that this series is convergent. 

Kow it is known (see R. P. Boas [lo], S. Banach [11]) that (3.15), (3.16) 
possesses a solution l;(t) E L,[O, T] satisfying 

(3.20) 
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if and only if for every finite set {& , ?k 1 K z 0, I,..., K} of complex numbers 
we have 

A result due to A. E. Ingham, [ 121 h s ows that if (3.14) is satisfied, there is 
a positive number M such that 

rlk 12) < M /I/ i. ([keiwk’ + vke-iwkf) I2 dt. (3.22) 

On the other hand, 

1 fjo fk<k i- dk% 1’ < (i (1 Zk I2 i- 1 dk (P)) (i (1 ?h I2 + 1 ‘7k \I,) (3.23) 
I;=0 

Setting A = zFzo (I ck ,2 + 1 dk 1”) M we have (3.21) and it follows that the 
moment problem (3.15), (3.16) has a solution L(t). 

When w. = 0 we can use the above techniques to show that there is an 
element f;(t) EL~[O, T] satisfying (3.15) (3.16) for k 2 1 and (3.18). Then 
letting g(t) be the function defined in (3.9) we set 

i;(t) = X(t) - ij!$$ [r, - /;h(t)tdt] (3.22) 

to obtain a solution of the complete moment problem. 
Once we know that there is at least one solution of the moment problem it 

is easy to show that there is a unique solution k*(t) of least L,[O, T] norm. 
This is also the unique solution of the moment problem which lies in the 
closed subspace of L,[O, T] p s anned by S. We will show that the series (3.19) 
converges and that it converges to the particular solution k*(t) of the moment 
problem which we have just described. Keeping in mind that the pk(t), 
qk(t) of (3.19) lie in the closed subspace spanned by S, we define k,(t) by 

kit) = i (&f%(t) + dk4dt))r 
k=O 

(3.23) 

and k,*(t) is taken to be the solution of least L,[O, T] norm for the moment 
problem (3.15), (3.16) with Ed , d, replaced by 0 for k < p. Then h,(t) -L k*(t) 
is a solution of the moment problem (3.15), (3.16) which lies in the closed 
subspace spanned by S. Hence we conclude that 

&(t) + k;(t) = k*(t). 
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But 

and the square summability of the {fk} and {dk} then shows that 

hence 

Lil 11 h,* 11 = 0, 

lim 11 S(t) - h*(t) !I = 0. 
P- 

(3.24) 

(3.25) 

(3.26) 

Therefore we have 

h*(t) = f @kPkct) + dkQk(t)) 
k-0 

(3.27) 

and the series converges in the L,[O, T] norm. 
The above argument is strictly valid only for the case w. # 0 but it is 

easily extended to the other case. 

The Case T = 2xD 

It is clear from what has already been said that if we wish the moment 
problem to possess exactly one solution in L2[0, T] we must have 

T = 2rD. (3.28) 

It is equally clear that this alone is not enough to guarantee exactly one 
solution. For we may adjoin to or take away from S any finite number of 
functions of the form eiwt without changing the density. To get the result 
which we want it is necessary to assume that the real numbers wk are close 
to K in some sense. Considerable work has been done in this context: see 
Paley and Wiener [13]; Duffin and Eachus, [14]; Riesz and Sz.-Nagy, [15]; 
V. D. Golovin, [16]; N. Levinson, [7]. We will use in this paper the recent 
work of M. I. Kadec, [17]. 

Let us consider a set S: 

S = {eiwkt I k = 0, f I, * 2 ,... 1. 

S is called a Riesz basis for L,[O, T] if for each function 

e(t) = 5 [keiwkt 
I;=-m 

(3.29) 

(3.30) 
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we have, for 0 < A < B < 03, 

A(? i Uk 1’) < 1) 6 i!2 < B ( f 1 a, i2) . (3.31) 
k--w k--m 

We have noted the case T > 2x1) that the first of these inequalities implies 
the existence of a solution of the moment problem. When S is a basis for 
L,[O, T] the solution is, of course, unique. 

According to Kadec, [17], S is a Riesz basis for L,[O, 27rZ4 if 

SLIPIWX-;I<&. (3.32) 

The constant on the right is known, from the work of Levinson, 173, to be the 
best possible. 

Xow, let us suppose that all of the wI: are distinct and for some E > 0 

where K is a positive integer. Then there arises the question as to whether or 
not S remains a Riesz basis for L,[O, 2xD]. It is clear that the set 

s = {e”k:lD’l 1 1 k 1 < K} u {eiwrt 1 I k I > K} (3.34) 

is such a basis. Let us define a compact (i.e., completely continuous) linear 
transformation T,, on L2[0, 2xD] by 

T&J;:);; z f+, I k j < K 

oe k I k ( > K. (3.35) 

Then the bounded linear transformation Z + To is defined on L,[O, 2?rD] and 
carries the Riesz basis S into S. 

It is well known that Z + To possesses a bounded inverse if and only if 
(I $ To) (f) = 0 + f = 0, ~EL~[O, 2aD]. This is part of the statement of 
the Fredholm alternative. Now let f be expressed as a linear combination of 
the elements of S and assumef # 0. If (I + To) (f) = 0, there is an integer 
k, I k : < K, such that eiwrt can be written as a linear combination of the 
remaining elements of S. But then, using the fact that all but finitely many 
of the elements of S are elements of S, it is easy to see that S spans only a 
proper closed subspace of Z&[O, 27rD]. But the result of Schwartz referred to 
earlier states that when this is the case the elements of S are linearly inde- 
pendent, none can be written as linear combinations of the others. Thus we 
have a contradiction at Z + To must be invertible. But then it is clear that S 
is also a Riesz basis for L2[0, 2x4. 

409/18/3-r 1 
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Thus, returning to S as given by (3.1), we see that if (3.33) is satisfied for 
k > K we can solve the moment problem consisting of all but one, which is 
arbitrary, of the equations (3. IS), (3.16). For S as given by (3.2) WC can solve 
all equations but (3.17) in the moment problem. 

We conclude this section with two remarks. First of all, if S as given by 
(3.1) is replaced by a set of functions e i(*zkt8)f, where 6 is any fixed real 
number, all of the results of this section remain true, for the transformation 

f(t) -+ ei6t f(t) is unitary. Secondly, it is clear that a solution of the moment 
problems (3.15)-(3.18) implies a solution of (2.31)-(2.34) and the solution of 
(2.31)-(2.34) which has least L,[O, ‘1’1 norm must be a real-valued function. 
Naturally in the case 2’ = 2nD when one of the Eqs. (3.15)-(3.18) cannot be 
satisfied, a corresponding equation must be eliminated from (2.31)-(2.34). 

4. PROOF OF THEOREMS 1, 2, 3 

Obviously most of the work involved in proving these theorems has 
already been done in Sections 2 and 3. All we need to do here is to indicate 
that the real numbers wk introduced in (2.19) satisfy conditions which cor- 
respond to the assumptions made on the wlc in Section 3. The material which 
establishes this is readily available in the literature. We will describe the 
results briefly and give references. 

First of all it is well known, see, e.g., Tricomi [6], that the solutions h, 
of the eigenvalue problem (2.2), f or any set of boundary conditions (1.8), are 
such that 1 UJ~ - (r&/l) 1 (recall wk 2 =- &.) is uniformly bounded. As a con- 
sequence we conclude that the density of the wit is given by 

(4.1) 

Thus the critical interval length is 

27rD = 21. (4.2) 

Theorem 1 then follows immediately from the result cited under the case 
T < 2nD in Section 3. 

It is also shown in [6], and we will expand upon this in connection with 
Theorem 3, that the asymptotic gap for the wk is given by 

r = 22 (Wkfl - Wk) = $ = A. I (4.3) 

Thus the results of Redheffer and Ingham cited in Section 3 apply and Theo- 
rem 2 follows from the work done in Section 3 on the moment problem for 
T > 277D. 
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We turn now to Theorem 3. The eigenvalue problem (2.2) has, for each of 
the boundary conditions (i), (ii), and (iii) listed in the statement of Theorem 3, 
a “prototype problem” in the form of the eigenvalue problem 

with boundary conditions 

(9 C(O) = 4(t) = 0; 

(ii) $0) := 0, 4V) = 0 or +5(O) = 0, g (e) = 0; 

(iii) 2 (0) = 0, g(t) =o. 

(4.4) 

These correspond to a uniform string with (i) both ends fixed; (ii) one end 
fixed, the other free to slide; (iii) both ends free to slide. The eigenvalues 
x, of the prototype problem are such that &jk = &/2 is given by, for 
k = 0, I, 2,... 

(i) Wk = 
(kt l)n 

e ; 

(ii) Wk = (k i- 4) = 
e ; 

kv 
co,=---; 

d (4.6) 

and it is shown, e.g., in Tricomi’s book that the wk for the original problem 
satisfy 

in all three cases. From Section 3 we see, therefore, that the question of 
solvability of moment problems is entirely the same for the e*‘wkr as for the 
e*iWa 

The work of Section 3 on the case T = 2vD shows that the functions 
e*‘“k’ arising in case (i) together with the function 1 form a Riesz basis for 
L,[O, 27rD] when (4.7) holds. Th us a solution of the moment problem (2.31) 
(2.32) always exists and is not unique for we may specify 

(4.8) 

for any choice whatsoever of the real number c. In the case of the uniform 
string with fixed endpoints this is illustrated in the fact that a force constant 
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over an interval of length equal to the period of the fundamental mode merely 
returns the string to its original state over that length of time. The intcr- 
pretation is somewhat more complicated for the nonuniform string and is. 
we believe, best left in the form of the statement (4.8). 

In case (ii) the functions e: i,c,fif form a Ricsz basis for L,[O, 2~iD] : L,[O, 2L 1. 
For the functions erifZkf arc obtained from the familiar Fourier series 
functions eLi(kn’C)f, k .- 0, 1, 2,... by applying the unitary transformation 

f(t) -*f(t) e i(“‘2/)1. Thus in this case the moment problem has exactly one 
solution. WC merely multiply each of the C‘lCJ* by P-“~‘*‘)~ and USC the 
results of Section 3. 

The functions we are concerned with in the prototype problems (iii) arc 
,, f, e+-i(kdt)t, k _ , 

[0, 2-J plus t, which ’ 

2 ,..., the Fourier series functions for the interval 
IS excessive. The analysis given in Section 3 together 

with (4.7) shows that in case (iii) the functions et’ jwit, or 1, t, e*‘,““l, K := 1, 2 ,..., 
if UJ” = 0, form a Riesz basis for L,[O, 2?rD] = L,[O, U] if one clement is 
removed. When w0 # 0 this can be any element. Whether or not this is the 
case for w0 = 0 is not so clear but one certainly obtains a Riesz basis if t 
is removed from the set. In any event the truth of Theorem 3, part (iii) is 
evident. In the case of the uniform string with free endpoints, the prototype 
problem for (iii), one can bring the string to equilibrium in time T -. 27rD 
but the actual location of the motionless string at the end of the time interval 
is fixed by the initial conditions. In any longer interval WC can stop all motion 
and place the string where we will. 

5. CONCLUDING REMARKS 

\\.e will conclude this paper with a remark concerning the applicability of 
our work in actual control engineering problems and an indication of what 
further developments may be expected along similar lines. 

An important problem in control engineering is that of controlling a finite 
number of modes of vibration of a distributed parameter system without 
accidentally adding excessive cncrgy to any of the neglected modes. ‘l’hc 
analysis presented in the previous sections provides at least a mathematical 
solution for this problem. Let us suppose that we wish to stop vibration in 
the first p + 1 modes in a time interval of length T, T 2 27rD. To do so 
we need only to solve a moment problem (2.31)-(2.34) wherein ck = dk = 0, 
k > p. The solutions, in terms of a biorthogonal set {pk(t), qk(t)} for the func- 
tions sin Q, cos w,t (or t, 1, sin w,t, cos wkt, as the case may be) is just 

h(f) = f (ckPk(t) f d/d% (5.1) 
k’-O 
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The corresponding control functionf(t), given by (2.28), will indeed stop all 
motion in the first p modes, as desired. As for the other modes, it is imme- 
diately obvious from (2.20) and (2.21) that their state at the end of the time 
interval will be the same as if no control at all (i.c.,f(t) = 0) had been applied 
during the interval. Thus, if this procedure is used over successive intervals, 
of length T 3 2nD in order to counteract the effects of continuing disturb- 
ances, the controls themselves will have no cumulative effect on the higher 
order modes, i.e., h > p. 

If the functionsP,(t), qk(t) of the biorthogonal set have once been obtained 
for K < p, the calculation of the control function is completely trivial. 
Compare (2.24)-(2.27) with (2.31)-(2.34). We hope to devote a later paper 
to the question of numerical approximation of the functions p&t) and qK(t). 

Thus far in this paper we have dealt exclusively with the Eq. (1.1) which 
describes the motion of a nonuniform string. The method has much wider 
application, however. As an example, consider the simple beam equation 
which, after suitable normalization, is 

The eigenvalues h, , h, ,... for 

tg - A#) = 0 

(5.2) 

(5.3) 

are such that wk = (X,)“* satisfies 

w,=(n+q)~+O(l), (5.4) 

where q is a rational number which depends upon the boundary conditions 
imposed. In the case where one end of the beam is clamped while the other 
end of the beam is free, q = 4 and a unique control function f(t) exists if 
T = 2. No control exists if T < 2 and the control exists but is not unique 
if T > 2. This should be compared with case (ii) in Theorem 3. If both ends 
are free we have two zero eigenvalues wa = wi = 0 and thereafter (5.4) is 
obeyed with q = - 4 . As a result one can stop all vibration in time T = 2 
and bring either, but not both, of the modes corresponding to the eigenfunc- 
tions +s(x) = 1, &(X) = x t o any state desired. Comparable results obtain 
for other boundary conditions. Naturally, appropriate assumptions on g(x) 
and the smoothness of the initial conditions are necessary. 

Indeed, the methods presented here should find application in all vibration 
problems involving one-dimensional continua, for in all such cases the wk 
will possess a finite positive density. One can expect difficulties to arise from 
multiple eigenvalues and failure to satisfy an asymptotic gap condition. 
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For higher dimensional continua, such as membranes, plates, cubes of 
elastic material, etc., the density of the wk is always infinite and controllability 
in our sense, is never possible in finite time. It is interesting to ask what 

happens for T =: CO, however. 
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