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0. INTRODUCTION 

LET A4 be a compact complex manifold of complex dimension n, with real Chern classes 

Cl, . . . ) c,. The Riemann-Roth theorem provides a number of relations between the 
Hodge numbers and the Chem numbers of M. Incorporated into these relations is the 
equality between the evaluation of the top Chern class c, and the Euler characteristic, given 

that the latter equals x( - l), where x(t) = Cz=, XptP and xp = x1=,( - 1)4hP*q. In Section 3, 
we show more generally that for any k > 0, the Taylor coefficient I”~‘( - 1)/(2k)! is 
expressible as a combination of Chern numbers in which the classes Ci with 2k < i 6 n - 2k 

have been filtered out. In particular, the class tic,_ 1 may be expressed in terms of x( - 1) 
and x”( - 1). Such a formula was used in [25] to prove that the moduli space of stable rank 
2 vector bundles (with fixed determinant of degree 1) over a Riemann surface of genus at 
least 3 has c,- i = 0. 

The present paper arose in an attempt to understand what can be said in higher 
dimensions on a compact Kahler manifold M with trivial canonical bundle rc. In this case 
c1 = 0 and we obtain a non-trivial linear constraint on the Hodge numbers. By Yau’s 
theorem, M admits a Kahler metric with zero Ricci tensor, and each non-flat factor in its 
universal covering is a Riemannian manifold with holonomy equal to SU(n) or Sp(m). 
A hyper-Kihler manifold is one with holonomy Q(m), or a subgroup thereof; it has 
complex dimension 2m, and its Hodge numbers are “invariant by mirror symmetry” in the 
sense that they satisfy hpaq = h2m-P*q (cf. [ 13,291). We show that this leads to a constraint on 
the Betti numbers which can be written 

2 F (- 1)‘(3j2 - m)bz,-j = mb2,; 
j=l 

(0.1) 

such a formula was first proved in [28] by modifying methods from [22]. An amusing 
consequence is that the middle Betti number b 2m of a compact hyper-Kahler manifold must 
be even unless its real dimension is a multiple of 32. The above results were originally found 
with the help of Mathematics, and have a computational nature to the extent that they 
clarify in higher dimensions facts which are well understood in complex dimension four and 

less. 
Two families of compact irreducible hyper-Klhler manifolds were described explicitly 

by Beauville in [3]. A member of the first family is the Hilbert scheme Ktml of finite 
subschemes of length m 3 2 on a K3 surface K, and is a natural resolution of the m-fold 
symmetric product of K. A member of the second family is a real codimension 4 factor, 
denoted K, _ 1, in the de Rham decomposition of T [*] where T = C2/h is a torus and m 2 3. 
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A general formula for the Betti numbers of the Hilbert scheme S[“‘l for an algebraic surface 
S was discovered by Gdttsche [14], and brings our results “to life”. In fact, we consider the 
rational expression 

bU( - 1) 
&--- 

ld2 

26(-l) 8 
(0.2) 

constructed from the Poincare polynomial b(t) of a manifold M of even real dimension d. 

Elementary identities in Section 2 show that & is additive with respect to products of 
manifolds, but more significantly we deduce from [14] that the “naive” equation 
&(St”‘]) = m&(S) holds for any complex surface S. 

The last result implies immediately that if K is a K3 surface then the Betti numbers of 
K[“‘] satisfy the hyper-Kahler constraint. The case of Tt”] is more complicated as (0.1) is 
disguised by cohomological reducibility; this leads us in Section 6 to analyse a variant of the 

quantity & associated to T [m1. Using a description of the cohomology of these “higher- 

order Kummer varieties” from [ 153, we show that the constraint (0.1) nevertheless plays an 
important role in the theory. Replacing b(t) by the Hodge polynomial in (0.2) allows & to 
be decomposed into “types” on a Kahler manifold, and the consequent theory is consistent 
with Hodge decompositions proved in [ 151. More generally, we expect the cohomology of 
various moduli spaces to provide future illustrations of our results. 

1. PRELIMINARIES 

Throughout this section, A4 denotes a compact Klhler manifold of complex dimension n. 
The Hodge number hpsq denotes the dimension of the corresponding Dolbeault cohomology 
space H pvq, and the well-known symmetries 

hp.4 = /i’-p,n-q = hq.P, 0 < P, 4 < It (1.1) 

play an important role in the sequel. The integer 

xp = i ( - l)qhP*q 
q=o 

may be regarded as the index of an appropriate Dolbeault complex, and 

pi0 ( - l)pxp = p E. ( - l)p+qhp,q = z ( - l)kbk 
k=O 

is the Euler characteristic of M, which we denote simply by j(. The interchange of bk and xp 
in formulae will be a recurrent feature. (The lowered index in xp conflicts with [16] but 

should not cause confusion in combination with (2.7) below.) 
Let M be a compact Kahler manifold for which ci vanishes as a real cohomology class. 

Yau’s theorem [33] implies that M has a Ricci-flat Klhler metric. Furthermore, M has 
a finite covering by a Riemannian product 

TxX,x . . . xX,xY,x ... xy, (1.2) 

where T is a complex torus with a flat metric, Xi is an irreducible simply-connected Kahler 
manifold with dim, Xi = ni and holonomy equal to SU(ni), and 5 is an irreducible 
simply-connected KBhler manifold with dim, Yj = 2mj and holonomy equal to SP(mj). This 
decomposition theorem relies on the Cheeger-Gromoll theorem for metrics with non- 
positive Ricci tensor; see [3-5, 211. 
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A Riemannian manifold (Y, g) with dim,, Y = 2m and holonomy contained in Sp(m) is 

hyper-Kiihler. The latter means, by definition, that Y possesses a triple of Kahler structures 
(Ji, Oi, g), i = 1,2,3, compatible with the fixed metric g and satisfying JIJl = J3 = - JZJl. 
In particular, (Y, J1) is complex symplectic in the sense that it admits a closed 2-form 
r~ = o2 + iwJ of type (2,O) (and therefore holomorphic) relative to the complex structure Jr 
with q”’ nowhere zero. Conversely, a compact Kahler manifold admitting such a 2-form is 
hyper-Kahler. For q”’ trivialises K, and Yau’s theorem implies that Y admits a Ricci-flat 
Kahler metric; one can then show that the latter renders rl parallel and is therefore 
hyper-Klhler. A hyper-Kahler manifold Y possesses not only three, but a whole 2-sphere of 
complex structures; each of these has the form c,S_ 1 UiJi with CT= 1 (U~)~ = 1, and gives rise to 
its own complex symplectic structure. Although different complex structures in the family 
are not in general equivalent under diffeomorphism, they all have the same Hodge numbers. 
We refer the reader to [9, 191 for an account of hyper-Kahler geometry. 

Let M be a compact connected hyper-Klhler manifold of real dimension 4m. By 
studying the action of Sp(m) on spaces of harmonic forms, Wakakuwa [32] proved that 
b2k 2 (“:2) for k < m and that the “odd” Betti numbers b2k+ 1 of M are all divisible by 4. 
These results were refined by Fujiki using Hodge decompositions relative to a choice of 
complex structure. Indeed, wedging with the holomorphic symplectic form v defined above 
induces a mapping Hp.q -+ Hp+2,q which is injective for p + 1 < m and its (m - p)-fold 
iteration is an isomorphism. In this way, (1.1) is supplemented by the equations 

hp.4 = h2m-P,q, 0 < p, q < h. (1.3) 

An efficient proof of these results has been given by Verbitskii [31] by considering the 
action of the Lie algebra SO(~) on cohomology. Fujiki also showed in [13] that hpvq is even 
and hp.4 > hP+ l.q- 1 whenever p 2 q. Moreover, 

[k/21 

bk = c (j:")yk-2j, k d 2m 
j=O 

where 
Yk = bk - 3bke2 + 3bk_4 - bk_6 (1.4) 

(with bk = 0 if k < 0) are integers that are non-negative in the range k < m. 

Example. Two known irreducible hyper-Klhler %manifolds discussed in Sections 5 and 

6 have the indicated Hodge diamonds. 

K[21. 1 K2: 1 

0 0 0 0 

1 21 1 1 5 1 

0 0 0 0 0 4 4 0 

1 21 232 21 1 1 5 96 5 1 

0 0 0 0 0 4 4 0 

1 21 1 1 5 1 

0 0 0 0 

1 1 

The full 8-fold symmetry of the Hodge diamond of a hyper-KPhler manifold is only visible 
when m 3 3 or (if the odd Betti numbers are zero) when m > 4. 
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2. OPERATIONS ON POINCARE POLYNOMIALS 

Let M be a compact oriented smooth manifold of euen real dimension d, and let 

b(t) = i bktk 
k=O 

denote its Poincare polynomial. In this section we shall investigate the expansion of b(t) 
aboutt= -1. 

LEMMA 2.1. Let 0 < k Q d/2 - 1. Then bczk+l)( - 1) is completely determined by 

{b”“( - 1): 0 < i < k}. 

Proof: Poincare duality implies that b(t-‘) = tmdb(t). Replacing t by - 1 + t and 
recalling that d is even, we obtain 

b( - 1 -S) = (1 - t)-db( - 1 + t) 

where S = Cz<i t’. For the purpose of the proof, we define 

bj +b”‘( - 1) 

so that b( - 1 + t) = Cycohjt’. Then 

jj,-@ + jj2s2-&S3 + . . . = (1 + dt + (d;‘)t2 + . . .)(Eo +&t + &t2 + . . ). 

Comparing coefficients of tj, we obtain 

j-l 

- C (- i)i(j;l)bi+l = 

i=O 

i$o(de~+i)bj_i* 

Rearranging the last equation when j = 2k + 1 is odd gives 

- 25 2k+l = iEl ((- lJi(‘ikk) +  (d-!‘i))E2k+l-i + (!!:?!)EO 

and the result follows by induction. 

(2.1) 

Q.E.D. 

Suppose now that the Euler characteristic x = b( - 1) is non-zero. In order to obtain 
quantities which are additive with respect to products we set 

tk 
> 

= ,;, bktk (2.2) 
, 

where the coefficients &. are evaluated by means of the expansion log(1 + x) = 

- & 3 I( - x)‘/j* F rom the multiplicative property of b(t), this definition ensures the 
following. 

PROPOSITION 2.2. +k(M x N) = c$~(M) + $k(N). 

One of the aims of this paper is to demonstrate that geometrical significance can be 
attached to d2 and variants of it defined below in Klhler case (in the article [28] the sym- 
bol 4 denotes what is here 842). The equations that result from (2.1) by setting k = 0 and 
k = 1 are 

b’( - 1) = -$db( - 1) 

b”‘(-l)= -$(d-2)b”(-1)+3(d,)b(-1) (2.3) 
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and we may deduce Eqs (0.2) and 

& = b”“( - 1) 
24b( - 1) 

+ db”( - 1) 

2b( - 1) 
+ &dZ(d2 - 12d + 8). 

On the other hand, ~$i = - id and & = 42 + &d, in accordance with Lemma 2.1. In the 
sequel we shall concentrate on c$~, and in practice it is not necessary to exclude the case 
x = 0 provided we interpret the combination 42x to mean &(4b”( - 1) - d’~). 

On a Kahler manifold of real dimension d = 2n, the Poincare polynomial is refined by 
the Hodge polynomial 

h(s, t) = 2 hP.qsPtq (2.4) 
P.4’0 

which is symmetric in s, t, and b(t) = h(t, t). This leads to a decomposition of &, and we 
shall describe the situation when k = 2. Firstly, 

b”( - 1) = 2h,( - 1, - 1) + 2h,,( - 1, - l), 

since h,,( - 1, - 1) = h,,( - 1, - 1). In analogy to the definition of c$~, we set 

42,0 
1 

= -k( - 
2x 

1, - 1) - iin’, qbl,l 
1 

= -/I,,( - 1, - l)-$n2. 
X 

(2.5) 

These are the coefficients of s2 and st, respectively, that appear in (2.2) when b(t) is replaced 

by h(s, t), and 

42 = 242,o + 41,1. (2.6) 

The quantity &, o can also be derived from the well-known Xt-characteristic, which is the 
one-variable polynomial that we choose to denote by x(t) defined by 

x(t) = h(t, - 1) = f @. 
p=o 

(2.7) 

Indeed, as h,(t, - 1) = x”(t), it follows that 4 2,0 is the exact analogue of 42 formed 
by replacing b(t) by x(t). In the process, the proof of Lemma 2.1 remains valid and, for 
instance, the first equation in (2.3) translates to 

I’( - 1) = -+nx (2.8) 

(the alternating sign in the equation x”_~ = ( - 1)“~~ ensures the validity of (2.8) when n is 
odd). Since X(t) is multiplicative with respect to products of compact complex manifolds, 
use can be made of &o in non-Kahler situations. 

Given importance of the polynomial X(t), it is of value to control the term $i, 1 in (2.6), 
and we highlight two situations when this is possible. 

PROPOSITION 2.3. Let M be a compact complex n-dimensional manifold. 

(i) 1f hp*q = 0 whenever p # q then 41, 1 = 2+2,0 + in. 
(ii) Zf n = 2m is even and (1.3) holds then c#I~, 1 = 0. 

Proof (i) We have xp = ( - l)PhP*P = (- 1)Pb2p, and b(t) = x( - t2). Thus, 

k( - 1, - 1) = i p(p - l)bzp = i p2b2, + +b’( - 1) = h,,( - 1, - 1) - $nx 
p=o p=o 

the last equality from (2.3). The result follows from the definitions (2.5). 
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(ii) By assumption, 

~~~P4(-1)D”h”~‘=p~~~(n-q)(-l)p+‘~p~q. 

Making use of (2.8), we deduce that 

2h,,( - 1, - 1) = - nx’( - 1) = &?% 

and once again the result follows from (2.5). Q.E.D. 

The hypothesis of(i) is satisfied in particular when M is a Hermitian symmetric space or 
more generally a complex flag manifold CC/P. The proof of part (ii) also shows that if M, 

a are two Klhler manifolds of even complex dimension n whose Hodge numbers are 
related by the mirror symmetry hp.q = inmpyq then 41, 1 = - J1,l. For a hyper-Kghler 
manifold we may take M = A?, and combined with results from the next section (ii) will 
yield Theorem 4.1. 

3. RIEMANN-ROCH THEOREMS 

Let M be a compact complex manifold with holomorphic tangent bundle T and Chern 
classes ci, 1 d i < n. The Riemann-Roth theorem expresses the indices xp in terms of the 
Chern classes of M by means of the formula 

XP = s ch(l\PT*)td(T). (3.1) 
M 

It was first proved by Hirzebruch [16] for projective algebraic manifolds, and in the general 
case by Atiyah and Singer [ 11. We use the symbol f, to denote evaluation of a cohomology 
class on the fundamental cycle [M 1, so that j, annihilates Hk(M, R) for k < 2n and defines 
an isomorphism H2”(M, IR) %I& The results in this section are also valid when M is 
a compact almost complex manifold provided xp is interpreted as the index of an appropriate 
2-step elliptic complex. 

Equation (3.1) can be formally combined into the expression 

x(t) = (- 1)” i Xn_ptP = (- 1) 
p=o 

td(T). (3.2) 

We now define 

K,(t)= i K,,,t’+=(-1)“ch i (-l-t)PI\“-PT* td(T) (3.3) 
k=O p=O 

in order to write (3.2) in the following form: 

THEOREM 3.1. kxcL’( - 1) = (- l)k Kn,k. 

The definition of the series K(t) is similar to that of the ?,,-class in [18]. Like the latter, 
K(t) may be formulated along the lines of “unstable” multiplicative sequences. Indeed, let 

1 + ~ Ci = ir (1 + Xj) 
i=l j=l 
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be a formal factorisation of the total Chern class of T. Then ch(T) = CT= i eX’, and it follows 

that 

Hence 

(-1)nch i (-t)P/j\n-pT* = f!(t-ebxi). 
p=o > 

K,(t) = fj (t + 1 - eexi) + = 
i=l 

i4 (xi + tt4) (3.4) 

where 

Xi tdi = ~ = B2j 2j 
1 _ e-"i 

1 + +Xi + C YXi 
j> 1 f2tl)! 

(3.5) 

and Bzj are the Bernoulli numbers. 
Using (3.4), we see that K,, o must equal the top Chem class c,, whose integral gives the 

Euler characteristic. Our applications of Theorem 3.1 depend upon a generalisation of this 
fact, which is proved next without the use of formal factorisation. 

PROPOSITION 3.2. Let 0 < k < n. Then K,,k - c,-~ belongs to the ideal in H*(M, R) 
generated by the Chern classes ci with i > n - k. 

Proof Using the exterior power operation of K-theory we may write 

k(T*-t)= i (-t)‘/j”-‘T* 
i=O 

where if necessary the symbol t can be thought of as a trivial line bundle. Furthermore, 

(-I)*;$(A”(T*-t))= ;k(:)(-t)‘-k/j-iT* 

n-k 

= j;. (k;j)( - t)jk-j-k~* 

= j$o (- l)‘/j”-j-kT* @ S’((k + 1)t) 

= /j”-k(T* -(k + 1)t). 

It now follows from (3.3) that 

K,,k = (- l)“-“ch A”-“(IF,,-,- I) td(w,*_,) 
> 

(3.6) 

where W,_, denotes the virtual bundle T* -k of virtual dimension n-k. When 

c.-k+l, . * * 9 c, all vanish, the characteristic classes of w,_k are identical to those of 
a cotangent bundle in complex rank n - k to the extent that replacing n by n - k, T by 
w;_,, and t by 0 in (3.3) must yield K,-k,o = C.-k. But the expression that results from 
these substitutions in (3.3) is identical to (3.6). Thus, Kk - c,_k belongs to the required 
ideal. Q.E.D. 

Combining Lemma 2.1, Theorem 3.1 and Proposition 3.2, we have the following. 
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COROLLARY 3.3. Let 2 < k < n. The integer 

j$ckv - 1) = i ( - l)“(Dxp 
p=k 

can be expressed as a linear combination of Chern numbers each of which involves at least one 

ci with i > n - 2[k/2]. 

It follows that the term cl does not occur in the expression for x’~‘( - 1) if 2[k/2] < n. In 
particular, if n is odd then c; does not occur in the Todd genus x0 = ( - l)“x’“)( - 1)/n!, even 
though the latter is known to be divisible by cl. 

The following special case of Theorem 3.1 is crucial for the sequel; a version of it may 
also be found at the end of the paper [25]. 

COROLLARY 3.4. Let M be a compact complex manifold M of complex dimension n. Then 

s c~c,_ 1 = i ( - l)p(6p2 - in(3n + 1)) xp. 
M p=o 

Proof Since the Chern classes ck are the elementary symmetric polynomials in 

Xl, * 1.9 x,, we obtain from (3.4) that K,, 1 = c,_ 1 + inc. and, more to the point, 

K,,2 =c.-~ +&n-l)c,-, +&[~c~c,-~ +n(3n-5)cJ. (3.7) 

Setting k = 2 in Theorem 3.1, 

s clc,_ 1 = 6x”( - 1) - $(3n - 5) x( - 1) (3.8) 
M 

and the corollary follows from the equation 

x”( - 1) = -fnx( - 1) + i (- 1)pp2xp 
p=l 

that results from (2.8). Q.E.D. 

In terms of (2.5), the right-hand side of (3.8) may be expressed as (12&, + $n)x. 

COROLLARY 3.5. Let M be a compact complex n-dimensional manifold with c1 = 0. Then 
42,0 = - An, or else x”( - 1) = 0 = x. 

Now suppose that x = 1, c, is non-zero. If we rewrite Corollary 3.4 in the form 

L clcn-l 16 c, = 1242.0 + 3n (3.9) 

the left-hand quotient of Chern numbers is readily seen to share with $2,0 the property of 
being additive with respect to products of manifolds. Of course, with hindsight, we could 
have adjusted our definitions so as to make 4 2,0 equal to the left-hand side, although this 
would have obscured the role of the Index Theorem. 

We may write Kn,k = Kn_l,k_l + K;,k, where Kb,k is a cohomology class in pure 
dimension 2n and can therefore replace K,, k in Theorem 3.1. Further to (3.7), more involved 
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calculations establish that 

K.3 = & (n - 2) [2c,c,- 1 + n(n - 3)cnl 

K.4 = & [ - cn-,(c? - 3cic2 + 3c3) + c,-z(c: + 3c2) 
. . 

+ +(15n’ - 85n + 108)c,c,_, + +n(15n3 - 150n’ + 485n - 502)cJ. 

The relatively simple form of K,, 3 is predicted by Lemma 2.1; by contrast K& involves all 
possible Chern numbers permitted by Corollary 3.3. Observe that the cofactor of c,_~ in 
K,,4 is a multiple of s3, where as usual sk = I;= 1 xf equals k! times the term of dimension 2k 
in ch(T). This leads to the following result, which was proved by Hirzebruch [17] using 
Steenrod powers prior to the Riemann-Roth theorem. 

COROLLARY 3.6. Let q be an odd prime number. On a compact almost complex manifold of 

real dimension 2n with q < n + 1, 

c.-q+2sq-2 -c,-q+3%q-3 + ’ ’ ’ + c,_lq - nc, z Omodq. 

Proof: Let k 3 1. In the notation of Section 1, 

c,-ksk = 1 x:+1&+2xk+3 . . . x, + ~xfxk+$k+2 . . . x, (3.10) 

where the sums are over orbits of the symmetric group 6, (except that the second sum 
becomes nx1x2 . . x, = nc, when k = 1). Theorem 3.1 tells us that q!K,,,_ 1 is an integral 
class which is zero modulo q. Next, von Staudt’s theorem on the divisibility of Bernoulli 
numbers [6] implies that q! tdi is well defined and congruent to - x4-r modulo q provided 
we ignore powers of xi greater than q in (3.5). We may now deduce from (3.4) 
that C XT-’ x4x4+ i . . . x, = 0 mod q, and the result follows from repeated use of (3.10). 

Example. 

M is ample 
v,-, = D1 I-I 

der” V0 c VI 

Q.E.D. 

Suppose that the anti-canonical bundle rc-l of a compact Klhler manifold 
and that there exist divisors D1, . . . , D, associated to rc-l such that 
. . . n Dk is a smooth complete intersection for 1 G k < n, providing a “lad- 
c . . . c V,_ 1 c M. Repeated use of adjunction formulae yields 

clcn-l = i X(K-k) 

k=l 

where x( Vn_k) is the Euler characteristic of v,_,. When n = 2, x(V,) = 0 and the right-hand 
side is just the self-intersection number of an anti-canonical divisor. 

For M = CP”, the individual summands I( v,,...,) may be evaluated explicitly by means 
of the formula 

that is deduced from [16, Appendix 11. In particular, the Euler characteristic of a smooth 
hypersurface V, _ 1 of degree n + 1 in C P” (which has c1 = 0) equals 

x(Vn- 1) = 

n(2 + n-(-n)“) 

n+l 

and is always even, but divisible by 3 if and only if n - 1 is not. 
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4. APPLICATIONS TO HYPER-KAHLER MANIFOLDS 

Recall that the Hodge numbers of a hyper-Kihler manifold are invariant by mirror 
symmetry, by which we mean that they satisfy (1.3). The results of this section are based on 
the following counterpart of Corollary 3.4. 

THEOREM 4.1. Let M be a compact Kiihler manifold of real dimension d = 2n = 4m 

divisible by 4 whose Hodge numbers are invariant by mirror symmetry. Then 

I ClC,-l = 3 i (- 1)‘(6j2-id(3d + l))bj. 
M j=O 

Proof Inspecting Corollary 3.4 and its proof, we see that the right-hand side of 
the equation to be proved would result from the right-hand side of (3.8) by replacing n by d, 

and x(t) by b(t). From (0.2), it therefore equals :(1242 + 3d)X. (Strictly speaking we are 
assuming that x # 0, but in general &;U is well defined and the proof extends.) On the other 
hand, by (2.6) and Propositon 2.3(ii), & = 2$ 2,0, and the result is now a restatement of 

Corollary 3.4. Q.E.D. 

A Kghler manifold of complex dimension n odd whose Hodge numbers satisfy (1.3) 
obviously has zero Euler characteristic. The above result therefore allows one to obtain 
a more sophisticated relation on the Betti numbers when n is even and (as in the 
hyper-Ktihler case) cl = 0. The resulting equation can be rearranged into the equivalent 
form (O.l), which is analogous to the constraint [22, Theorem 0.3(iii)] for a compact 
quaternion-Kghler 4m-manifold with positive scalar curvature. There is an important 
difference between the two theories though that accounts for the relative elegance of (0.1): 
the hyper-Klhler condition is preserved under products whereas the quaternion-Klhler 
one is not. 

We next define 

0 = 3b”( - 1) + m(5 - 12m)X = (6$2 + 5m)X (4.1) 

this equals the right-hand side of the equation in Theorem 4.1 and, in analogy with (3.9), 
may be viewed as a “pseudo characteristic number”. 

COROLLARY 4.2. A compact hyper-Kiihler 4m-manvold has @ = 0, and either C#I~ = - dm 
or else b”( - 1) = 0 = x. 

The possibility that b”( - 1) = 0 = x is realised when the flat factor in the de Rham 
decomposition (1.2) associated to M has non-zero dimension. For in this case 

M = (TX M’)/T (4.2) 

where T E (S’)4 is a 4-torus and r is a finite group whose elements act trivially on the 
cohomology of T. Therefore, the Poincart polynomial b(t) is divisible by (1 + t)4 and 
b”( - 1) = 0 = b( - 1). In Section 6 we shall encounter a situation in which the group r acts 
non-trivially on M’. 

The first few relations corresponding to the equation @ = 0 are computed most readily 
from (0.1); they are listed below with the assumption b. = 1. The case m = 2 was used in 
[27] to show that any compact irreducible hyper-Kiihler 8-manifold has b3 + b4 2 76. 
Observe that b5 does not feature in 12 dimensions. 
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m=l 4bl + b2 = 22 
2 25bI + b3 + b, = 46 + lob2 
3 48bI + 16b3 + bs = 70 + 30b2 + 6b4 
4 143b, + 71b3 + 23b5 + 2bs = 188 + 104bz + 44b4 + 8b6 + b7 
5 476b1 + 284b3 + 140bS + 44b7 + 5bIo = 590 + 374b2 + 206b4 + 86b6 + 14bs +4bg 

The next result extends the fact that a K3 surface has Euler characteristic equal to 24. It 
is an immediate consequence of Theorem 4.1, and the previously-known result that the odd 
Betti numbers of a hyper-Kbhler manifold are divisible by 4 (see the end of Section 1). 

COROLLARY 4.3. Let M be a compact hyper-Kiihler manifold with real dimension 4m and 
Euler characteristic 1. Then 24j(m~). 

In particular, the Euler characteristic x, the middle Betti number b2,,, and the signature 
T of M must all be even unless 8lm. 

Example. Two families of compact hyper-Kahler 4m-manifolds Kt”] and K, were 
defined by Beauville [3] and are discussed in Sections 5 and 6, respectively. Expressions 

given below for their Euler characteristics then provide the following factorisations to 
illustrate degrees of sharpness of Corollary 4.3. 

m 2 3 4 5 6 7 8 

X(K Cm]) 2234 2752 21335219 273417 23511711579 2g3411’13 3452712129 

%(Knl) 2233 267 213153 2534 2373 2’3l5 3(jl3 

Note that KC’] and KS (and therefore products of these manifolds) have x odd. Formulae in 
[14,15] also imply that b16(Kfs1) = 18669447, T(K[‘]) = 3 355 287, and b16(K8) = 67049, 
T(K~) = 6813. In the sequel we shall comment on the parity of KLsrl and Ksr for 12 2. 

For curiosity value, we state without proof a version of Theorem 4.1 in terms of the 
numbers (1.4). 

COROLLARY 4.4. On a compact hyper-Kc;iihler manifold, 

j$I jo’ + 1)(2j + 4@j2 + 12j- 3 - WYzm-2j+~ 

= jEo fj + l)(j + 2)(2j + 3)(6j2 + 18j- 5m)y,,,-,j. 

Given that y0 = b0 appears on the right-hand side with coefficient 

m(m + l)(m + 2)(2m + 3)(6m + 13) 

it is impossible for the yi, i 2 1, to be all zero. This is itself a result undetected by the 
inequalities in Section 1. 

5. SYMMETRIC PRODUCTS AND HILBERT SCHEMES 

Let S be a compact complex algebraic surface, and let Scm) denote its m-fold symmetric 
product. An element of SC”‘) may be regarded as a O-cycle 

X = f i*(pi,, + . * ’ + Pi,rri) (5.1) 
i=l 
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formed from Ial = CyC1 Oli distinct points pi,j of S, with I:=1 icci = m. The O-cycles (5.1) 
corresponding to a fixed partition a = (cl1 , . . . , a,,,) of m form a stratum Sim) of SCm) which 
can be identified with a smooth subspace of the product 

SW g s(w) x . . x S(h) (5.2) 

There exists a canonical resolution E : St”‘] + SCm), where Stml is the Hilbert scheme of closed 
O-dimensional subschemes of length m on S, which is a smooth complex 2mdimensional 
manifold. The fibre over x E SLm) has the form 

&-i(X)~(V1)~1X(V2)a2X . . . x(VJm (5.3) 

where vi = Hilb’(@[x, y]) is the scheme that parametrises ideals in C[x, y] of colength i, 
and is an irreducible variety of complex dimension i - 1. A survey of results on these 
schemes can be found in [ll, 8, lo] and references therein. 

The relevance of the above construction is explained by the following theorem of 

Beauville [3] which is also a consequence of more general results of Mukai [24]: if S has 
a complex symplectic structure then so does S tml for all m 3 2. In particular, using [30], if 

K is any K3 surface then K Lrnl admits a hyper-Kahler metric, which must be irreducible 
since Kc”‘] is simply-connected. The space Krzl was first singled out by Fujiki [12] as 
a counterexample to a statement by Bogomolov, and is a Z,-quotient of the manifold 
obtained by blowing up the diagonal in K x K. If T is a torus then Ttml is not locally 
irreducible, but the non-trivial factor in the de Rham decomposition of the universal 

covering of T[“] is an irreducible hyper-Klhler manifold of dimension 4m - 4, denoted in 
[3] by K,_ 1 (see Section 6). 

Using intersection cohomology, Giittsche and Soergel [15] have expressed the Betti 
numbers of St”‘] in terms of those of (5.2) by means of the following theorem: 

b(pl; t) = 1 b(p); t)t2m-21al. (5.4) 
d 

The sum is over all partitions of m with notation as above. The exponent 2m - 21x1 is the 
dimension of the fibre (5.3), and if we replace S by a point we obtain the Poincare 
polynomial C, t2m-21ul of V,. The latter was previously determined by Ellingsrud and 
Stromme [lo], who also tabulated the Betti numbers of (CP2)tm1. 

The Betti numbers of SCmn) can be computed in a more elementary way. A general 
formula was found by Macdonald [23]; if b,(S) = 1, b,(S) = a and b2(S) = b, it takes the 
form 

1 b(P); t)x”’ = 
(1 + tx)a(l + PX) 

m>O (1 - x)(1 - ?X)b(l - PX)’ (5.5) 

With this notation, (5.4) leads to the more explicit formula 

f b(S[“l; - t)x”’ = exp 
m xj(l _ ,tj + br2j _ &j + t4j) 
C 

j(1 - t2jxj) (5.6) 
m=O j=l 

that was first proved by Giittsche for projective surfaces using the Weil conjectures. The 
following consequences of (5.4) and (5.6) are worth noting. If a = 0 then the odd Betti 
numbers of Stml are all zero. In general, bl(Srml) = a and b2(S[“l) = ia(a - 1) + b + 1 for all 
m 2 2 [3]. Moreover, b3(S121) = a(b + 2), and 

b3(Scm1) = (;) + a(b + 3), m > 3. (5.7) 
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For all S, the Betti numbers of St”‘] for any S stabilise according to the rule that b,,,(Stm+kl) is 
independent of k > 0. 

Example. Applying (5.6) to a K3 surface K with b(K; t) = 1 + 22t2 + t4 gives 

It follows 

#=i(l - 

b(Kt2]; t) = 1 + 23t2 + 276t4 + . . . 

b(Kt3’; t) = 1 + 23t2 + 299t4 + 2554P + . . . 

b(Kr4’; t) = 1 + 23t2 + 300t4 + 2852P + 19298t’ + . . . 

b(K[“; t) = 1 + 23t2 + 300t4 + 2875P + 22127t’ + 125604t’O + . . . . 

from (5.4) that the Euler characteristic x(K[“]) equals the coefficient of t”’ in 

ri)-24P which can be expressed as t/A, where A is the standard cusp form [18]. It __ 
is easy to check that (‘“,‘“) = x(K’“‘) is odd if and only if m = 81, where 1 is congruent to 
0 or 1 modulo 4. The parity of x(K[*‘]) is then determined by the number of partitions of I of 
the form I = 1 iai with tli = 0, 1 mod4. In particular, x(K[*“) is odd if 
1=0,1,2,4,6,7,9,11, . . . . 

If S is a complex surface with x = x(S) zero then x(S[~]) = 0 for all m 2 2; this applies in 
particular to a complex torus or a Kodaira surface, both of which admit complex symplectic 
structures. When x(S) # 0, it makes sense to consider the invariant (0.2), and we first record 
a formula easily deduced from (5.5): 

PROPOSITION 5.1. #2(S(m)) = - m (a - 4)(x + m) 

> x(x+1) . 

When m = 1 the right-hand side reduces to the definition of 42(S), and x + 1 can only 
vanish if S is the blow-up of a ruled surface [2]. Our next results shows, by contrast, that St”] 
behaves like the m-fold Cartesian product relative to +2. It implies that the Betti numbers of 
the Hilbert scheme of points on a K3 surface satisfy the constraint (O.l), but is by no means 
restricted to the case in which S is hyper-Kahler. 

THEOREM 5.2. Let S be a compact complex surface. Then I#J~(S~~]) = mq52(S), so that f 
b,(S) = 1 and b,(S) = a, 

c#J~(S[~I) = - m 1 + ( !$ ). 

Proof: We derive this as a consequence of (5.6). A prime will denote differentiation with 
respect to t, and unless otherwise indicated sums are over the range j > 1. As is customary, 
we set g(t) = b(S; - t), so that x = g(1). -Let 

u(x, t) = c at’) 
j(l _ t2jXi)’ 

Then 

- $, b’(S [ml; - t)xm = exp(U(x, t))U’(x, t) 
. 

=exP(U(x~ t)) ( C 
xitj- 1 gj(tj) x.Cit2j- 

t2jXj _ t2jxj)2 
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Taking the second derivative, evaluating at t = 1 and using the equations g’(1) = 2~ and 
b;‘(l) = 2(4,(S) + 2)~ gives 

1 b”(P’; - l)xrn = 2XE(X)F(X) (5.8) 
m>l 

where E(x) = exp(U(x, l)), and 

Now, firstly, 

The second equality of (5.9) follows from an expansion of the respective denominators, 
namely, 

X j 

j;l (l - X’)’ = j,g 1 kx” = ,F1 $. , 
(5.10) 

Secondly, 

the second equality following from similar tricks to (5.10). From the expression above for 
F(x), we see that 

2XE(X)F(X) = 2&(S)x -& E(x) + 4x -$ x-&x) 
( ) 

. 

Now the coefficient of xm in the right-hand side equals 2m&(S) + 4mZ times the Euler 
characteristic b(St”]; - 1). Thus, from (5.8) 

&(stml) = 
b”(S[*l; - 1) 

2&s”‘; - 1) 
- 2m2 = m42(S). 

The identities inherent in the above proof are also consistent with the formula 

f h(S[“‘; - s, - t)xm = exp 
OD x’h(S; - d, - t’) 
1 

m=O j=l j(1 - sjtjxj) > 

Q.E.D 

(5.11) 

for the Hodge polynomial (2.4) of St”], which was conjectured in [14] and proved in [15]. 
Indeed, using (5.11) and interchanging the roles of b(t) and x(t) in the proof of Theorem 5.2 
(paying attention to the halving of polynomial degrees) shows that 

42,0(srm1) = m42,0(9 

By (3.9), this is equivalent to asserting that 

fp” Cl (S9C2*- 1 (s[ml) = m ss Cl bv2 
XWrnl) x(S) . 
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For a surface S of general type, the Bogomolov-Miyaoka-Yau inequality [2] says that the 

right-hand side is no greater than 3m. 

Example. When S = K is a K3 surface, the last equation is consistent with the vanishing 
of c1 for Stml. The Hodge numbers of Kc’] are completely determined by its Betti numbers 
and the identities (l.l), (1.3), and provide the first diamond’s entries in Section 1. The 
equation b, = 276 may be deduced from Corollary 4.2 once one knows that bl = 0 = b3 
and b2 = 23. As for Kr3], (5.11) implies that 

hl.1 - 21 = h&l - 3 h2t2 = 253 = h4*2, h3,’ = 22 h3g3 = 2004. 

Suppose that S is a hyper-Kahler 4-manifold. The moduli space of anti-self-dual 

connections over S admits a complex symplectic structure, and in various situations this is 
known to extend to an appropriate compactification [24,20]. For example, suppose that 
K is a K3 surface with an ample divisor of degree 2m, and let J?‘,,, denote the corresponding 
moduli space of stable rank 2 locally-free sheaves with cl = 0 and c2 = 2m + 3. Then &,,, 
admits a smooth compactification which is both birational to Kt4m+31, and complex 
symplectic [26]. Analogous results hold for moduli spaces over tori, although (as in the next 
section) one needs to factor out various symmetries to arrive at an irreducible space. The 
resulting theory is explained in [7] with reference to a moduli space of stable bundles over 
the product T of a pair of elliptic curves, represented by an open set of T x fL21, where f is 
the dual of T. These constructions promise to provide a source of new diffeomorphism 
classes of compact hyper-Kahler manifolds in higher dimensions. In view of Theorem 5.2, 
one might speculate that the constraint (0.1) is validated by some general principle for these 
moduli spaces. 

6. CALCULATIONS FOR THE TORUS 

This section specialises the above discussions to the case in which S = T is a complex 
2-dimensional torus. It follows from (5.5) and (5.4) or (5.6) that the Poincare polynomials of 
both Ttm) and T”“] are divisible by (1 + t)4 for any integer m > 1. Accordingly, we write 

b(T’“‘; t) = (1 + Q4b(Tcm); t), b( T[“]; t) = (1 + c)~~(T~~]; t). (6.1) 

The second factorisation reflects the fact that we are in the situation of (4.2) where 
M = T[“], r z (Z,)” and M’ = K,_ 1 is a simply-connected irreducible hyper-Ktihler 
manifold of real dimension 4m - 4. Indeed, Beauville defines K,_ 1 as 0-l (0), where 
d: T[“‘] + T factors through the “centre of mass” map that interprets (5.1) as a point of the 
abelian group T. The natural action of T on T[“] gives rise to a commutative diagram 

TxK,_, --t Tcml 

1 n, lo 
T +T. 

in which rcl is the projection and the horizontal maps are coverings associated to r, which 
may now be defined to be the subgroup of T of m-division points. 

It follows that f$Trml; t) is equal to the Poincare polynomial of the singular space 
K, _ l/lY. As K,_ 1 is simply-connected we have bl (K,_ 1) = 0 = 6, (T’“]), and from the line 
preceding (5.7) we deduce that 

ii2(Ttm1) = +b,(T)(b,(T) - 1) + 1 = 7. 
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When m = 2, K1 is identified with the Kummer surface associated to T, and the above 
diagram resolves the mapping T x (T/H,) + T@) which sends (s, f t) to the O-cycle consist- 

ing of the points s + t and s - t of T. Since b2(K1) = 22, one has b,(Trzl) = b,(K,) - 15, 
though b2(Km_r) = b2(Ttm1) = 7 for all m > 3 [3]. 

More generally, we may apply the formula 

&(T[“]) = dim Hk(K,_,, R)r = & c tr(g*IHk(K,-l, W)). 
H- 

(6.2) 

As a simple application of this, we have the following. 

PROPOSITION 6.1. The hyper-Kiihler 8-manifold K2 has Poincark polynomial 

b(K2; t) = 1 + 7t2 + 8t3 + 108t4 + 8t5 + 7t6 + t’. 

Proof: The action of r on K2 = a-‘(O) c TL3] covers its action on &(K2) c Tt3). The 
induced action of r on Hk(K2, R) can be inferred by counting distinct homology classes in 
the fibres s-l (y(x)), where YE r and XEE(K~). Each non-trivial representation of I- on 
Hk(K2, R) must have dimension 34, and the trace of any non-identity element of r equals 
b,(K,) - 34Nk for some non-negative integer Nk. Therefore $(T131) = b,(K,) - 80Nk for 
k = 2,3,4, though from a remark above we already know that N2 = 0. 

Applying (0.1) to K2 gives 116 = g3(Tt3]) + h4(Tt3]) + 8O(N3 + N4), and we claim 

&TC3’; t) = 1 + 6t2 + 4t3 + 21t4 + 4t5 + 6t6 + t* 

E(Tf3]; t) = 1 + 7t2 + 8t3 + 28t4 + 8ts + 7t6 + ts. 

The first line follows from (5.5), and the second may be deduced either from (5.4) or from 
first principles (it would in fact suffice to prove (5.7)). We may conclude that N3 = 0 and 
N4 = 1 by observing that I- must preserve the Sp(2) decomposition of Hk(K2, R) which 
forces 41 N3, just as 4 1 b3(K2). Q.E.D. 

We shall now proceed to consider the higher-dimensional situation more systematically. 
Although x(T(“‘) vanishes and +,(T’“‘) is indeterminate, we are at liberty to consider the 

quantities 

i(T’““) = g(T’“‘; - 1) 

&(T’“‘) = 3g”(T’“‘; - 1) + (m - 1)(17 - 12m)&T’“); - 1) 

and analogous ones defined by replacing T cm) by T[“]. (Compared to (4.1), m has been 
replaced by m - 1 which is one quarter the degree of g(TCm’; t) or &T[“]; t).) Direct 

calculations from (5.5) yield the following. 

PROPOSITION 6 2 i(T@‘)) = m3 . . 3 @T(“)) = (m - l)m4. 

The next result is presented as a corollary of (5.4) and Proposition 6.2, although it may 
also be deduced from (5.6) by exploiting properties of Lambert series of the type that feature 
in (5.10). We shall use the following terminology. Each divisor d of m gives rise to a partition 
IX(~) of m with a( = d for i = m/d. Conversely, we shall call a partition a of m exact if ai is 
non-zero for only one value of i. 

PROPOSITION 6.3. i(T[“]) = c d3, 6(Tcm1) = c 

dim dim 
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Proof Further to the notation (5.2) and (6.1), for each partition a of m we write 
b(T(“‘; t) = (1 + t)4&T(or); t), so that (5.4) becomes 

~(p4; t) = C~(p; t)p-Wl. (6.3) 

Hence &(~t”‘]) = I=@‘,, where 

$) a = 3 d (&7-W. t)t2”-21al 
dt ’ 

)I,= _ i + (m - 1)(17 - 12m)&(T’“‘; - 1). 

Since b(Tcai); t) is divisible by (1 + t)4 whenever Cli 2 1, it follows that &T’“‘; t) has (1 + t)4 
as a factor and g,, = 0 unless c1 is exact. Consequently, we need only sum over the divisors 
d of m, replacing the superscript LX by a(d) or d. Then 

$b(Z+); t)t2m-2d)l,= _1 = b”(T(d); - 1) - 2(2m - 2d)g’(Ttd’; - 1) 

+ (2m - 2d)(2m - 2d - 1)8(Tcd’; - 1) 

= h”(T(d); - 1) + (4m2 - 4d2 - 10m + 10d)8(T(d); - 1) 

using (2.3) (in which the symbol d has a different meaning). Hence, 

6 =(d) = 38”(T’d’; - 1) + (30d - m - 12d2 - 17)g(Tcd’; - 1) 

= @Ttd’) + (d - m)h(Tcd’; - 1) 

= d5 - md3 

and the result follows. Q.E.D. 

The key point is that when building up the cohomology of Tt’“] from T’“‘, both i and 
6 are sensitive only to exact partitions of m. In particular, if m is a prime or the square of 
a prime then 6(7’tm1) = @,(m.‘) - m + 1. 

For each partition CL of m, the number of distinct elements in the orbit of F on the top 
homology class of the fibre (5.3) must equal g(cr)4 for some divisor g(a) of m. Referring to the 
proof of Proposition 6.1 and applying (6.2) to (6.3) one would therefore expect that 

b(K,_,; t) = c g(cr)%(T@“; t)tZm-2’=‘. (6.4) 
01 

In fact, Gottsche and Soergel [15] prove that (6.4) is valid with 

g(a) = gcd (i: ai # O}. 

On the other hand, given (6.4), Corollary 4.2 implies that 

0 = @(K,_1) = C g(a)*&,, = 1 
a dim 

(6.5) 

using notation from the previous proof. The correct solution g(a(d)) = m/d to (6.5) is 

justified by the fact that the connected components of &(I&,_ 1) n T$& are in bijective 
correspondence with the elements of T/T(d), where T(d) denotes the subgroup of size d4 
consisting of d-division points. Moreover, each component admits an action by a connected 
group extending I’(d), which therefore acts trivially on Hk(K,_ i, W). The easiest situation is 
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that in which m is prime, for then the action of r identifies the top homology classes in the 
m4 distinct fibres ~-l(rn-p) lying in K,_ 1, and 

b(K,_I; t) = b(T’“]; t) + (m” - l)t2m-2. 

Proposition 6.1 illustrated a particular case of this. 

Example. Further to Proposition 6.1, (6.4) implies that 

b(K,; t) = 1 + 7tZ + 8t3 + 51t4 + 56ts + 458t6 + . . . 

b(K,; t) = 1 + 7tZ + 8t3 + 36t4 + 64ts + 168t6 + 288t’ + 1046t’ + . * . 

b(K,; t) = 1 + 7t2 + 8t3 + 36t4 + 64ts + 191t6 + 344t’ + 915t* + 1312t9 + 3748t” + . . . 

Analogues of Propositions 6.2, 6.3 for K,_l are completed by the calculation 

x(K,,,_~) = 1 g(a(d))42(T(d’) = m3 c d 
dim dim 

that is a close companion of (6.5). Further to Corollary 4.3, the Euler characteristic of 
K,-I is odd if and only if m is the square of an odd integer which means that m - 1 = 81, 

where 1 = 0, 1, 3,6, 10, 15, . . . 
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Added in proof 
An earlier treatment of Corollaries 3.3 and 3.4 was given in the paper. 
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