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The complexity of finding local optima is an open problem for many neighborhood structures. 

We show how to derive close lower and upper bounds on the minimum number of function 

evaluations needed to find a local optimum in an arbitrary graph. When these bounding techni- 
ques are applied to the hypercube. the results give insights into the class PLS and the gap between 

the average and worst-case behavior of local search. 

1. Introduction 

Finding local optima is at the heart of most heuristic algorithms for dit’ficult cnm- 
binatorial optimization problems. Hence, the efficiency of these heuristics is heavily 
dependent upon the effectiveness of the local optimization procedures. However, 
the complexity of find’ng local optima remains an open problem for most neighbor- 
hood structures. A classical example of this anomaly occurs with the traveling sales- 
man protl~m. The “2-opt” neighborhood structure is very popular, but, as pointed 
out in [lo], the complexity of finding a “2-optimal” tour is not known. Further, 
the most widely used local optimization method, local improvement, has been 
shown in certain cases to have exponential worst-case behavior [l 11. 

in this paper we study the complexity of finding a local optimum of an arbitrary 
function, f, over an arbitrary neighborhood graph. As in [9,14] our computational 
model employs a (not necessarily compactly representable) oracle to compute the 
values of J We consider several simple structures-a path, a grid and a hypercube. 
The analysis of these structures is nontrivial and the results are often counter- 
intuitive. For example, we show that the problem of finding an entry in a square 
matrix that is minimum in its row and column requires, asymptotically, the examina- 
tion of between + and : of the matrix entries. Further, for a d-dimensional cube, 
at least 2”/2@ vertices must be examined. 

We find it interesting that the problem of determining the complexity of local 
optimization proves so rich even for such regular structures. Moreover, the analysis 
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here yields insight into the class PLS (polynomial time local search - the class of 
local optimization problems, roughly speaking, where the first two iterations of the 
local improvement algorithm are guaranteed to be polynomial time (see [lo])) and 
the relationship between worst and average case performance of local improvement 
algorithms. This wealth of problems arising from “simple” graphs leads us to study 
the general question of discrete local optimization in some detail. 

Our analysis uses various techniques. We show how to derive close lower and 
upper bounds on the minimum worst-case number of function evaluations needed 
to find a local optimum in a graph. The upper bounds arise from a general divide 
and conquer algorithm while the lower bounds result from an adversarial argument 
that uses a structure similar to a spanning tree. Determining each of these bounds 
is ultimately tied to computing the value of a separation game on the graph of 
neighbors. Unfortunately, we also prove that this value is NP-hard to compute 
exactly. We discuss different ways to get effective estimates of this value in certain 
cases. 

The paper is organized as follows: in Section 2 we derive the divide and conquer 
algorithm and the adversarial argument, using the path as a motivating example. 
Then we define the separation game. In Section 3 we analyze this game for a matrix. 
Section 4 contains the proof that determining the value of the game in general is NP- 
hard as well as a discussion of our methods for determining estimates of this value. 
In Section 5 we analyze the special case of the d-dimensional hypercube and in- 
vestigate tte implications and relations of this analysis to the class PLS, the expected 
performance of local improvement algorithms, and other results. We conclude with 
some remarks in Section 6. 

2. Adversarial divide and conquer 

2.1. Divide and conquer algorithm 

In a typical combinatorial optimizatitin problem, each instance has a finite set of 
feasible solutions and each sohttion is assigned a subset of these as its “neighbors”. 
A (strict) local minimum has an objective function value which is less than or equal 
to (strictly less than) the values of each of its neighbors. We represent the solutions 
as vertices in a graph, G = (V, E), and place edges between each vertex and its 
assigned neighbors, and define a local minimum to be a vertex u such that (u, w) E 
E=,f(o)cf(w), where f: V+ IR is the objective function to be minimized. Given a 
function evaluation oracle for function f we are interested in determining the 
number of calls to the oracle needed to find a local optimum off in G. We will 
assume, without loss of generality, that we are looking for a local minimum. 

The most widely appiied solution method is local search, using either a best or 
better neighbor selection rule (see, e.g., [15,18]). As an example, let the graph 
G=(V,E) be a simple path; that is, V={ut,...,u,} and E={(ui,ui+r)ll~i<n). 
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It is clear that any variation of local search can require asking the function value 
of O(n) vertices. However, a divide and conquer strategy can find a local optimum 
with only O(log n) queries. To see this, first ask the function value of D~,,/~,, 
followed by its neighbors, ~t,,/~, _, and uLn12, +, . If f(uLn12,) is the minimum of 
these three values, then we may stop. Otherwise, a local minimum is located within 
the half of the path which contains the smaller valued neighbor. Iterate this pro- 
cedure on this (smaller) graph. Clearly, this will require at most 3 log n queries. 

We now generalize the above divide and conquer scheme to all graphs. Whereas 
in the path example a single vertex sufficed to split the graph into smaller cases. In 
genera1 we will need a more complex separator set. This is the only change in the 
procedure below. 

Divide and conquer algorithm. 
Input. Graph G = (V, E) and function f: V-+ R. 

Output. II*E V such that f(o*)=f(w) for all (o*, w)EE. 

Step 0. Let i = 0, Go = G. 
Step 1. Select vertices one at a time to be submitted to the oracle until this collec- 

tion of vertices separates Gi.’ Call this collection S. 
Step 2. Find D’E S that minimizes f(o) for all u ES, breaking ties arbitrarily. 
Step 3. Query the neighbors of u’. Call these vertices N. 
Step 4. If f(o’) <f(w) for all w E N, return u * = v’ and stop. 
Step 5. Let w E N \ S be such that f(w) <f(o’). Let Gj+ 1 = the connected compo- 

nent of (Gj\S) containing w and let i= i+ 1. 
Step 6. Go to Step 1. 

Lemma 2.1. The divide and conquer algorithm finds a local minimum off, in G. 

Proof. If local search were carried out starting with w (chosen in Step 5) then it 
could never select a vertex in S because f(w)<f(o’) If(u) for all u ES. Hence the 
algorithm could never leave Gj and so must find a local minimum in Gi. Thus there 
exists a local minimum in the component chosen in Step 5 and the desired result now 
follows immediately. q 

Let the number of queries required by our divide and conquer algorilhm for graph 
G and function f be denoted dc(G, f). It is clear that dc(G, f) provides an upper 
bound on the number of queries needed in the worst case by any method to solve 
this problem. Given function f, let L(G,f, A) be the minimum number of queries 
that algorithm A requires to find a local optimum of f in graph G (in the worst 

’ We say a set of vertices S c V separates G = (L’,E) ii there exist two vertices u and u E V such that 

every path connecting u and v passes through S. A path P= (v,, . . . , v,) passes through a set of vertices 

S if (P\jv,,v,J}nsf0. 
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case). Then let 

L(G,A)=max L(G,f,A) and L(G)=min L(G,A). 
s A 

Similarly, let 

de(G) = max dc(G, f). 
f 

It turns out that in general, de(G) provides a very close upper bound on L(G). To 

see this it is first necessary to turn to the problem of determining a lower bound on 

L(G). We will show that this lower bound is usually close to de(G) and hence it must 

follow that in these cases de(G) is close to L(G). 

2.2. An adversarial argument 

Suppose the function evaluation oracle is an adversary who attempts to stymie the 

optimizer. This adversary will provide function values that cause the person trying 

to find a local minimum to continue to query for a long time. If the oracle can force 

the minimizer to ask for g(n) values, then g(n) must be a lower bound on the worst 

case number of queries for the graph. We give below a specific adversarial strategy 

that we will apply to get a lower bound. 

First we show how the adversary would work on the path example. When the op- 
timizer yueries a vertex, u, this vertex automatically splits the path into two sub- 

paths, say PO and Pb, each containing o. The oracle then selects one of these, say 

subpath P,, as the part of the graph where the local optimum will be located. In 

choosing P,, she has decided not to have any local minima off within Pb. To in- 

sure this, she sets function values for each of the nodes in Pb that decrease along 

the path to v. Now whenever the optimizer queries a node in Pb, the oracle simply 

responds with the preset value; thus the optimizer is wasting time with any queries 

within PO. For any queries in P,, the oracle can now repeat this process since any 

selected vertex in P, breaks this path into two subpaths. 

In this example, it is a simple exercise to see that the adversarial strategy gives a 
bound of log n queries for any choice of first vertex. This follows from the o4serva- 

tion that the oracle will pick P, so that it is at least as long as Pb. Hence, PO will 

have at least L+nJ vertices. Iterating this process clearly gives a lower bound of 

Llog n J queries. 
To generalize the path example, note that as long as the graph is connected, the 

oracle can form a “valley” whose deepest point is at the chosen minimum. W’:ren 

the graph becomes disconnected, this valley must be generalized to a network of 

deepening ravines. This is the core of our adversarial strategy given below. We need 

the following definition. A bare tree of G is an acyclic connected subgraph, T, of 

G such that all vertices of G are in or adjacent to T. (In our implementation a bare 

tree will be a spanning tree without its leaves, hence the name.) Then our strategy 

follows. 
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Adversarial strategy. 

Step 0. Let i=O and G,= G. Let w. be any integer. 

Step 1. Give the default value wi to any vertex asked until there is no bare tree 

of Gi using only unqueried vertices. Let the last vertex queried be ui. Let the newly 

formed components of the subgraph induced by the unqueried vertices be denoted 

Cj,, -.a 9 C,. In Gj, vi is adjacent to each of these components. 
Step 2. Choose a bare tree T of Gi, using only oi and unqueried vertices. 

Removing ui disconnects T into T,, . . . , Tk, where T, is a bare tree of C,.. Choose 

some j, 1 cjr k. In C,, r#j, consider bare tree T,. For vertex u B C,, 1.4 $ T, for 

any r, and u not queried, let f(u)= wi. Along each branch of each T,, pick func- 

tion values less than wi decreasing toward ui. Let 

f(0’) = min{f(u) 124 E Cik for any k} - 1. 

Let w;=f(u’)- 1. 

Step 3. Let i=i+l. Let Gi=C’_I,j. 

Step 4. Go to Step 1. 

Lemma 2.2. If the oracle responds according to the above strategy, then as long as 
G has more than one vertex, it cannot be determined where G has a local minimum. 

Proof. This follows directly from our comment above that as long as a graph is con- 

nected, the oracle can devise a network of deepening ravines toward any selected 

vertex. 0 

2.3. The separation game 

In order to obtain a good lower bound on L(G) from Lemma 2.2 we need to 

analyze the adversarial strategy. It is interesting that analyzing this strategy is very 

similar to analyzing the divide and conquer algorithm. This is because each pro- 

cedi.u-e has the following two person game embedded within its structure. 

Separation game 
Input. Graph G = (V, E). 
Two players. minimizer I, maximizer II. 

Description. Player I removes vertices from G until G is disconnected and then 

passes play to II. Player II chooses one of the newly created components to call G, 

discards the other components and passes G back to I. The game ends when IV1 5 1. 

Step 1. i=O, V”= V, score(G)=O. 

Step 2. If 1 V’I 5 1 go to Step 6. 

Step 3. Player I chooses S’ c V’ such that G’ \ S’ is not connected or is the empty 

graph; score(G) = score(G) + IS’\. 
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Step 4. Player II chooses Gi+r, a connected component of G’ \ S’; i = i + 1. 
Step 5. Go to Step 2. 
Step 6. Stop. 

We define the value of the separation game on a graph G, denoted o(G), to be 
score(G) when each player plays optimally, I to minimize score(G) and II to 
maximize. 

Lemma 2.3. The value of the separation game provides a lower bound on the 
amount of work required by any algorithm to find a local minimum on graph G; 
while the amount of work required by the divide and conquer algorithm provides 
an upper bound, 

Proof. This lemma is equivalent to claiming that u(G)<L(G)rdc(G). The second 
inequality follows from Lemma 2.1 and the definitions. Further, in any application 
of the adversarial strategy described in Section 2.2, the oracle can select the compo- 
nent of G that is chosen in the optimal play of the separation game. Hence, o(G) 
provides a lower bound on the number of function queries forced by the oracle in 
the adversarial strategy, which is less than L(G) by Lemma 2.2. 0 

This lemma shows that if the gap between o(G) and de(G) is small then either one 
will provide a good estimate of L(G). In the path example, we saw that one im- 
plementation of the divide and conquer algorithm (choosing the midpoint of the 
path at each iteration) gives a 3 log n upper bound on de(G) and that the adversarial 
strategy gives a lower bound of log n. The difference between these two can be 
viewed in two ways. First, the upper bound is three times the lower bound; second, 
the gap is logarithmically small. In general, the latter view is the correct one. In par- 
ticular, the gap is equal to the maximum degree of a vertex (2) times the number 
of times Step 3 of the divide and conquer algorithm is needed (log n). Actually, it 
is foolish for the adversary to select either subpath P, or Pb immediately. Rather, 
she should wait for the next query and then select the subpath that does not contain 
this queried vertex. Hence the optimal strategy is not to naively pick the midpoint, 
but rather to slightly unbalance the two subpaths by doing Fibonacci search. It is 
straightforward to prove that this gives the optimal value of the separation game 
to be log, n + 2; where @ is the golden mean #l/s - 1)) and the 2 arises from the 
extra queries to test the local optimality of the final selection. 

In the next section we investigate another example where we are able to establish 
fairly tight bounds on L(G). We will use the following result. 

Proposition 2.4. In the separation game S’ can always be taken to be a minimal 
separating set of G. That is, for any SCS’, G’ \S is connected. 

Proof. The removal of any nodes not in a minimal separating set can be delayed 
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one iteration, at which time they can be removed (if in the component chosen by 
player II) keeping score(G) the same, or ignored (otherwise) decreasing score(G). 

[7 

3. Finding a row-column minimum in a matrix 

We now apply the ideas of Section 2 to a specific local optimization problem. 
Suppose A is an n x n matrix: how hard is it to find an entry that is less than or equal 
to every other entry in its row and column? It is clear that one can play the adversary 
against a local improvement algorithm so as to force every entry of the matrix to 
be queried. We show that asymptotically, one needs only to query between one half 
and two thirds of the matrix, and we conjecture that the upper bound of f is 
asymptotically tight. 

Following our development in Section 2, the graph of neighborliness, G, is formed 
by defining a node for each matrix entry with an edge between two nodes if and only 
if they are either in the same row or column. Using Lemma 2.3, we will attempt to 
find o(G) in order to obtain a good estimate of L(G). However, G is dense and dif- 
ficult to visualize. Therefore, we move to an auxiliary graph. Consider the complete 
bipartite graph H= (R U C, E), where R = ( 1, . . . , n> and C= { 1, . . . , n> . In this graph 
we have one node for each row and for each column, with an edge connecting each 
row and column pair. Here, each edge corresponds to an element in the matrix, and 
so we move to an edge version of our separation game where player I removes edges 
from the auxiliary graph rather than deleting vertices from the original graph. Other 
than this change, the game is played in the same manner as the original (vertex) 
separation game. 

Proposition 3.1. The value of the (vertex) separation game played on the original 
graph is the same as the value of the edge separation game played on the auxiliary 
graph. 

Proof. We noted above that edges in the auxillary graph correspond to vertices of 
the original graph. This implies that a separating set of vertices in G is a disconnect- 
ing collection of edges in H. Further a disconnecting set of edges in H must cor- 
respond to a separating set of vertices in G unless one of the resulting components 
in His an isolated vertex. However, this case will never arise in our application since 
player II would never choose such a component before the last iteration of the game. 

We now analyze this game. For ease of presentation, we will relax the assumption 
that IRI = ICI; but will always assume that m = IRI I ICI =n. Suppose that player I 
chooses subset F of the edges to separate graph H= (R U C, E). By Proposition 2.4, 
we can assume that F is a minimal separating set. Then clearly, since F is a set of 
edges, it must disconnect H into exactly two components, each a complete bipartite 



164 D. C. Llewel!vn et al. 

graph. The components can be represented by (J,K) and (m- J,tt-K), where in 
each case the ordered pair corresponds to the number of row vertices and the 

number of column vertices in that subgraph. Clearly, player II will return to player 

I the component which requires more work to finish disconnecting. Let .f(m, n) be 

the value of the edge separation game on the complete bipartite graph H. Where, 
for general r and s, f(r, s) is to be read as f(min(r, s), max(r, s)). The discussion above 

implies 

f(m, n) = min min ([max(f(J, K), f(m -J, n - K))] 
15J5,,1 I sRsn 

+J(n-K)+K(m-J)). 

To simplify this, let K(J,m) be the smallest integer such that 

f(J,K(J,m))rf(m-J,n-K(J,m)). 

Thus, we can assume without loss of generality that F is chosen in such a way that 

Kr K(J, tn) and hence that player II returns the (J, K) component. This implies 

_c(~77, n) = min min {f(J,K)+J(n-K)+K(m-J)) 
15J5/?I h’(J,nl)5li5” 

= min min (f(J,K)+Jtz+K(m-2J)). 
I s.tcr,, E;(.t,fti)c~sn 

However, if we begin with m 5 n then in order to maintain this condition of no more 

row vertices than column vertices, we must assume that JI L+mJ. Now it is clear 

that for J> L+ttzJ, switching the roles of R and C will give a symmetric argument. 

Hence we now assume Js Ljtt~J, giving 

f(m, n) = min min {f(J,K)+Jn+K(tn-2J)). 
ISJC L”?/‘] tq.t,/II)~tc~fI 

Further, it follows from the definition that for JI L+ttz J, f(J, K) is nondecreasing 

in K. Hence, 

f(m, n) = I c J$n2, {.fU W.4 ~~2)) + Jn + NJ, m)(m - 2 J)> . 

We now need to determine some effective bounds on K(J,m). 

Proposition 

Proof. This 

Proposition 

3.2. If n~sttt' and nrn’ then f(tn,n)rf(m’,n’). 

is clear by definition. 0 

3.3. K(L+tt2J, tn)r r+nl. 

Proof. By definition, f(L~mJ,K(lfmJ,m))rf(rfm-l,n-K(L~mJ,t~)). There are 

two cases. 

(I) r+tt?l rtt-K(L+],M). Now, L+mj I r+tnj = by Proposition 3.2 that 

K(L~tnJ,tt?)1n_K(L~tnJ,tn)~ K(L+ttzJ,m)r+n. 
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(2) [+rnl rn-~(L+mJ,rn). Then, by definition f(L+mJ, K(L+m J, m)r 

An-K(/_tmJ,m), T+ml). 
(a) n-K(L+mJ,m)rL+mJ =,~(L~mJ,m)rn-L~rnJ~tn. 

(b) n-R(L+mJ,m)> L+mJ. Then, by Proposition 3.2, 

K(L+mJ,m)r r+ml* n-K(i+mJ,m)< L+mJ 

which is a contradiction. 

In each of these cases, the integrality of K(J,m) gives the desired result. Cl 

Using a similar argument, one can also prove the following upper bound. 

Proposition 3.4. K( r+ml, m) 5 L+n J + 1. 

Corollary 3.5. If m is even then K(+m, m) = r+nl. 

Proof. Using Proposition 3.3 and Proposition 3.4, clearly r+nl rK(+m,m)< 
L+n J + 1. Consider th e case when n is odd. This gives r+nl sK(+m, m) I r+nl and 
we are done. 

Now consider when n is even. In this case, the two components resulting from 
the removal of F are (+m, K(+m, m)) and (+m, n - K(+m, m)). Clearly +n will suffice 
to make the first subgraph at least as hard to finish as the second and hence by 
minimality of K(J, m) we must have K(+m, m) = +n = [+nl . 0 

Now, we can use these bounds to determine bounds on f(m,n). 

Proposition 3.4. The value of the edge separation game played on the complete 

m x n bipartite graph is greater than or equal to [+rnnl + L+n J . 

Proof. To prove this we will first show that f(m, n)r [+rnnl + 1. Then, using this 
iteratively gives the desired result. By definition, 

Am, n) = , ,J$;l,2, (_fCJ, NJ, ml) + J(n - JU m)l + Q.4 ml@ - J>> 

= min {f(J, K(J, m)) + Jn + K(J, m)(m - 2J)). 
I 5 J5 [/?8/2j 

Note that for all J,K> 0, f(J,K)r 1, hence, 

f(m,n)r 1+ min {K(J, m)(m - 2J) + Jn} . 
I sJ5 Ll??/2J 1 

It is clear that K(J,m) is nonincreasing in J, hence 

f(m,n)r 1+ min {K(L+mJ,m)(m-2J)+Jn). 
I c Js Ln?/2] 
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Using Proposition 3.3 and treating the four possible cases of parities of m and n 

separately we get, 

f(m, n) 2 min (l+ [++77-2J)+Jn) 
I C./I Lvl/ZJ 

2 I+ r+nlm+ ~(~-~L+IzJ)z I + r++ 

1 1 + r+rnnl as desired. 

Now, plugging this in for f(J, K(J, m)) instead of the term of 1 used above and using 
the fact as above that in this range K(J, m)r r+nl and Jz 1 gives the next result that 

f(~. n)? 1 + r+Oznl + r+nl. Iterating then yields the result. •1 

Applying induction on m and n, it is straightforward to obtain effective upper 

bounds on the value of the edge separation game in some special cases. 

Proposition 5.1. If m and n are powers of 2, with m I n, then the value of the edge 
separation game played on the complete m x n bipartite graph has an upper bound 

of L+mn+fn/mJ. ~7 

Proposition 3.8. The bound given in Proposition 3.7 does not necessarily hold if m 

or n is not a power of 2. 

Proof. First, consider f (2,3). From Corollary 3.5, K( 1,2) = 2, and clearly f (1, n) = n 
for all nz 1. Thus, 

f(2,3)=f(l,2)+ 1(3-2)+2(2- 1)=2+ 1+2=5. 

But, L~mn+fn/mJ=L5.6+41=4<5. 

Next, consider f(3,16). It is straightforward to prove that K(l, 3)~ r$l. 
Hence, here K(l,3)r 10. Thus, 

f(3,16)zf(l, lo)+ 1(16- IO)+ 10(3- 1) 

= 10+6+2ti=36. 

But, 

Lfmn+fn/mJ = L+-48+$J =33c36. 0 

However, with careful application of divide and conquer, and induction, we can 

okain an upper bound on the value for all m and n. The proof entails several cases. 

The nature of the proof in each individual case depends only on whether certain 

components (arising from the divide and conquer status) have an even number of 
vertices. 

Proposition 3.9. For all m and n, with m 5 n, the value of the edge separation game 

played on the complete m x n bipartite graph has an upper bound of L f mn + f n J . 
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Proof. We will show that f(m, n)lfmn +$z and the result will follow by integra- 
lity of f. 

We need to break this into several cases. The idea in each is the same. We try to 
decompose each vertex set of the bipartite graph into equal parts and analyze the 
total work involved. We will be getting an upper bound by analyzing the work 
needed to solve the problem using the following specific strategy: Let R =A U B and 
C=SU T. (Hence IAl + IBI = m and IS I + I TI = n.) Then we will first disconnect A 
from T which requires IA I I TI edges removed, then we will disconnect B from S 
which requires IBI (SI edges removed. Then we finish by choosing the component 
that requires the most work, among (A, S) and (B, T). The total work needed then is 

I4 ITI + 14 ISI +max{f(AS),f(B, T)I. 

Using induction on m and n implies 

f(m,n)l IAl ITI + IBI ISI +max@l ISI ++lSl,flBl ITI ++ITIl. 

Here, if one analyzes the cases m and n are both even, m is odd and n is even, m 
is even and n is odd, and m and n are both odd, using our results above, it is clear 
that the desired result will follow. q 

Putting together Propositions 3.6 and 3.9, we have proved the following theorem. 

Theorem 3.10. The value of the edge separation game played on a complete m x n 
bipartite graph has a lower bound of rfrnnl + L+n] and an upper bound of 
(4 + o( 1))mn. 

Corollary 5.X. The amount of work required to find an element that is smallest in 
its row and its column in an m x n matrix, with m in, is greater than r+mnl. Fur- 
ther, our divide and conquer algorithm requires no more than fmn + fn + 2n log m 
work to solve this problem. 

Proof. From Theorem 3.10, we see that L(G)> rtmnl for all min. The other 
result will follow from Theorem 4.7 in the next section. cl 

Conjecture 3.12. v(G) z fmn + $n/m for all m I n. 

We have verified this conjecture for all m zz n 564. 

4. Computing the value of the separation game 

We have seen in Lemma 2.3 that the value of the separation game on G is useful 
since it provides a lower bound on the number of function evaluations required by 
any algorithm, and a fairly close estimate on the work required by the divide and 



168 D.C. Llewellyn el al. 

conquer algorithm. However, we have also seen in Section 3 that analyzing even 
fairly simple graphs can be difficult. In this section, we establish the complexity of 
determining o(G) and we show how to obtain bounds on this value. 

4. I. Complexity of computation 

Despite the apparent simplification provided by Proposition 2.4, it is not easy to 
determine player I’s optimal strategy. It seems plausible that player I wishes to 
separate Go into roughly equal parts at minimum cost, for if Go where separated 
into unequal parts then player II could simply choose the larger component. Unfor- 
tunately, the size of a component is a poor measure of the value of the game. For 
instance, the graphs P,, (a path on n vertices) and K,, (the complete graph on n 
vertices) have the same number of vertices yet the separation games on these graphs 
have very different values. To see this, from Section 2 we know that o(P,)l log n, 
while in contrast it is easy to establish that o(K,) = n - 1. 

This complication is formalized by showing that calculating o(G) is NP-hard. To 
do this, we will show that to play optimally during the first two moves, player I must 
solve an NP-hard problem. The precise objective for player I’s first move is 
to choose So to minimize ISol +maxi o(Gf) where the G: are the components 
of G”\So. 

Notice that (assuming the complexity result is true) o(G!) is hard to evaluate! 
This is one of those curious cases where the complexity of the problem fights against 
a proof of its complexity. To resolve this, we will find a structure such that the 
values of the graphs that result after the first few moves are known. 

We need an intermediate result on a restricted version of vertex cover: A tripartite 
graph is a graph G = { Vr, Vz, V,; El*, E,,, El3 > where 4, i = 1,2,3 are disjoint vertex 
sets and (i, j) E E,, * ie V, and je I$. That is, a tripartite graph is a graph with an 
explicit 3-coloring. 

Recall that the vertex cover problem is to find a minimum cardinality subset of 
vertices of a graph which contains at least one endpoint of each edge. 

Theorem 4.1. Vertex Cover restricted to tripartite graphs is NP-complete. 

Proof. The reduction is a mofidication of the reduction of [7] from 3-SAT to Vertex 
Cover. Rather than 3-SAT, we will use another restricted form of SAT, proved NP- 
complete in [17]: SAT restricted by (I), (2), and (3) below is NP-complete: 

(1) Each clause has 2 or 3 literals; 
(2) Each variable appears in at most 3 clauses; 
(3) Each variable appears complemented exactly once. 

If the reduction of [7] for 3-SAT to Vertex Cover is used with the above SAT 
restriction (where edges replace triangles for clauses with 2 Iiterals) then a 
3-colorable graph results. The 3-coloring can be found in a greedy fashion, provided 
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the nodes are colored in the order: clause triangles, clause edges (using just colors 
1 and 2), uncomplemented variables, and complemented variables. 0 

We are about to prove that the separation game value is hard to calculate. Our 
construction makes use of a structure we call a spider. Define an (h, w, t)-spider to 
be a graph with vertex set 

V={u ,,... ,u/?,u I,... ,U,“,XI, . . . . X,1 

and edge set 

E={(u~,u~): lriCj~h)U{(ui,uj): l~i<j_~W}U((Xi,Xj): l~icj~t} 

U{(IJ~,~~): lsilh, !sjrw} 

U{(Ui,Xj): llirw, lljlt}. 

So a spider is three complete graphs Kh, K,,, K,, which we call the head, waist 
and tail respectively, where each node in the waist is connected to each node in the 
head and tail. 

Proposition 4.2. If G is an (h, w, t)-spider then the value of the separation game on 
G is equal to w+max(h,t)- 1. 

Proof. The waist is the only minimal separating set so, by Proposition 2.4, player 
I chooses it as the first move. This leaves Kh and KI. Since u(K,) =p- 1, player II 
will choose the larger. Cl 

Theorem 4.3. For a graph G and integer k, determining if the value of the separation 
game o(G) zs k is N&complete. 

Proof. The problem is in NP since we can completely specify player I’s strategy with 
one label per node; where a node receives label i if player I plans to remove it duri:rg 
his ith turn (if player II has played so that this node is in Vi). 

To show completeness, we will reduce from the result in Theorem 4.1. We will 
take three spiders and connect their heads with a “web” of arcs forming a tripartite 
cover instance. We then show that player I’s optimal strategy is to separate the 
spiders and to use a single spider, for which we know the optimal strategy. Separating 
the spiders optimally involves solving the tripartite vertex cover problem. 

Let G = (Vi, Vz, Vs, E12, E13, Ez3; k) be an instance of vertex cover restricted to tri- 
partite graphs. Set T= 1 V,I + 1 V21 + 1 &I. 

Create these spiders H’, i= 1,2,3, where Hi is a ([ K I + T, k, 2T)-spider. Denote 
the first I K I vertices in the head of Hi, uj for j= 1,2, . . . ,I K I for i= 1,2,3. Put 
edges between these vertices corresponding to G and call this graph H. 

We claim o(H)12(T+ k) - 1 * G has a vertex cover of size Sk. 
(c) If G has a vertex cover C, with ICI 5 k, then player I can choose So as the 
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nodes corresponding to C. This disconnects H into 3 spiders, each with a larger tail 
than head. By Proposition 4.2, each has value k + 2 T- 1 so o(H)r jS”l + k + 2 T- 15 
2( T+ k) - I as needed. 

(*) By Proposition 2.4, player l’s first move removes either 
(i) a waist, leaving a component containing two connected spiders. This compo- 

nent requires at least k + 2 T deletions because a spider has value k + 2 T- I and at 
least one node is needed to disconnect the spiders. This gives o(H)? 2(T+ k). 
Contradiction. 

(ii) nodes attached to the web, zparating one spider from the other two. Two 
cases: 

(a) if this separates all three spiders then, since a spider requires k+ 2T- 1 
deletions, no more than k nodes separated the spider, which cor- 
responds to a vertex cover of size rk. 

(b) if two spiders are still connected, then player II can pick that compo- 
nent. Player l’s response is either a waist (which leads to the contradic- 
tion in (i)) or a separation of the spiders (which leads to the 
calculation in (ii)(a)) hence proving the claim. 0 

4.2. Boundary theorems and lower bounds 

Theorem 4.3 implies that we cannot find the exact value of the separation game 
for an arbitrary graph by any known efficient algorithm. Hence, we turn to develop- 
ing tools for estimating o(G); in this section we illustrate how to apply boundary 
theorems to obtain lower bounds on o(G). 

Theorem 4.4. If the separation game is played on graph G = (V, E), then for all in- 
tegers k and t, Or t d kr 1 VI, player II can force player I to either 

(i) delete at least t vertices, or 
(ii) create a set of components with total cardinality s, with k-t ISC k. 

Proof. Consider the following strategy for player II: 

Step 1. Let B=0, P=G. 
Step 2. Let player I separate P. 
Step 3. Pick an order of the resulting components, say P1,P2, . . ..Pp and let 

PO=0 and Pp+, =P. 
Step 4. Let ir 1 be such that 

IBUPoUP,U.**UPi_,Irk and IBUPoUP,U*.eUPiI>k. 

Step5. LetB’=BUPoUP1U...UPi_,.lfk-t~IB’IrkgotoStep6;ifi=p+1 
go to Step 7; otherwise let P= Pi, B= B’ and go to Step 2. 

Step 6. Stop, B’ is a subset of vertices with k- t= lB’/ 5 k. 
Step 7. Stop, player I has chosen t vertices. 
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The termination in Step 7 is correct due to the following: 
By construction, at Step 2 for each iteration (BI ok- t Sk< lBUP( and, for 

i=p+ 1 in the final Step 5, IS’1 s k - t. But 

P&Ptu~~U$=P\s, 

where S is the separating set chosen by player 1 in Step 2. So 

ISI=(BUPI--IB’I>k-(k-t)=t. 

This means player I has removed at least t vertices as required. Cl 

Let B(S) be the boundary of SC V. That is, 

B(S)={oe V\S: 3e=(u, w), WES}. 

By fixing t, we get the following corollary: 

Corollary 4.5. For any graph G and integer t, 

o(G)rmin &my m~n{lB(S)I:k-t~lSl~k} . 
1 

Proof. From Theorem 4.4, for any k, either t nodes are removed or a set of com- 
ponents with total cardinality s, k- tzzs< k, is created. To create such a set, the 
boundary of that set must have been among the nodes chosen by player I. Hence, 
in this case, player I removes at least min{ IB(S)l: k-t< (SI it > nodes. Since 
Theorem 4.4 holds for all k, the maximum over all of these values is a lower bound 
on the value of the game. 0 

One useful value for t in the Corollary 4.5 is as follows. Let 

P(G)=max min{lB(S)I: ISI =i>. 

Setting t = /3(G) gives the following corollary. 

Corollary 4.6. For any G, 

o(G)rmin /3(G),my min((B(S)I: k-/S(G)=(SI<k} . 
1 

4.3. Separator theorems and upper bounds 

The strategy in Theorem 4.4 also leads to a feasible implementation for Step 1 
of the divide and conquer algorithm in Section 2.1. This accounts for all of the 
queries of the algorithm except that Step 3 examines the neighbors of one node in 
each separating set. Therefore, for graphs where each node is of small degree, upper 
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bounds on u(G) provide useful upper bounds on L(G). Let 6,,,,,(G) be the max- 
imum degree of any node in G and let K be the number of separating sets used by 

player I. 

Theorem 4.7. u(G)5 L(G\zi o(G) + &,,(C)K. 

Proof. The first inequality comes from Lemma 2.3. The second inequality is a result 
of player I using optima1 separators for the separation game in a divide and conquer 
algorithm. Step 3 of the divide and conquer algorithm requires the additional in- 
quiry of at most 6,,,,(G) nodes for one node in each separating set. 0 

We now show how we can use separator theorems to determine upper bounds on 
o(G). Suppose G belongs to a class of graphs G closed under the subgraph opera- 
tion. G satisfies an s(n)-separator theorem with constants (r and p, CT E [+, l), p>O 
if any G E G with n vertices can be separated into two sets A and B with IA I, 1 BI s an 
and the separating set has +s(nj vertices. A feasible, though not necessarily poly- 
nomially computable, strategy for player I is to separate the graph by such a 
separator, forcing player I1 to choose a smaller graph to work with. This algorithm 
gives the following bound: 

Corollary 4.8. If G belongs to a class of graphs G closed under the subgraph opera- 
tions such that G satisfies an s(n)-separator theorem with constants a and p, then 

o(G)cp C {s(a’n): Olir -log n/logs}. 

Proof. This follows from the definition of player I’s algorithm. 0 

There are several separator theorems in the literature for special types of graphs. 
Here, we give two examples which illustrate how to use these to derive bounds on 
the value of the separation game. 

Theorem 4.9 [4]. Any planar graph satisfies a fi-separator theorem with a = 5 and 
p=fi. 

Theorem 4.10. For any planar graph on n vertices, the value of the separation game 
on G is at most 13.35ii. 

Corollary 4.11. A local optimum on a planar graph with n vertices and maximal 
degree 6 can be found in 

function evaluations. 

Proof. This follows from Theorems 4.7 and 4.10 and Corollary 4.8. 0 
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This theorem for planar graphs can be generalized to graphs of fixed genus. 

Theorem 4.12 [8]. Any graph of genus g satisfies a separator theorem with (r =-$ 
and ps(n) = (6fi + 21/2)fi + 1. 

Theorem 4.13. For any graph G of genus g on n vertices, the value of the separation 
game on G is at most (6G + 2$?)(3 + fi)fi + O(log n). 

Corollary 4.14. A local optimum on a graph of genus g with n vertices and max- 
imum degree 6 can be found in 

(6fi f 21/2)(3 + fl)fi + O(log n) + S 
(ldgo:I I> 

function evaluations. 

Proof. This follows from Theorems 4.7 and 4.13 and Corollary 4.8. Cl 

5. The hypercube 

We now apply the machinery developed in the previous sections to the problem 
of finding a local optimum on the vertices of the hypercube. Letting Gd= (V,E) 
denote the graph of the d-dimensional cube, and f a function I/--,& how hard is 
it to find a local optimum off on Gd? 

A straightforward application of our divide and conquer algorithm gives: 

Theorem 5.1. A local optimum on the d-cube can be found with ~(2~log d/G) 
function evaluations where c = m + o(d). 

Proof. We prove this theorem by illustrating that de(G) has the given value as an 
upper bound. Hence by Lemma 2.3, the proof will be complete. 

Define the pth shell of the hypercube to be t,he vertices with exactly p “l”s, so 
that the pth shell has cardinality (,“). Each shell separates the d-cube, so we can 
narrow down our search to a single shell by binary search on the d+ 1 shells. This 
binary search takes at most log(d + 1) + 1 “steps”, each step involving the inspection 
of a shell where no shell has cardinality exceeding ( &, ). Further, by the extended 
Stirling approximation [6], the size of the center shell satisfies: 

where 
el/(12d+ 1) el/12d 

C*= e2/6d ; c2= -- 
e2/(6d-t I) * 
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Therefore the binary search requires at most 

2d(l + log*@+ 1)) 

1Td (i 1 
2 + o(d) 
lr 

lookups. There are at most d log d “additional” queries so they do not affect this 
bound. Once the location of a local minimum has been narrowed down to a single 
shell, an additional ( L$Z, ) queries will certainly suffice to find a local optimum. 
This gives a total of 

proving the theorem. El 

We remark that the computation of the bound in this theorem is fairly tight. This 
might seem surprising since all of the shells are not the same size and hence a more 
efficient algorithm might, for instance, use a sequence of p’s (querying thepth shell) 
more like 4 d,Sd, . . . rather than +d, Sd, . . . . Further, (&) is much smaller than 
(&), and in the theorem all shell sizes are bounded only by (&). However, note 
that when OS~S i$. 

(ijddJ -i> L (Ltd$@,) +d(+d-l)(+d-2)...((+d-+d)+l) 

CL;,) (L:dd,j 

L L+d++fdjL+d++@-11 . ..(+d+l) 

> 

This means that there is a stretch of @ shells each at least half the size of the largest 
shell. Clearly any shell by shell search just in this region would cost at least 

so we are not off by more than a factor of 4. 

The hypercube is one of the few families of graphs whose genus has been deter- 
mined: Beineke and Harary [2] and Ringel [16] show it equals (d- 4)2d-2 + 1. Bjr 
Corollary 4.14, a local optimum can be found in 

-.- 
(61/02”- 3 + 1 + 2@)(3 + /6)2d’2 + O(d) + 

d2 

> (10)29%x (%2d) 
log3- 1 

function evaluations. This is much weaker than the bound given by Theorem 5.1, 
because the =61/-2” separator from Theorem 4.12 is obviously too large for the 
d-cube. 
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We can also combine a result about boundary minimization on the d-cube with 
our Corollary 4.6 to get a lower bound on o(G) and hence a lower bound on the 
number of function evaluations required. Let 

B(G,m)=min{jB(S)I: ISI =m). 

That is, the size of the smallest boundary any set of m vertices can have. A bound 
on the minimum boundary size B(G, m) is given by [ 181: 

Let Pi denote Cj,,(y). If m= Pi, then B(Gd,m)=(;+d,). Otherwise let i be such 
that Pi_l~m~Pi. Then 

B(Gd, m) 2 

ir+(d- l), 

ir+(d- 1). 

Applying the above bounds gives /3(Gd) = ( L$Z, ) where j?( ) is as defined in Sec- 
tion 4. Moreover, for m in the range 

we have a lower bound of 

Applying Corollary 4.6, we have proved the following: 

Theorem 5.2. The value of the separation game played on the d-dimensional hyper- 
cube is at least (1/2’Z7;;-o(d))2d/@. 

Corollary 5.3. Any algorithm which finds a local minimum on the d-cube requires 
at least 2d- ‘/fd function evaluations. 

In this case the gap between the lower and upper bounds is more than a constant 
factor, but still quite small: O(log log 1 VI). 

We make some comments comparing this result to others concerning local op- 
timization on the d-cube. The closest result we know of is due to Aldous [l]. He con- 
siders a game where player I, a minimizer, selects an algorithm A to find a local 
minimum on the d-cube, while player II, a maximizer, selects the function f. The 
outcome of play of the game is the number of function evaluations required by A 
to find a local minimum off. Aldous shows that the value of the game is roughly 
0(2d’2). In these terms, we have analyzed the value of a modified game when 
player I has to play before player II (player II sees A before choosing f). It is in- 
teresting that the modification causes such a large increase in the value of the game. 
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The problem we have analyzed, whenfis computable by a polylog (in n, i.e. poly- 
nomial in d) width and depth circuit, is essentially FLIP, the canonical PLS- 
complete problem of [lo]. So if PLS = P, the polynomial algorithm for FLIP must 
make strong use of limitations on f, since Theorem 5.2 implies there is no poly- 
nomial algorithm that works for arbitrary functions f (or even arbitrary functions 
f with single local optimum). On the other hand, if PLS is not in P, it might be possi- 
ble to modify the adversarial argument so as to create a function f which was poly- 
log computable, while retaining a superpolynomial bound. Such a proof would 
imply NP #P and would undoubtedly be very difficult! Even a weaker result of the 
following form would be interesting (this reflects the generally sorry state of lower 
bound technology): if f is computed by a circuit of fixed width and depth&z), then 
the number of function evaluations required to find a local optimum is at least 
q@(n)), where q( ) and p( ) are polynomial functions (q of quadratic or higher 
order). 

Theorem 5.2 yields a snake-in-box result. Define a snake in a graph as a simple 
path such that any two vertices in the path are adjacent in the graph iff they are 
adjacent in the path. Thus the snake’s coils stay a hamming distance of at least 2 
from each other. (A snake-in-box in [3] is defined similarly except that the snake 
bites its tail, i.e., it is a cycle.) How long can a snake in the d-cube be? Notice that 
a local improvement algorithm which iteratively selects the best adjacent vertex must 
follow a path which is a snake, since a better adjacent vertex further down the path 
would previously have been selected. Such an algorithm takes at most d - 1 function 
evaluations per iteration (after the first). But Theorem 5.2 says that in the worst 
case, any algorithm must use 2d/2@ function evaluations. Hence, the local im- 
provement algorithm in the worst case takes at least ((2d-1/]Td)- l)/(d- 1) itera- 
tions, so there is a snake that long (of order 2dd-3’2). This is not quite as strong 
a result as the best known [3] of order 2dd-“2. 

We get a surprising observation if we compare the proof of Theorem 5.2 with the 
analysis of average performance in [is]. Recall that 

B(G,m)=min{IB(S)I: ISI =m}. 

The driving force behind the exponentially large lower bound is the large size of 
B(G,,m). In particular, the fact that 

is sufficient to imply a large exponential lower bound on worst-case performance 
of any algorithm. On the other hand, the O(d log d) and O(d*) upper bounds on 
average performance of local improvement aigorithms in [ 181 are derived by proving 
inequalities such as 

2”- I 

Z(d) 5 2 + c ek/B(Gd, m), 
nl = 2 
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where I(d)= the expected number of iterations of a local improvement algorithm for 
problems with a single local optimum (for any k regular graph). Hence, here the 
large magnitude of B(Gd,m) leads to a low order polynomial bound on I(d). Thus 
we have the peculiar situation that the sume graphical property of the hypercube, 
namely the large magnitude of B(Gd, m), appears to be responsible for both the ex- 
ponentially bad worst-case and the polynomially good average-case performance of 
local improvement algorithms. 

6. Remarks 

Our analysis shows that local search may not be the most efficient method (in the 
worst case) to find a local optimum of an arbitrary function on a graph. Instead, 
a divide and conquer algorithm tends to give better performance. On a path, this 
algorithm is essentially Fibonacci search. Fibonacci search can be extended to higher 
dimensions but this does not give the right way to find local optima in arbitrary 
graphs. Binary search has also been extended to higher dimensions by Dobkin and 
Lipton [5] and Wood [19]: in [5] the function values (data) are allowed to be re- 
arranged in any desired way: in 1191 the generalization is highly geometric. The 
proper generalization to arbitrary graphs, for our problem, iscloser to other divide 
and conquer algorithms on graphs, such as nested dissection for solving r” system 
of linear equations [12]. Like generalized nested dissection, our algorithm depends 
heavily on finding a sequence of graph separators; as in [12] Corollary 4.5 shows 
that no efficient algorithm for finding local optima exists if the graph does not have 
a good separator. 

Theorem 4.3 shows that for general graphs it is NP-hard to find the best set of 
separators. On the other hand, the analysis of the separation game, though hard, 
also provides a close lower bound, assuring us of the near-optimality of our 
algorithm. 

It is interesting to see how complicated it can be to design an efficient algorithm 
that does something very simple, such as finding an entry in a matrix which is 
smal!est in its row and column. The analysis of the d-cube also gave us a new insight 
into the relationship between the average and worst case behavior of local improve- 
ment algorithms. 

The exponential lower bound on the work required by any algorithm to find a 
local optimum on the d-cube suggests that, to find polynomial algorithms for local 
optimization in combinatorial problems (e.g., integer programming, travelling 
salesman problem) we need to make heavy use of the restrictions on the objective 
function implied by the combinatorial problem. Even though it is easy to know 
which points to check to test for local optimality, and it is easy to know that at least 
one local optimum must exist, it is hard to find a local optimum for arbitraryf. Our 
construction employs an f which (we think) cannot be computed by a polynomial 
(in d) width and depth circuit. If it is not easy to know that at least one local op- 
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timum must exist, then finding it can be difficult even with a simplef. For example, 
if we seek a strict local optimum, the trivial adversarial functions, that are constant 
everywhere, or constant except at one point, ensure that any algorithm is slow. It 
can also be hard to kno;v how to test for local optimality: Murty [13] shows that 
it is NP-hard to test for local optimality in continuous quadratic programming, even 
if function evaluations are assumed to cost unit time. 
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