
Discrete Applied Mathematics 23 (1989) 157-178

North-Holland
157

LOCAL OPTIMIZATION ON GRAPHS

Donna Crystal LLEWELLYN*, Craig TOVEY** and Michael TRICK***
Carnegie-Mellon ‘University, Graduate School of Industrial Administration, Pittsburg, PA 15213,

U.S.A., and Georgia Institute of Technology, School of Industrial and Systems Engineering,
Atlanta, GA 30332-0205, U.S.A.

Received 18 June 1987

Revised 29 February 1988

The complexity of finding local optima is an open problem for many neighborhood structures.

We show how to derive close lower and upper bounds on the minimum number of function

evaluations needed to find a local optimum in an arbitrary graph. When these bounding techni-
ques are applied to the hypercube. the results give insights into the class PLS and the gap between

the average and worst-case behavior of local search.

1. Introduction

Finding local optima is at the heart of most heuristic algorithms for dit’ficult cnm-
binatorial optimization problems. Hence, the efficiency of these heuristics is heavily
dependent upon the effectiveness of the local optimization procedures. However,
the complexity of find’ng local optima remains an open problem for most neighbor-
hood structures. A classical example of this anomaly occurs with the traveling sales-
man protl~m. The “2-opt” neighborhood structure is very popular, but, as pointed
out in [lo], the complexity of finding a “2-optimal” tour is not known. Further,
the most widely used local optimization method, local improvement, has been
shown in certain cases to have exponential worst-case behavior [l 11.

in this paper we study the complexity of finding a local optimum of an arbitrary
function, f, over an arbitrary neighborhood graph. As in [9,14] our computational
model employs a (not necessarily compactly representable) oracle to compute the
values of J We consider several simple structures-a path, a grid and a hypercube.
The analysis of these structures is nontrivial and the results are often counter-
intuitive. For example, we show that the problem of finding an entry in a square
matrix that is minimum in its row and column requires, asymptotically, the examina-
tion of between + and : of the matrix entries. Further, for a d-dimensional cube,
at least 2”/2@ vertices must be examined.

We find it interesting that the problem of determining the complexity of local
optimization proves so rich even for such regular structures. Moreover, the analysis

* Supported by NSF DMS84-14104 and ONR NOO014-88-K-0349.
** Supported by NSF 84-ECS-8451032 and matching funds from the Digital Equipment Corporation.

*** Supported by NSF NOO014-86-K-0173.

0166-218X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Hohand)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82513645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

158 D.C. Llewellyn et al.

here yields insight into the class PLS (polynomial time local search - the class of
local optimization problems, roughly speaking, where the first two iterations of the
local improvement algorithm are guaranteed to be polynomial time (see [lo])) and
the relationship between worst and average case performance of local improvement
algorithms. This wealth of problems arising from “simple” graphs leads us to study
the general question of discrete local optimization in some detail.

Our analysis uses various techniques. We show how to derive close lower and
upper bounds on the minimum worst-case number of function evaluations needed
to find a local optimum in a graph. The upper bounds arise from a general divide
and conquer algorithm while the lower bounds result from an adversarial argument
that uses a structure similar to a spanning tree. Determining each of these bounds
is ultimately tied to computing the value of a separation game on the graph of
neighbors. Unfortunately, we also prove that this value is NP-hard to compute
exactly. We discuss different ways to get effective estimates of this value in certain
cases.

The paper is organized as follows: in Section 2 we derive the divide and conquer
algorithm and the adversarial argument, using the path as a motivating example.
Then we define the separation game. In Section 3 we analyze this game for a matrix.
Section 4 contains the proof that determining the value of the game in general is NP-
hard as well as a discussion of our methods for determining estimates of this value.
In Section 5 we analyze the special case of the d-dimensional hypercube and in-
vestigate tte implications and relations of this analysis to the class PLS, the expected
performance of local improvement algorithms, and other results. We conclude with
some remarks in Section 6.

2. Adversarial divide and conquer

2.1. Divide and conquer algorithm

In a typical combinatorial optimizatitin problem, each instance has a finite set of
feasible solutions and each sohttion is assigned a subset of these as its “neighbors”.
A (strict) local minimum has an objective function value which is less than or equal
to (strictly less than) the values of each of its neighbors. We represent the solutions
as vertices in a graph, G = (V, E), and place edges between each vertex and its
assigned neighbors, and define a local minimum to be a vertex u such that (u, w) E
E=,f(o)cf(w), where f: V+ IR is the objective function to be minimized. Given a
function evaluation oracle for function f we are interested in determining the
number of calls to the oracle needed to find a local optimum off in G. We will
assume, without loss of generality, that we are looking for a local minimum.

The most widely appiied solution method is local search, using either a best or
better neighbor selection rule (see, e.g., [15,18]). As an example, let the graph
G=(V,E) be a simple path; that is, V={ut,...,u,} and E={(ui,ui+r)ll~i<n).

Local optimization on graphs 159

It is clear that any variation of local search can require asking the function value
of O(n) vertices. However, a divide and conquer strategy can find a local optimum
with only O(log n) queries. To see this, first ask the function value of D~,,/~,,
followed by its neighbors, ~t,,/~, _, and uLn12, +, . If f(uLn12,) is the minimum of
these three values, then we may stop. Otherwise, a local minimum is located within
the half of the path which contains the smaller valued neighbor. Iterate this pro-
cedure on this (smaller) graph. Clearly, this will require at most 3 log n queries.

We now generalize the above divide and conquer scheme to all graphs. Whereas
in the path example a single vertex sufficed to split the graph into smaller cases. In
genera1 we will need a more complex separator set. This is the only change in the
procedure below.

Divide and conquer algorithm.
Input. Graph G = (V, E) and function f: V-+ R.

Output. II*E V such that f(o*)=f(w) for all (o*, w)EE.

Step 0. Let i = 0, Go = G.
Step 1. Select vertices one at a time to be submitted to the oracle until this collec-

tion of vertices separates Gi.’ Call this collection S.
Step 2. Find D’E S that minimizes f(o) for all u ES, breaking ties arbitrarily.
Step 3. Query the neighbors of u’. Call these vertices N.
Step 4. If f(o’) <f(w) for all w E N, return u * = v’ and stop.
Step 5. Let w E N \ S be such that f(w) <f(o’). Let Gj+ 1 = the connected compo-

nent of (Gj\S) containing w and let i= i+ 1.
Step 6. Go to Step 1.

Lemma 2.1. The divide and conquer algorithm finds a local minimum off, in G.

Proof. If local search were carried out starting with w (chosen in Step 5) then it
could never select a vertex in S because f(w)<f(o’) If(u) for all u ES. Hence the
algorithm could never leave Gj and so must find a local minimum in Gi. Thus there
exists a local minimum in the component chosen in Step 5 and the desired result now
follows immediately. q

Let the number of queries required by our divide and conquer algorilhm for graph
G and function f be denoted dc(G, f). It is clear that dc(G, f) provides an upper
bound on the number of queries needed in the worst case by any method to solve
this problem. Given function f, let L(G,f, A) be the minimum number of queries
that algorithm A requires to find a local optimum of f in graph G (in the worst

’ We say a set of vertices S c V separates G = (L’,E) ii there exist two vertices u and u E V such that

every path connecting u and v passes through S. A path P= (v,, . . . , v,) passes through a set of vertices

S if (P\jv,,v,J}nsf0.

160 D.C. Llewellyn et al.

case). Then let

L(G,A)=max L(G,f,A) and L(G)=min L(G,A).
s A

Similarly, let

de(G) = max dc(G, f).
f

It turns out that in general, de(G) provides a very close upper bound on L(G). To

see this it is first necessary to turn to the problem of determining a lower bound on

L(G). We will show that this lower bound is usually close to de(G) and hence it must

follow that in these cases de(G) is close to L(G).

2.2. An adversarial argument

Suppose the function evaluation oracle is an adversary who attempts to stymie the

optimizer. This adversary will provide function values that cause the person trying

to find a local minimum to continue to query for a long time. If the oracle can force

the minimizer to ask for g(n) values, then g(n) must be a lower bound on the worst

case number of queries for the graph. We give below a specific adversarial strategy

that we will apply to get a lower bound.

First we show how the adversary would work on the path example. When the op-
timizer yueries a vertex, u, this vertex automatically splits the path into two sub-

paths, say PO and Pb, each containing o. The oracle then selects one of these, say

subpath P,, as the part of the graph where the local optimum will be located. In

choosing P,, she has decided not to have any local minima off within Pb. To in-

sure this, she sets function values for each of the nodes in Pb that decrease along

the path to v. Now whenever the optimizer queries a node in Pb, the oracle simply

responds with the preset value; thus the optimizer is wasting time with any queries

within PO. For any queries in P,, the oracle can now repeat this process since any

selected vertex in P, breaks this path into two subpaths.

In this example, it is a simple exercise to see that the adversarial strategy gives a
bound of log n queries for any choice of first vertex. This follows from the o4serva-

tion that the oracle will pick P, so that it is at least as long as Pb. Hence, PO will

have at least L+nJ vertices. Iterating this process clearly gives a lower bound of

Llog n J queries.
To generalize the path example, note that as long as the graph is connected, the

oracle can form a “valley” whose deepest point is at the chosen minimum. W’:ren

the graph becomes disconnected, this valley must be generalized to a network of

deepening ravines. This is the core of our adversarial strategy given below. We need

the following definition. A bare tree of G is an acyclic connected subgraph, T, of

G such that all vertices of G are in or adjacent to T. (In our implementation a bare

tree will be a spanning tree without its leaves, hence the name.) Then our strategy

follows.

Local optimization on graphs 161

Adversarial strategy.

Step 0. Let i=O and G,= G. Let w. be any integer.

Step 1. Give the default value wi to any vertex asked until there is no bare tree

of Gi using only unqueried vertices. Let the last vertex queried be ui. Let the newly

formed components of the subgraph induced by the unqueried vertices be denoted

Cj,, -.a 9 C,. In Gj, vi is adjacent to each of these components.
Step 2. Choose a bare tree T of Gi, using only oi and unqueried vertices.

Removing ui disconnects T into T,, . . . , Tk, where T, is a bare tree of C,.. Choose

some j, 1 cjr k. In C,, r#j, consider bare tree T,. For vertex u B C,, 1.4 $ T, for

any r, and u not queried, let f(u)= wi. Along each branch of each T,, pick func-

tion values less than wi decreasing toward ui. Let

f(0’) = min{f(u) 124 E Cik for any k} - 1.

Let w;=f(u’)- 1.

Step 3. Let i=i+l. Let Gi=C’_I,j.

Step 4. Go to Step 1.

Lemma 2.2. If the oracle responds according to the above strategy, then as long as
G has more than one vertex, it cannot be determined where G has a local minimum.

Proof. This follows directly from our comment above that as long as a graph is con-

nected, the oracle can devise a network of deepening ravines toward any selected

vertex. 0

2.3. The separation game

In order to obtain a good lower bound on L(G) from Lemma 2.2 we need to

analyze the adversarial strategy. It is interesting that analyzing this strategy is very

similar to analyzing the divide and conquer algorithm. This is because each pro-

cedi.u-e has the following two person game embedded within its structure.

Separation game
Input. Graph G = (V, E).
Two players. minimizer I, maximizer II.

Description. Player I removes vertices from G until G is disconnected and then

passes play to II. Player II chooses one of the newly created components to call G,

discards the other components and passes G back to I. The game ends when IV1 5 1.

Step 1. i=O, V”= V, score(G)=O.

Step 2. If 1 V’I 5 1 go to Step 6.

Step 3. Player I chooses S’ c V’ such that G’ \ S’ is not connected or is the empty

graph; score(G) = score(G) + IS’\.

162 D.C. Llewellyn et al.

Step 4. Player II chooses Gi+r, a connected component of G’ \ S’; i = i + 1.
Step 5. Go to Step 2.
Step 6. Stop.

We define the value of the separation game on a graph G, denoted o(G), to be
score(G) when each player plays optimally, I to minimize score(G) and II to
maximize.

Lemma 2.3. The value of the separation game provides a lower bound on the
amount of work required by any algorithm to find a local minimum on graph G;
while the amount of work required by the divide and conquer algorithm provides
an upper bound,

Proof. This lemma is equivalent to claiming that u(G)<L(G)rdc(G). The second
inequality follows from Lemma 2.1 and the definitions. Further, in any application
of the adversarial strategy described in Section 2.2, the oracle can select the compo-
nent of G that is chosen in the optimal play of the separation game. Hence, o(G)
provides a lower bound on the number of function queries forced by the oracle in
the adversarial strategy, which is less than L(G) by Lemma 2.2. 0

This lemma shows that if the gap between o(G) and de(G) is small then either one
will provide a good estimate of L(G). In the path example, we saw that one im-
plementation of the divide and conquer algorithm (choosing the midpoint of the
path at each iteration) gives a 3 log n upper bound on de(G) and that the adversarial
strategy gives a lower bound of log n. The difference between these two can be
viewed in two ways. First, the upper bound is three times the lower bound; second,
the gap is logarithmically small. In general, the latter view is the correct one. In par-
ticular, the gap is equal to the maximum degree of a vertex (2) times the number
of times Step 3 of the divide and conquer algorithm is needed (log n). Actually, it
is foolish for the adversary to select either subpath P, or Pb immediately. Rather,
she should wait for the next query and then select the subpath that does not contain
this queried vertex. Hence the optimal strategy is not to naively pick the midpoint,
but rather to slightly unbalance the two subpaths by doing Fibonacci search. It is
straightforward to prove that this gives the optimal value of the separation game
to be log, n + 2; where @ is the golden mean #l/s - 1)) and the 2 arises from the
extra queries to test the local optimality of the final selection.

In the next section we investigate another example where we are able to establish
fairly tight bounds on L(G). We will use the following result.

Proposition 2.4. In the separation game S’ can always be taken to be a minimal
separating set of G. That is, for any SCS’, G’ \S is connected.

Proof. The removal of any nodes not in a minimal separating set can be delayed

Local optimization on graphs 163

one iteration, at which time they can be removed (if in the component chosen by
player II) keeping score(G) the same, or ignored (otherwise) decreasing score(G).

[7

3. Finding a row-column minimum in a matrix

We now apply the ideas of Section 2 to a specific local optimization problem.
Suppose A is an n x n matrix: how hard is it to find an entry that is less than or equal
to every other entry in its row and column? It is clear that one can play the adversary
against a local improvement algorithm so as to force every entry of the matrix to
be queried. We show that asymptotically, one needs only to query between one half
and two thirds of the matrix, and we conjecture that the upper bound of f is
asymptotically tight.

Following our development in Section 2, the graph of neighborliness, G, is formed
by defining a node for each matrix entry with an edge between two nodes if and only
if they are either in the same row or column. Using Lemma 2.3, we will attempt to
find o(G) in order to obtain a good estimate of L(G). However, G is dense and dif-
ficult to visualize. Therefore, we move to an auxiliary graph. Consider the complete
bipartite graph H= (R U C, E), where R = (1, . . . , n> and C= { 1, . . . , n> . In this graph
we have one node for each row and for each column, with an edge connecting each
row and column pair. Here, each edge corresponds to an element in the matrix, and
so we move to an edge version of our separation game where player I removes edges
from the auxiliary graph rather than deleting vertices from the original graph. Other
than this change, the game is played in the same manner as the original (vertex)
separation game.

Proposition 3.1. The value of the (vertex) separation game played on the original
graph is the same as the value of the edge separation game played on the auxiliary
graph.

Proof. We noted above that edges in the auxillary graph correspond to vertices of
the original graph. This implies that a separating set of vertices in G is a disconnect-
ing collection of edges in H. Further a disconnecting set of edges in H must cor-
respond to a separating set of vertices in G unless one of the resulting components
in His an isolated vertex. However, this case will never arise in our application since
player II would never choose such a component before the last iteration of the game.

We now analyze this game. For ease of presentation, we will relax the assumption
that IRI = ICI; but will always assume that m = IRI I ICI =n. Suppose that player I
chooses subset F of the edges to separate graph H= (R U C, E). By Proposition 2.4,
we can assume that F is a minimal separating set. Then clearly, since F is a set of
edges, it must disconnect H into exactly two components, each a complete bipartite

164 D. C. Llewel!vn et al.

graph. The components can be represented by (J,K) and (m- J,tt-K), where in
each case the ordered pair corresponds to the number of row vertices and the

number of column vertices in that subgraph. Clearly, player II will return to player

I the component which requires more work to finish disconnecting. Let .f(m, n) be

the value of the edge separation game on the complete bipartite graph H. Where,
for general r and s, f(r, s) is to be read as f(min(r, s), max(r, s)). The discussion above

implies

f(m, n) = min min ([max(f(J, K), f(m -J, n - K))]
15J5,,1 I sRsn

+J(n-K)+K(m-J)).

To simplify this, let K(J,m) be the smallest integer such that

f(J,K(J,m))rf(m-J,n-K(J,m)).

Thus, we can assume without loss of generality that F is chosen in such a way that

Kr K(J, tn) and hence that player II returns the (J, K) component. This implies

_c(~77, n) = min min {f(J,K)+J(n-K)+K(m-J))
15J5/?I h’(J,nl)5li5”

= min min (f(J,K)+Jtz+K(m-2J)).
I s.tcr,, E;(.t,fti)c~sn

However, if we begin with m 5 n then in order to maintain this condition of no more

row vertices than column vertices, we must assume that JI L+mJ. Now it is clear

that for J> L+ttzJ, switching the roles of R and C will give a symmetric argument.

Hence we now assume Js Ljtt~J, giving

f(m, n) = min min {f(J,K)+Jn+K(tn-2J)).
ISJC L”?/‘] tq.t,/II)~tc~fI

Further, it follows from the definition that for JI L+ttz J, f(J, K) is nondecreasing

in K. Hence,

f(m, n) = I c J$n2, {.fU W.4 ~~2)) + Jn + NJ, m)(m - 2 J)> .

We now need to determine some effective bounds on K(J,m).

Proposition

Proof. This

Proposition

3.2. If n~sttt' and nrn’ then f(tn,n)rf(m’,n’).

is clear by definition. 0

3.3. K(L+tt2J, tn)r r+nl.

Proof. By definition, f(L~mJ,K(lfmJ,m))rf(rfm-l,n-K(L~mJ,t~)). There are

two cases.

(I) r+tt?l rtt-K(L+],M). Now, L+mj I r+tnj = by Proposition 3.2 that

K(L~tnJ,tt?)1n_K(L~tnJ,tn)~ K(L+ttzJ,m)r+n.

Local optimizaGon on graphs 165

(2) [+rnl rn-~(L+mJ,rn). Then, by definition f(L+mJ, K(L+m J, m)r

An-K(/_tmJ,m), T+ml).
(a) n-K(L+mJ,m)rL+mJ =,~(L~mJ,m)rn-L~rnJ~tn.

(b) n-R(L+mJ,m)> L+mJ. Then, by Proposition 3.2,

K(L+mJ,m)r r+ml* n-K(i+mJ,m)< L+mJ

which is a contradiction.

In each of these cases, the integrality of K(J,m) gives the desired result. Cl

Using a similar argument, one can also prove the following upper bound.

Proposition 3.4. K(r+ml, m) 5 L+n J + 1.

Corollary 3.5. If m is even then K(+m, m) = r+nl.

Proof. Using Proposition 3.3 and Proposition 3.4, clearly r+nl rK(+m,m)<
L+n J + 1. Consider th e case when n is odd. This gives r+nl sK(+m, m) I r+nl and
we are done.

Now consider when n is even. In this case, the two components resulting from
the removal of F are (+m, K(+m, m)) and (+m, n - K(+m, m)). Clearly +n will suffice
to make the first subgraph at least as hard to finish as the second and hence by
minimality of K(J, m) we must have K(+m, m) = +n = [+nl . 0

Now, we can use these bounds to determine bounds on f(m,n).

Proposition 3.4. The value of the edge separation game played on the complete

m x n bipartite graph is greater than or equal to [+rnnl + L+n J .

Proof. To prove this we will first show that f(m, n)r [+rnnl + 1. Then, using this
iteratively gives the desired result. By definition,

Am, n) = , ,J$;l,2, (_fCJ, NJ, ml) + J(n - JU m)l + Q.4 ml@ - J>>

= min {f(J, K(J, m)) + Jn + K(J, m)(m - 2J)).
I 5 J5 [/?8/2j

Note that for all J,K> 0, f(J,K)r 1, hence,

f(m,n)r 1+ min {K(J, m)(m - 2J) + Jn} .
I sJ5 Ll??/2J 1

It is clear that K(J,m) is nonincreasing in J, hence

f(m,n)r 1+ min {K(L+mJ,m)(m-2J)+Jn).
I c Js Ln?/2]

166 D.C. Llewellyn et al.

Using Proposition 3.3 and treating the four possible cases of parities of m and n

separately we get,

f(m, n) 2 min (l+ [++77-2J)+Jn)
I C./I Lvl/ZJ

2 I+ r+nlm+ ~(~-~L+IzJ)z I + r++

1 1 + r+rnnl as desired.

Now, plugging this in for f(J, K(J, m)) instead of the term of 1 used above and using
the fact as above that in this range K(J, m)r r+nl and Jz 1 gives the next result that

f(~. n)? 1 + r+Oznl + r+nl. Iterating then yields the result. •1

Applying induction on m and n, it is straightforward to obtain effective upper

bounds on the value of the edge separation game in some special cases.

Proposition 5.1. If m and n are powers of 2, with m I n, then the value of the edge
separation game played on the complete m x n bipartite graph has an upper bound

of L+mn+fn/mJ. ~7

Proposition 3.8. The bound given in Proposition 3.7 does not necessarily hold if m

or n is not a power of 2.

Proof. First, consider f (2,3). From Corollary 3.5, K(1,2) = 2, and clearly f (1, n) = n
for all nz 1. Thus,

f(2,3)=f(l,2)+ 1(3-2)+2(2- 1)=2+ 1+2=5.

But, L~mn+fn/mJ=L5.6+41=4<5.

Next, consider f(3,16). It is straightforward to prove that K(l, 3)~ r$l.
Hence, here K(l,3)r 10. Thus,

f(3,16)zf(l, lo)+ 1(16- IO)+ 10(3- 1)

= 10+6+2ti=36.

But,

Lfmn+fn/mJ = L+-48+$J =33c36. 0

However, with careful application of divide and conquer, and induction, we can

okain an upper bound on the value for all m and n. The proof entails several cases.

The nature of the proof in each individual case depends only on whether certain

components (arising from the divide and conquer status) have an even number of
vertices.

Proposition 3.9. For all m and n, with m 5 n, the value of the edge separation game

played on the complete m x n bipartite graph has an upper bound of L f mn + f n J .

Local optimization on graphs 167

Proof. We will show that f(m, n)lfmn +$z and the result will follow by integra-
lity of f.

We need to break this into several cases. The idea in each is the same. We try to
decompose each vertex set of the bipartite graph into equal parts and analyze the
total work involved. We will be getting an upper bound by analyzing the work
needed to solve the problem using the following specific strategy: Let R =A U B and
C=SU T. (Hence IAl + IBI = m and IS I + I TI = n.) Then we will first disconnect A
from T which requires IA I I TI edges removed, then we will disconnect B from S
which requires IBI (SI edges removed. Then we finish by choosing the component
that requires the most work, among (A, S) and (B, T). The total work needed then is

I4 ITI + 14 ISI +max{f(AS),f(B, T)I.

Using induction on m and n implies

f(m,n)l IAl ITI + IBI ISI +max@l ISI ++lSl,flBl ITI ++ITIl.

Here, if one analyzes the cases m and n are both even, m is odd and n is even, m
is even and n is odd, and m and n are both odd, using our results above, it is clear
that the desired result will follow. q

Putting together Propositions 3.6 and 3.9, we have proved the following theorem.

Theorem 3.10. The value of the edge separation game played on a complete m x n
bipartite graph has a lower bound of rfrnnl + L+n] and an upper bound of
(4 + o(1))mn.

Corollary 5.X. The amount of work required to find an element that is smallest in
its row and its column in an m x n matrix, with m in, is greater than r+mnl. Fur-
ther, our divide and conquer algorithm requires no more than fmn + fn + 2n log m
work to solve this problem.

Proof. From Theorem 3.10, we see that L(G)> rtmnl for all min. The other
result will follow from Theorem 4.7 in the next section. cl

Conjecture 3.12. v(G) z fmn + $n/m for all m I n.

We have verified this conjecture for all m zz n 564.

4. Computing the value of the separation game

We have seen in Lemma 2.3 that the value of the separation game on G is useful
since it provides a lower bound on the number of function evaluations required by
any algorithm, and a fairly close estimate on the work required by the divide and

168 D.C. Llewellyn el al.

conquer algorithm. However, we have also seen in Section 3 that analyzing even
fairly simple graphs can be difficult. In this section, we establish the complexity of
determining o(G) and we show how to obtain bounds on this value.

4. I. Complexity of computation

Despite the apparent simplification provided by Proposition 2.4, it is not easy to
determine player I’s optimal strategy. It seems plausible that player I wishes to
separate Go into roughly equal parts at minimum cost, for if Go where separated
into unequal parts then player II could simply choose the larger component. Unfor-
tunately, the size of a component is a poor measure of the value of the game. For
instance, the graphs P,, (a path on n vertices) and K,, (the complete graph on n
vertices) have the same number of vertices yet the separation games on these graphs
have very different values. To see this, from Section 2 we know that o(P,)l log n,
while in contrast it is easy to establish that o(K,) = n - 1.

This complication is formalized by showing that calculating o(G) is NP-hard. To
do this, we will show that to play optimally during the first two moves, player I must
solve an NP-hard problem. The precise objective for player I’s first move is
to choose So to minimize ISol +maxi o(Gf) where the G: are the components
of G”\So.

Notice that (assuming the complexity result is true) o(G!) is hard to evaluate!
This is one of those curious cases where the complexity of the problem fights against
a proof of its complexity. To resolve this, we will find a structure such that the
values of the graphs that result after the first few moves are known.

We need an intermediate result on a restricted version of vertex cover: A tripartite
graph is a graph G = { Vr, Vz, V,; El*, E,,, El3 > where 4, i = 1,2,3 are disjoint vertex
sets and (i, j) E E,, * ie V, and je I$. That is, a tripartite graph is a graph with an
explicit 3-coloring.

Recall that the vertex cover problem is to find a minimum cardinality subset of
vertices of a graph which contains at least one endpoint of each edge.

Theorem 4.1. Vertex Cover restricted to tripartite graphs is NP-complete.

Proof. The reduction is a mofidication of the reduction of [7] from 3-SAT to Vertex
Cover. Rather than 3-SAT, we will use another restricted form of SAT, proved NP-
complete in [17]: SAT restricted by (I), (2), and (3) below is NP-complete:

(1) Each clause has 2 or 3 literals;
(2) Each variable appears in at most 3 clauses;
(3) Each variable appears complemented exactly once.

If the reduction of [7] for 3-SAT to Vertex Cover is used with the above SAT
restriction (where edges replace triangles for clauses with 2 Iiterals) then a
3-colorable graph results. The 3-coloring can be found in a greedy fashion, provided

Local optimization on graphs 169

the nodes are colored in the order: clause triangles, clause edges (using just colors
1 and 2), uncomplemented variables, and complemented variables. 0

We are about to prove that the separation game value is hard to calculate. Our
construction makes use of a structure we call a spider. Define an (h, w, t)-spider to
be a graph with vertex set

V={u ,,... ,u/?,u I,... ,U,“,XI, X,1

and edge set

E={(u~,u~): lriCj~h)U{(ui,uj): l~i<j_~W}U((Xi,Xj): l~icj~t}

U{(IJ~,~~): lsilh, !sjrw}

U{(Ui,Xj): llirw, lljlt}.

So a spider is three complete graphs Kh, K,,, K,, which we call the head, waist
and tail respectively, where each node in the waist is connected to each node in the
head and tail.

Proposition 4.2. If G is an (h, w, t)-spider then the value of the separation game on
G is equal to w+max(h,t)- 1.

Proof. The waist is the only minimal separating set so, by Proposition 2.4, player
I chooses it as the first move. This leaves Kh and KI. Since u(K,) =p- 1, player II
will choose the larger. Cl

Theorem 4.3. For a graph G and integer k, determining if the value of the separation
game o(G) zs k is N&complete.

Proof. The problem is in NP since we can completely specify player I’s strategy with
one label per node; where a node receives label i if player I plans to remove it duri:rg
his ith turn (if player II has played so that this node is in Vi).

To show completeness, we will reduce from the result in Theorem 4.1. We will
take three spiders and connect their heads with a “web” of arcs forming a tripartite
cover instance. We then show that player I’s optimal strategy is to separate the
spiders and to use a single spider, for which we know the optimal strategy. Separating
the spiders optimally involves solving the tripartite vertex cover problem.

Let G = (Vi, Vz, Vs, E12, E13, Ez3; k) be an instance of vertex cover restricted to tri-
partite graphs. Set T= 1 V,I + 1 V21 + 1 &I.

Create these spiders H’, i= 1,2,3, where Hi is a ([K I + T, k, 2T)-spider. Denote
the first I K I vertices in the head of Hi, uj for j= 1,2, . . . ,I K I for i= 1,2,3. Put
edges between these vertices corresponding to G and call this graph H.

We claim o(H)12(T+ k) - 1 * G has a vertex cover of size Sk.
(c) If G has a vertex cover C, with ICI 5 k, then player I can choose So as the

170 D.C. Llewellyn et al.

nodes corresponding to C. This disconnects H into 3 spiders, each with a larger tail
than head. By Proposition 4.2, each has value k + 2 T- 1 so o(H)r jS”l + k + 2 T- 15
2(T+ k) - I as needed.

(*) By Proposition 2.4, player l’s first move removes either
(i) a waist, leaving a component containing two connected spiders. This compo-

nent requires at least k + 2 T deletions because a spider has value k + 2 T- I and at
least one node is needed to disconnect the spiders. This gives o(H)? 2(T+ k).
Contradiction.

(ii) nodes attached to the web, zparating one spider from the other two. Two
cases:

(a) if this separates all three spiders then, since a spider requires k+ 2T- 1
deletions, no more than k nodes separated the spider, which cor-
responds to a vertex cover of size rk.

(b) if two spiders are still connected, then player II can pick that compo-
nent. Player l’s response is either a waist (which leads to the contradic-
tion in (i)) or a separation of the spiders (which leads to the
calculation in (ii)(a)) hence proving the claim. 0

4.2. Boundary theorems and lower bounds

Theorem 4.3 implies that we cannot find the exact value of the separation game
for an arbitrary graph by any known efficient algorithm. Hence, we turn to develop-
ing tools for estimating o(G); in this section we illustrate how to apply boundary
theorems to obtain lower bounds on o(G).

Theorem 4.4. If the separation game is played on graph G = (V, E), then for all in-
tegers k and t, Or t d kr 1 VI, player II can force player I to either

(i) delete at least t vertices, or
(ii) create a set of components with total cardinality s, with k-t ISC k.

Proof. Consider the following strategy for player II:

Step 1. Let B=0, P=G.
Step 2. Let player I separate P.
Step 3. Pick an order of the resulting components, say P1,P2,Pp and let

PO=0 and Pp+, =P.
Step 4. Let ir 1 be such that

IBUPoUP,U.**UPi_,Irk and IBUPoUP,U*.eUPiI>k.

Step5. LetB’=BUPoUP1U...UPi_,.lfk-t~IB’IrkgotoStep6;ifi=p+1
go to Step 7; otherwise let P= Pi, B= B’ and go to Step 2.

Step 6. Stop, B’ is a subset of vertices with k- t= lB’/ 5 k.
Step 7. Stop, player I has chosen t vertices.

Local optimization on graphs 171

The termination in Step 7 is correct due to the following:
By construction, at Step 2 for each iteration (BI ok- t Sk< lBUP(and, for

i=p+ 1 in the final Step 5, IS’1 s k - t. But

P&Ptu~~U$=P\s,

where S is the separating set chosen by player 1 in Step 2. So

ISI=(BUPI--IB’I>k-(k-t)=t.

This means player I has removed at least t vertices as required. Cl

Let B(S) be the boundary of SC V. That is,

B(S)={oe V\S: 3e=(u, w), WES}.

By fixing t, we get the following corollary:

Corollary 4.5. For any graph G and integer t,

o(G)rmin &my m~n{lB(S)I:k-t~lSl~k} .
1

Proof. From Theorem 4.4, for any k, either t nodes are removed or a set of com-
ponents with total cardinality s, k- tzzs< k, is created. To create such a set, the
boundary of that set must have been among the nodes chosen by player I. Hence,
in this case, player I removes at least min{ IB(S)l: k-t< (SI it > nodes. Since
Theorem 4.4 holds for all k, the maximum over all of these values is a lower bound
on the value of the game. 0

One useful value for t in the Corollary 4.5 is as follows. Let

P(G)=max min{lB(S)I: ISI =i>.

Setting t = /3(G) gives the following corollary.

Corollary 4.6. For any G,

o(G)rmin /3(G),my min((B(S)I: k-/S(G)=(SI<k} .
1

4.3. Separator theorems and upper bounds

The strategy in Theorem 4.4 also leads to a feasible implementation for Step 1
of the divide and conquer algorithm in Section 2.1. This accounts for all of the
queries of the algorithm except that Step 3 examines the neighbors of one node in
each separating set. Therefore, for graphs where each node is of small degree, upper

172 D.C. Llewellyn et al.

bounds on u(G) provide useful upper bounds on L(G). Let 6,,,,,(G) be the max-
imum degree of any node in G and let K be the number of separating sets used by

player I.

Theorem 4.7. u(G)5 L(G\zi o(G) + &,,(C)K.

Proof. The first inequality comes from Lemma 2.3. The second inequality is a result
of player I using optima1 separators for the separation game in a divide and conquer
algorithm. Step 3 of the divide and conquer algorithm requires the additional in-
quiry of at most 6,,,,(G) nodes for one node in each separating set. 0

We now show how we can use separator theorems to determine upper bounds on
o(G). Suppose G belongs to a class of graphs G closed under the subgraph opera-
tion. G satisfies an s(n)-separator theorem with constants (r and p, CT E [+, l), p>O
if any G E G with n vertices can be separated into two sets A and B with IA I, 1 BI s an
and the separating set has +s(nj vertices. A feasible, though not necessarily poly-
nomially computable, strategy for player I is to separate the graph by such a
separator, forcing player I1 to choose a smaller graph to work with. This algorithm
gives the following bound:

Corollary 4.8. If G belongs to a class of graphs G closed under the subgraph opera-
tions such that G satisfies an s(n)-separator theorem with constants a and p, then

o(G)cp C {s(a’n): Olir -log n/logs}.

Proof. This follows from the definition of player I’s algorithm. 0

There are several separator theorems in the literature for special types of graphs.
Here, we give two examples which illustrate how to use these to derive bounds on
the value of the separation game.

Theorem 4.9 [4]. Any planar graph satisfies a fi-separator theorem with a = 5 and
p=fi.

Theorem 4.10. For any planar graph on n vertices, the value of the separation game
on G is at most 13.35ii.

Corollary 4.11. A local optimum on a planar graph with n vertices and maximal
degree 6 can be found in

function evaluations.

Proof. This follows from Theorems 4.7 and 4.10 and Corollary 4.8. 0

Local optimization on graphs 173

This theorem for planar graphs can be generalized to graphs of fixed genus.

Theorem 4.12 [8]. Any graph of genus g satisfies a separator theorem with (r =-$
and ps(n) = (6fi + 21/2)fi + 1.

Theorem 4.13. For any graph G of genus g on n vertices, the value of the separation
game on G is at most (6G + 2$?)(3 + fi)fi + O(log n).

Corollary 4.14. A local optimum on a graph of genus g with n vertices and max-
imum degree 6 can be found in

(6fi f 21/2)(3 + fl)fi + O(log n) + S
(ldgo:I I>

function evaluations.

Proof. This follows from Theorems 4.7 and 4.13 and Corollary 4.8. Cl

5. The hypercube

We now apply the machinery developed in the previous sections to the problem
of finding a local optimum on the vertices of the hypercube. Letting Gd= (V,E)
denote the graph of the d-dimensional cube, and f a function I/--,& how hard is
it to find a local optimum off on Gd?

A straightforward application of our divide and conquer algorithm gives:

Theorem 5.1. A local optimum on the d-cube can be found with ~(2~log d/G)
function evaluations where c = m + o(d).

Proof. We prove this theorem by illustrating that de(G) has the given value as an
upper bound. Hence by Lemma 2.3, the proof will be complete.

Define the pth shell of the hypercube to be t,he vertices with exactly p “l”s, so
that the pth shell has cardinality (,“). Each shell separates the d-cube, so we can
narrow down our search to a single shell by binary search on the d+ 1 shells. This
binary search takes at most log(d + 1) + 1 “steps”, each step involving the inspection
of a shell where no shell has cardinality exceeding (&,). Further, by the extended
Stirling approximation [6], the size of the center shell satisfies:

where
el/(12d+ 1) el/12d

C*= e2/6d ; c2= --
e2/(6d-t I) *

174 D. C. Lle wellyn et al.

Therefore the binary search requires at most

2d(l + log*@+ 1))

1Td (i 1
2 + o(d)
lr

lookups. There are at most d log d “additional” queries so they do not affect this
bound. Once the location of a local minimum has been narrowed down to a single
shell, an additional (L$Z,) queries will certainly suffice to find a local optimum.
This gives a total of

proving the theorem. El

We remark that the computation of the bound in this theorem is fairly tight. This
might seem surprising since all of the shells are not the same size and hence a more
efficient algorithm might, for instance, use a sequence of p’s (querying thepth shell)
more like 4 d,Sd, . . . rather than +d, Sd, Further, (&) is much smaller than
(&), and in the theorem all shell sizes are bounded only by (&). However, note
that when OS~S i$.

(ijddJ -i> L (Ltd$@,) +d(+d-l)(+d-2)...((+d-+d)+l)

CL;,) (L:dd,j

L L+d++fdjL+d++@-11 . ..(+d+l)

>

This means that there is a stretch of @ shells each at least half the size of the largest
shell. Clearly any shell by shell search just in this region would cost at least

so we are not off by more than a factor of 4.

The hypercube is one of the few families of graphs whose genus has been deter-
mined: Beineke and Harary [2] and Ringel [16] show it equals (d- 4)2d-2 + 1. Bjr
Corollary 4.14, a local optimum can be found in

-.-
(61/02”- 3 + 1 + 2@)(3 + /6)2d’2 + O(d) +

d2

> (10)29%x (%2d)
log3- 1

function evaluations. This is much weaker than the bound given by Theorem 5.1,
because the =61/-2” separator from Theorem 4.12 is obviously too large for the
d-cube.

Local optimization on graphs 175

We can also combine a result about boundary minimization on the d-cube with
our Corollary 4.6 to get a lower bound on o(G) and hence a lower bound on the
number of function evaluations required. Let

B(G,m)=min{jB(S)I: ISI =m).

That is, the size of the smallest boundary any set of m vertices can have. A bound
on the minimum boundary size B(G, m) is given by [181:

Let Pi denote Cj,,(y). If m= Pi, then B(Gd,m)=(;+d,). Otherwise let i be such
that Pi_l~m~Pi. Then

B(Gd, m) 2

ir+(d- l),

ir+(d- 1).

Applying the above bounds gives /3(Gd) = (L$Z,) where j?() is as defined in Sec-
tion 4. Moreover, for m in the range

we have a lower bound of

Applying Corollary 4.6, we have proved the following:

Theorem 5.2. The value of the separation game played on the d-dimensional hyper-
cube is at least (1/2’Z7;;-o(d))2d/@.

Corollary 5.3. Any algorithm which finds a local minimum on the d-cube requires
at least 2d- ‘/fd function evaluations.

In this case the gap between the lower and upper bounds is more than a constant
factor, but still quite small: O(log log 1 VI).

We make some comments comparing this result to others concerning local op-
timization on the d-cube. The closest result we know of is due to Aldous [l]. He con-
siders a game where player I, a minimizer, selects an algorithm A to find a local
minimum on the d-cube, while player II, a maximizer, selects the function f. The
outcome of play of the game is the number of function evaluations required by A
to find a local minimum off. Aldous shows that the value of the game is roughly
0(2d’2). In these terms, we have analyzed the value of a modified game when
player I has to play before player II (player II sees A before choosing f). It is in-
teresting that the modification causes such a large increase in the value of the game.

176 D.C. L lewellyn et al.

The problem we have analyzed, whenfis computable by a polylog (in n, i.e. poly-
nomial in d) width and depth circuit, is essentially FLIP, the canonical PLS-
complete problem of [lo]. So if PLS = P, the polynomial algorithm for FLIP must
make strong use of limitations on f, since Theorem 5.2 implies there is no poly-
nomial algorithm that works for arbitrary functions f (or even arbitrary functions
f with single local optimum). On the other hand, if PLS is not in P, it might be possi-
ble to modify the adversarial argument so as to create a function f which was poly-
log computable, while retaining a superpolynomial bound. Such a proof would
imply NP #P and would undoubtedly be very difficult! Even a weaker result of the
following form would be interesting (this reflects the generally sorry state of lower
bound technology): if f is computed by a circuit of fixed width and depth&z), then
the number of function evaluations required to find a local optimum is at least
q@(n)), where q() and p() are polynomial functions (q of quadratic or higher
order).

Theorem 5.2 yields a snake-in-box result. Define a snake in a graph as a simple
path such that any two vertices in the path are adjacent in the graph iff they are
adjacent in the path. Thus the snake’s coils stay a hamming distance of at least 2
from each other. (A snake-in-box in [3] is defined similarly except that the snake
bites its tail, i.e., it is a cycle.) How long can a snake in the d-cube be? Notice that
a local improvement algorithm which iteratively selects the best adjacent vertex must
follow a path which is a snake, since a better adjacent vertex further down the path
would previously have been selected. Such an algorithm takes at most d - 1 function
evaluations per iteration (after the first). But Theorem 5.2 says that in the worst
case, any algorithm must use 2d/2@ function evaluations. Hence, the local im-
provement algorithm in the worst case takes at least ((2d-1/]Td)- l)/(d- 1) itera-
tions, so there is a snake that long (of order 2dd-3’2). This is not quite as strong
a result as the best known [3] of order 2dd-“2.

We get a surprising observation if we compare the proof of Theorem 5.2 with the
analysis of average performance in [is]. Recall that

B(G,m)=min{IB(S)I: ISI =m}.

The driving force behind the exponentially large lower bound is the large size of
B(G,,m). In particular, the fact that

is sufficient to imply a large exponential lower bound on worst-case performance
of any algorithm. On the other hand, the O(d log d) and O(d*) upper bounds on
average performance of local improvement aigorithms in [181 are derived by proving
inequalities such as

2”- I

Z(d) 5 2 + c ek/B(Gd, m),
nl = 2

Local optimization on graphs 177

where I(d)= the expected number of iterations of a local improvement algorithm for
problems with a single local optimum (for any k regular graph). Hence, here the
large magnitude of B(Gd,m) leads to a low order polynomial bound on I(d). Thus
we have the peculiar situation that the sume graphical property of the hypercube,
namely the large magnitude of B(Gd, m), appears to be responsible for both the ex-
ponentially bad worst-case and the polynomially good average-case performance of
local improvement algorithms.

6. Remarks

Our analysis shows that local search may not be the most efficient method (in the
worst case) to find a local optimum of an arbitrary function on a graph. Instead,
a divide and conquer algorithm tends to give better performance. On a path, this
algorithm is essentially Fibonacci search. Fibonacci search can be extended to higher
dimensions but this does not give the right way to find local optima in arbitrary
graphs. Binary search has also been extended to higher dimensions by Dobkin and
Lipton [5] and Wood [19]: in [5] the function values (data) are allowed to be re-
arranged in any desired way: in 1191 the generalization is highly geometric. The
proper generalization to arbitrary graphs, for our problem, iscloser to other divide
and conquer algorithms on graphs, such as nested dissection for solving r” system
of linear equations [12]. Like generalized nested dissection, our algorithm depends
heavily on finding a sequence of graph separators; as in [12] Corollary 4.5 shows
that no efficient algorithm for finding local optima exists if the graph does not have
a good separator.

Theorem 4.3 shows that for general graphs it is NP-hard to find the best set of
separators. On the other hand, the analysis of the separation game, though hard,
also provides a close lower bound, assuring us of the near-optimality of our
algorithm.

It is interesting to see how complicated it can be to design an efficient algorithm
that does something very simple, such as finding an entry in a matrix which is
smal!est in its row and column. The analysis of the d-cube also gave us a new insight
into the relationship between the average and worst case behavior of local improve-
ment algorithms.

The exponential lower bound on the work required by any algorithm to find a
local optimum on the d-cube suggests that, to find polynomial algorithms for local
optimization in combinatorial problems (e.g., integer programming, travelling
salesman problem) we need to make heavy use of the restrictions on the objective
function implied by the combinatorial problem. Even though it is easy to know
which points to check to test for local optimality, and it is easy to know that at least
one local optimum must exist, it is hard to find a local optimum for arbitraryf. Our
construction employs an f which (we think) cannot be computed by a polynomial
(in d) width and depth circuit. If it is not easy to know that at least one local op-

178 D. C. Llewellyn et al.

timum must exist, then finding it can be difficult even with a simplef. For example,
if we seek a strict local optimum, the trivial adversarial functions, that are constant
everywhere, or constant except at one point, ensure that any algorithm is slow. It
can also be hard to kno;v how to test for local optimality: Murty [13] shows that
it is NP-hard to test for local optimality in continuous quadratic programming, even
if function evaluations are assumed to cost unit time.

Acknowledgment

The term “bare tree” was suggested by Kurt Anstreicher.

References

[I] D. Aldous, Minimization algorithms and random walk on the d-cube. Tech. Rept., University of

California, Berkeley, CA (1981).

[2) L.W. Beineke and F. Harary, The genus of the n-cube, Canad. J. Math. 17 (1965) 494-496.

[3] L. Danzer and V. Klee, Lengths of snakes in boxes, J. Combinat. Theory 2 (1967) 258-265.
[4] H. Djidjev, On the problem of partitioning planar graphs, SIAM J. Alg. Dis. Meth. (1982) 229-240.

[S] D. Dobkin and R. Lipton, Multidimensional searching problems, SIAM J. Comput. 5 (2) (1976)

181-186.
[6] W. Feller, An Introduction to Probability Theory and Its Applications 1 (Wiley, New York, 1971).
[7] M. Garey and D. Johnson, Computers and lntractibility: A Guide to the Theory of NP-

Completeness (Freeman, San Francisco, CA, 1979).

[8] J.R. Gilbert, J.P. Hutchinson and R.E. Tarjan, A separator theorem for graphs of bounded genus,

J. Algorithms 5 (3) (1984) 391-407.
[9] D. Hausmann and B. Korte, Lower bounds on the worst-caee complexity of some oracle algorithms,

Discrete Math. 24 (1978) 261-276.

[IO] D. Johnson, C. Papadimitriou and M. Yannakakis, How easy is local search?, in: Proceeding IEEE

Symposium on the Foundations of Computer Science (1985) 39-42.

[I I] G. Leuker, Unpublished manuscript, Princeton University, Princeton, NJ (1976).
[!2] R. Lipton, D. Rose and R. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (2)

(1979) 346-358.
[!3] K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear program-

ming, Math. Programming 39 (2) (1987) 117-130.

1141 G. Nemhauser and L. Wolsey, Best algorithms for approximating the maximum of a submodular
set function, Math. Oper. Res. 3 (1978) 177-188.

[151 C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity

(Prentice-Hall, Englewood Cliffs, NJ, 1982).

[!6] G. Ringel, Das Geschlecht des Vollstlndigen Paaren Graphen, A.B.H. Math. Sem. Univ. Hamburg

28 (1965) 139-150.

[!7] C.A. Tovey, A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8 (1984) 85-89.

(181 C.A. Tovcy, Low order polynomial bounds on the expected performance of local improvement
algorithms, Math. Programming 35 (2) (1986) 193-224.

[!9] G.R. Wood, Multidimensional bisection and global minimization, Tech. Rept., University of

Canterbury, 1985.

