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In this paper, we introduce and study an extension of the chromatic polynomial of a graph. 
The new polynomial, determined by a graph G and a subset K of points of G, coincides with 
the classical chromatic polynomial when K is the set of all points of G. The main theorems in 
the present paper include analogues of the standard axiomatic characterization and Whitney's 
topological characterizations of the chromatic polynomial, and the theorem of Stanley relating 
the chromatic polynomial to the number of acyclic orientations of G. The work in this paper 
was stimulated by important connections between the chromatic polynomial and the all- 
terminal network reliability problem, and by recent work of Boesch, Satyanarayana, and Suffel 
on a graph invariant related to the K-terminal reliability problem. Several of the results of 
Boesch, Satyanarayana, and Suffel are derived as corollaries to the main theorems of the 
present paper. 

1. Introduction 

As a result of work on network reliability analysis, a graph invariant called 
domination was introduced in [14] for directed graphs and subsequently in [10] for 
undirected graphs. This invariant has since been explored and applied by several 
authors [1, 2, 6, 7, 11-13] and shown to possess many interesting properties. The 
original definition of the domination of a graph employs the concept of 
formations of a graph. Let G = (V, E) be a graph and K ___ V be a specified subset 
of V. A K-tree is a minimal connected subgraph H of G which contains all points 
of K; minimality, as usual, means that no connected proper subgraph of H 
contains all points of K. It is obvious that a K-tree is a tree which contains K and 
has all its degree-one points in K. A formation of G is a set of K-trees of G whose 
union yields the edge set of G. A formation is said to be odd if the number of 
K-trees in the formation is odd, and is said to be even otherwise. The signed 
K-domination dr(G) is the number of odd minus the number of even formations 
of G. If K = V, the invariant dr(G) is known as the all-terminal domination of G. 

The results to be presented here were motivated by the recent paper of Boesch, 
Satyanarayana, and Suffel [4], in which several alternate characterizations for 
dr(G) were established. Of particular relevance is the connection they discovered 
between the chromatic polynomial of G and dr(G), namely that dr(G) has the 
same absolute value as the coefficient of ~. in the chromatic polynomial P(G, X) of 
G. This observation follows from one of the characterizations of d r (G)  in [4] and 
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Whitney's expression for the coefficients of the chromatic polynomial in terms of 
the spanning subgraphs of G. It is well known that the coefficients of P(G; )~) 
have several fascinating properties. For example, in the influential paper of 
Whitney [17], another characterization is given for the coefficients of P(G; ~) in 
terms of spanning forests which do not contain what Whitney called "broken 
cycles". Another example is the remarkable result of Stanley [15] that the sum of 
the absolute values of the coefficients of P(G, ~) is just the number of acyclic 
orientations of G. 

In this paper we introduce a polynomial P(G, K; ~) in ~ determined by a graph 
G and a specific subset K of vertices of G. Like the classical chromatic polynomial 
P(G;  ).), this new polynomial has integer coefficients that alternate in sign, and is 
defined in terms of vertex colorings. However, in the case of the extended 
polynomial, only the points in K are colored. The concept of a proper coloring of 
K within G, as defined in Section 4, is intended to account for connections 
between points of K that involve points of V -  K. The extended chromatic 
polynomial P(G, K; ~) is then defined to be plus or minus the number of proper 
colorings of K within G. The sign of P(G, K; ~) is determined by the parity of 
IVI" IKI- i, where i is the number of isolated points of G which are not in K. 
The definitions are such that P(G, K; ~) = P(G; ;~) if K is the entire vertex set of 

G. 
The remainder of the paper is organized as follows. We first review in Section 2 

the main results of Birkhoff, Whitney, Tutte and Stanley on the chromatic 
polynomial. In Section 3, we introduce a generalization of the concept of 
domination and review its connection with the chromatic polynomial. Section 4 
contains the definition of the extended chromatic polynomial and the statement 
and proof of a fundamental axiomatic characterization for P(G, K; ;t). Section 4 
concludes with an extension of Stanley's Theorem which states that the sum of 
the absolute values of the coefficients of P(G, K; ~) is the number of acyclic 
orientations of G having all sources and sinks in K. Section 5 is devoted to 
various topological interpretations of the coefficients of the extended chromatic 
polynomial, including analogues of Whitney's results on P(G; ;~). We show that 
dr(G) is, up to sign, the coefficient of ~. in P(G, K; ~) and from this obtain as 
corollaries several of the alternate characterizations of dK(G) given in [4]. 
Finally, Section 6 provides computational formulas for P(G, K; ;~) for special 
cases of G, including cycles, trees, and complete graphs. 

2. Preliminaries 

Unless defined otherwise, graph-theoretic terminology used here follows 
Harary [5]. One exception is that we allow multiple edges and self-loops in a 
graph, so that by graph we mean what Harary calls a pseudograph. If rn is a 
positive integer, we will denote by [m] the set { 1 , . . . ,  m}. If G = (V, E) is a 
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graph, then we denote by n(G) the number IVI of points of G and by e(G) the 
number IEI of edges of G. A A-coloring of a graph G = (V, E) is a mapping 
tr: V---> [Z]. The integers 1, 2 , . . . ,  Z are called colors. A A-coloring is proper if no 
two adjacent points of G are assigned the same color. If Z is sufficiently large, G 
can in general be properly colored in many different ways. Birkhoff [3] noticed 
that the number of distinct proper A-colorings of a given graph G may be 
expressed elegantly as a polynomial in Z, now well-known as the chromatic 
polynomial of G and denoted by P(G; Z). Clearly, if cj is the number of proper 
j-colorings of G in which all j colors are used, then 

P(G;Z)  = cj. 
j=l j 

The first two propositions of this section are well-known. 

Proposition 2.1. The function P(G; Z) is a polynomial of degree n(G) that has 
integer coefficients that alternate in sign, has leading coefficient 1, and has constant 
term zero. 

Proposition 2.2. The chromatic polynomial is uniquely determined by the follow- 
ing two conditions. Let G = (V, E) be a graph, 

(C1) P(G; Z) = Z'V' if G has no edges, 
(C2) I f  G - x and G I x are the graphs obtained from graph G by deleting and 

contracting, respectively, an edge x of G, then 

P(G; Z) = P(G - x; Z) - P(G Ix; Z). 

We will refer to condition (C1) as the discrete graph condition and to condition 
(C2) as the pivot condition. Whitney [17] provided a topological interpretation for 
the coefficients of the chromatic polynomial which is embodied in the following 
result. 

Theorem 2.1 (Whitney). P(G; Z) = Es ( -1)  e(s)zc(s), where the summation is over 
the set of  spanning subgraphs S of G, e(S) denotes the number of edges of S, and 
c(S) denotes the number of connected components of S. 

Whitney then observed that in most cases there are many paris of terms of the 
above summation that cancel each other. For example, if G is the triangle, then 
the contributions of G and G -  x, x an edge of G, are - Z  and Z, respectively. 
This observation led Whitney to the following notion and the remarkable result 
given in Theorem 2.2. 

Definition 2.1 (External activity). Suppose G = (V, E) is a graph and < is a 
strict linear order on E. An edge x with endpoints u, v is said to be externally 
active relative to a set X of  edges of G if there is a path P in G between u and v 
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which uses only edges from X - {x } and has the property that x < y for all edges 
y on P.  (Whitney called such a path a broken cycle.) The number o f  edges which 
are externally active relative to X is called the external activity of X in G. 

Theorem 2.2 (Whitney).  Let G = (V, E) be a graph with n points, let < be a 
strict linear order on E, and let mj(G) denote the number of  spanning forests of  G 
having j connected components and external activity zero. Then 

n 

P(G; ,~) = ~ (-1)"-Jmj(G)~J.  
j=l 

Subsequently, Tutte [16] introduced the notion of internal activity relative to a 
set of edges and showed that  the chromatic polynomial can be expressed in terms 
of certain spanning trees of G. 

Definition 2.2 (Internal activity). Let G, X, and < be as in Definition 2.1. An 
edge x • X is internally active in X if 

(i) x lies on no cycle of X, and 
(ii) if y • E - X and y < x, then X - {x} contains a path connecting endpoints 

of y. 
The number  of edges of X which are internally active is called the internal activity 
of X. 

Notice that in the case where X constitutes a spanning subgraph of G,  
condition (ii) of Definition 2.2 is equivalent to saying that x < y for any y • E - X 
such that  X and ( X - { x } ) t A  {y} have the same number of connected com- 
ponents. Further,  if X constitutes a spanning tree of G, Definition 2.2 is 
equivalent to saying that an edge x • X is internally active in X if and only if x < y 
for all y • C - x, where C is the fundamental  cut defined by x in G relative to the 
spanning tree X. Similarly, if X is a spanning tree of G,  Definition 2.1 reduces to 
the fact that an edge x ~ X is externally active relative to X if and only if x < y for 
all y • C - x ,  where C is the fundamental  cycle defined by x in G relative to X. 

Theorem 2.3 (Tutte).  Let G = (V, E) be a connected graph with n points, let < 
be a strict linear order on E, and let rio(G) denote the number of  spanning trees of  
G with internal activity j and external activity O. Then 

n - - 1  

P ( G ;  ~.) = (-1)"-1~. ~ t j0 (G)(1- ) - )  j. 
]=1 

Finally, we note an important  connection between P(G; ~) and orientations of 
G. An  orientation of a graph is an assignment of a direction to each edge of the 
graph. An orientation is acyclic if the resulting digraph has no directed cycles, 
and is cyclic otherwise. The number  of acyclic orientations of G is denoted N(G).  
Stanley [15] discovered a remarkable  connection between N(G) and P(G; )0. 
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Theorem 2.4 (Stanley). If G has n points, then P(G; ;t) 14=-1 = (-1)nN(G). , 

3. The chromatic polynomial and all-terminal domination 

Suppose G = (V, E) is a graph and K is a specified subset of V. A forest H of G 
is called a K-forest if H contains all points of K and every point of degree one or 
zero in H belongs to K. Let F(G, K, j) denote the collection of all the K-forests 
of G having exactly j components. A subset F of F(G, K, j) is called a j-formation 
of G if every edge of G is in some K-forest from F. A j-formation is odd or even 
depending upon whether the number of forests in the formation is odd or even, 
respectively. 

Definition 3.1 (Domination). The signed domination d(G, K, j) of G, with 
respect to a subset K of vertices and an integer j ,  is the number of odd minus the 
number of even j-formations of G. The domination D(G, K, j) is the absolute 
value of the signed domination. 

The notion of the domination of a graph, originally defined only in the case 
j = 1, arose in connection with a problem in network reliability [14]. In this 
special case the notations d r ( G )  and DK(G) were used for d(G, K, 1) and 
D(G, K, 1), respectively. Subsequently, these invariants have been studied by 
several authors [1, 2, 6, 7, 10-13]. In a recent work, Boesch, Satyanarayana, and 
Suffel [4] established several alternate characterizations of dK(G). They observed 
two interesting connections between dK(G) and P(G; ~) which are of particular 
interest here. 

Proposition 3.1 (Boesch, Satyanarayana, and Suffel). If  So(G) and Se( G) are the 
number of spanning connected subgraphs of G having, respectively, an odd and 
even number of edges, then 

Dv(G) = ISo(G)- SE(G)I 

Since the above expression for Dr(G) is precisely the same as that given in 
Theorem 2.1 for the absolute value of the coefficient of A in the chromatic 
polynomial, we have the following corollary: 

Coronary 3.1. I(P(G; ]= Dv(G). 

Recall that a K-tree of G is a tree whose vertex set contains K and whose 
leaves are all contained in K. If T is a spanning tree of G, then clearly T contains 
exactly one K-tree; we denote this K-tree by T K. Now let < be a strict linear 
order on the edge set of G. Denote by r.0(G, K) the collection of all spanning 
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trees T of G which have no externally active edges and have all internally active 
edges contained in T r. Finally, let t.o(G, K) be the number of elements in 
w.0(G, K). 

Proposition 3.2 (Boesch, Satyanarayana and Suffel). Dr(G) = t.o(G, K). 

When K is the set of endpoints of an edge of G, Proposition 3.2 yields an 
important special case which we state as a corollary. 

Corollary 3.2. I f  u and v are adjacent points of  G, then D~u.,) = t,o(G, {u, v}) = 
tl0(G), where tl0(G) is the number o f  spanning trees of  G with internal activity 1 
and external activity zero. 

It is easy to see from Theorem 2.3 that if G is connected, then 

IP(G; Z ) / ( 1 -  Z)lx=l I = tlo(G), 

which with Corollary 3.2 leads to the following 

Corollary 3.3. I f  u and v are adjacent points in a connected graph G, then 

IP(G; Z)/(1 - Z)lx=,] = Otu, v~(G). 

The following proposition, due to Rodriguez [9], clearly exhibits the interplay 
between P(G; ~) and d(G, V, i). Indeed, this result is a special case of a more 
general result of Rodriguez dealing with d(G, K, i) and the extended chromatic 
polynomial introduced in Section 4 (see Theorem 5.5)i 

Proposition 3.3 (Rodriguez). I f  G = (V, E) is a graph with n points and e > 0 
edges, then 

n--1 

P(G;  ~.) = ( - 1 ) e ( 1 -  ~.) ~ d(G, V,j)2, i. 
j ; l  

We conclude this section with a "reverse" pivot equation for d(G, K, j) useful 
in Section 5. A proof may be found in [4]. 

Proposition 3.4. I f  G = (V, E) is a graph, K is a subset of  V, and x is an edge of  
G, then 

d(C, K, j) = d(C Ix, r Ix, j) - d(C - x, K, j). 

4. An extended chromatic polynomial 

In this section, we first define an extension of the chromatic polynomial and 
then provide a characterization analogous to Proposition 2.2. We conclude the 
section with a generalization of Stanley's result on acyclic orientations. 
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If D is a directed graph and u is point of D, then we say that u is a source of D 
if its indegree is zero and its outdegree is positive. Similarly, we say that u is a 
sink of D if its outdegree is zero and its indegree is positive. Note that an isolated 
point of D is neither a source nor a sink. 

Definition 4.1 (K-acyclic orientation). Given a graph G = (V, E) and a subset K 
of V, a K-acyclic orientation of G is an acyclic orientation of G with all sources 
and sinks in K. The number of K-acyclic orientations of G will be denoted by 
Nr(G). 

Notice that if K = V, then all acyclic orientations are K-acyclic, and Nr(G) = 
N(G). 

Definition 4.2 (Proper A-coloring of K within G). Given a graph G = (V, E)  and 
a subset K of V, a proper Z-colouring of K within G is a pair (D, re) where 
tr:  K--~ [Z] is a coloring and D is a K-acyclic orientation of G such that if u, v are 
in K and there is a direct path in D from u to v, then a~(u) > re(v). 

Definition 4.3 (Extended chromatic polynomial P(G, K; Z)). Let G = (V, E)  be 
a graph and K a subset of V. The extended chromatic polynomial P(G, K; Z) is 
defined to be ( - 1 )  IVI-Lrl-/times the number of distinct proper Z-colourings of K 
within G, where i is the number of isolated points of G which are not in K. 

Since a graph containing a self-loop has no acyclic orientations, P(G, K; Z) = 0 
for such graphs. It is also immediate from the definition that if x and y are distinct 
edges of G with the same endpoints, then P(G, K; Z) = P(G - x, K; Z). 

Proposition 4.1. For any graph G = (V, E), P(G, V; Z) = P(G; Z). 

Proof. As noted by Stanley [15], every proper A-coloring a~ of G determines a 
unique acyclic (and hence V-acyclic) orientation D~ in which each edge 
x = {u, v} is oriented from u to v if and only if a~(u) > c~(v). Clearly (D~, a 0 is 
thus a proper A-coloring of V within G. It is equally clear that if (D, a 0 is a 
proper coloring of V within G, then no two adjacent vertices of G receive the 
same color under c~ and thus c~ is a proper A-coloring of G. [] 

Our next objective is a characterization of the extended chromatic polynomial 
analogous to that given for the classical chromatic polynomial in Proposition 2.2. 
The discrete graph condition and the pivot condition of Proposition 2.2 have 
natural analogues for the extended chromatic polynomial which will be shown to 
characterize P(G, K; Z). Specifically, let f (G,  K; Z) be a function defined for 
graphs G, subsets K of the vertex set of G and integers Z. We say that f satisfies 
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the pivot condition if for any graph G and edge x of G, 

f (G ,  K; Z) = f ( G  - x, K; Z) - f ( 6  Ix, g lx; Z). 

The equation of the pivot condition will be referred to as the pivot equation for f 
on G with pivot x. The next lemma may be proved by an easy induction on the 
number of edges of G. 

Lemma 4.1. Let f and g be functions defined on graphs G, subsets K of the vertex 
set of  G, and integers ~,. Let m be a nonnegative integer. I f  f and g satisfy the pivot 
equation and f (G,  K; A) = g(G, K; A) for all graphs G having exactly m edges, 
then f (G,  K; Z) = g(G, K; ~,) for all graph with m or more edges. 

We then have as an immediate corollary the following 

Corollary 4.1. There is at most one integer-valued function f(G,  K; ~,), defined for 
graphs G and integers 2~, which satisfies the following two conditions: 

(El) If  G has no edges, then f (G,  K; 2~) = ;~lgJ, 
(E2) If  x is an edge of G, then 

f (G,  K; ~,) = f ( G  - x, K; Z) - f ( G  Ix, K Ix; ~,). 

As indicated above condition (E2) will be refered to as the pivot condition. The 
condition (El) will be henceforth referred to as the discrete graph condition. 

Recall from Harary [5] the definition of an elementary contraction: if x is an 
edge of G with endpoints u and v, then G Ix is the graph obtained from G by 
deleting x and identifying the points u and v to a single point. Note that all other 
edges with endpoints u, v become self-loops. If K is a subset of the vertex set of 
G, we shall denote by K Ix the corresponding subset of the vertex set of G Ix. 
Each edge of G other than x can, in a natural way, be regarded as an edge of 
G Ix. This identification, which we henceforth assume, constitutes a bijection 
between the edge sets of G - x  and G Ix. 

At this point it is useful to introduce some notation regarding orientations. If u 
and v are points of a directed graph, an arc from u to v will be said to be of the 
form u----> v. We shall view an orientation of an undirected graph G as a directed 
graph D obtained from G by replacing each edge x with a distinct arc 2 
connecting the endpoints of x. Note that D has exactly as many arcs as G has 
edges. If D is an orientation of the graph G and $ is an arc of D, the contraction 
D 12 is defined as for the undirected case. If D is an orientation of G and x is an 
edge of G, then D 12 is clearly an orientation of G Ix. We shall in this case 
simplify our notation and write D Ix instead of D 1£'. 

Our next goal is to show that P(G, K; ~,) satisfies the pivot condition. In order 
to provide a generalization of Stanley's theorem (Theorem 2.4) to K-acyclic 
orientations, we also wish to prove that the function v(G, K ) =  (-1)n-WK(G) 
satisfies the pivot equation. Our approach will be to develop these two results in a 
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unified setting. To this end, let G = (V, E) be a graph, A c_ K be subsets of V, 
and s be a function from A into the positive integers. An orientation D '  of G will 
be said to be s-compatible if s(a) > s(b) for any points a, b of A for which there 
is a path in D '  from a to b. We denote by O(G, K, s) the set of all K-acyclic, 

s-compatible orientations of G. Notice that if s is the empty function, then 
O(G, K, s) is just the set of K-acyclic orientations of G. Our immediate  goal is to 
prove that IO(G, K, s)l satisfies the additive pivot condition for certain special 
edges x of G. One requirement is that at least one endpoint of x is in V - A. The 
other  requirement  is that x be a K-proper edge of G, by which we mean that if x 
has an endpoint  u in V - K, then u is not a degree-one point of G. The following 
proposition is immediate from definitions. 

Proposition 4.2. Let G = (V, E) be a graph and A c_ K subsets of  V and let i 
denote the number of  isolated points of  G not in K. Then 

P(G, K; ;0 = ( -1) 'v ' - ' r ' - i  E IO(G, K, s)l, 
S 

where the summation is over all functions s from K to [~.]. 

The proof of the desired additive pivot equation for IO(G, K, s)l will require a 
sequence of prel iminary results. Lemma 4.2 consists of nine observations, all of 
which follow easily from definitions or preceding observations in the lemma. 

Notice that if x is an edge of G with at least one endpoint in V -  A,  then any 
function s defined on A may also be viewed as a function on A Ix, since we 
identify A and A I x in this situation. If u, v are points of a directed graph D, we 
shall use the notation D tO {u----~ v} to denote the results of adding to D a new arc 

from u to v. 

Lemma 4.2. Let G = (V, E) be a graph, let A c_ K be subsets o f  V, let s be a 
function from A into the positive integers, let x be a K-proper edge of  G having at 
least one of  its endpoint u, v in V - A,  and let D be an orientation of  G - x. Then 

D Ix is acyclic i f fD U { u - * v }  and D to {v---~u} are acyclic, 
D [ x is s-compatible i f fD U {u---~ v} and D U {v---~ u} are 

s-compatible, 

O [ x is ( g  I x)-acyclic iff at least one of  O tO { u --~ v }, O U { v 
u} is K-acyclic, 

I f  O I x ~ O(G I x, K I x, s), then at least one of  O tO { u ~ v ), 
D tO {v---~ u} is in O(G, K, s), 

D is acyclic iffat least one o l D  U {u---~ v}, D tO {v----~ u} is 
acyclic, 

D has all sinks and all sources in K iffboth D U {u----~ v} and 
D U {v ~ u}, have all sinks and all sources in K, 

I f  either of  D U {u---~ v}, D tO {v---~ u} is s-compatible, then D is 
s-compatible, 

(4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(4.25) 

(4.2.6) 

(4.2.7) 



66 A. Satyanarayana, R. Tindell 

( D e O( G - x, K, s) and D Ix e O( G l x, K Ix, s)) iff both D U 
{u---->v} and D U {v--->u} are in O(G, K, s), (4.2.8) 

I f  D is s-compatible and contains a path from u to v, then 
D U {u---> v} is s-compatible. (4.2.9) 

It may be of interest to note that (4.2.3), and hence each of (4.2.4) and (4.2.8), 
fails when x is not K-proper. 

Lemma 4.3. Let G, K, A,  s, x, and D be as in Lemma 4.2. I f  D is s-compatible, 
then at least one o l D  O {u---> v}, D U {v---> u} is s-compatible. 

Proof. Suppose that D is s-compatible and that D U {u---> v } is not s-compatible. 
Then there exists vertices ao, boEA with s(ao)<~s(bo) and a path T in 
D U {u---> v} from a0 to bo. Since D is s-compatible, T must contain the arc 
u---> v. Let T~ be the segment of T from a0 to u and T2 the segment of T from v to 
b0. Note that T1 and T2 are paths in D. We wish to show that D U {v->u} is 
s-compatible. To that end, let T '  be a path in D U {v---> u} from a vertex a of A 
to a vertex b of A. If T'  does not contain the arc v--->u, then T' is a path in D 
and therefore s(a) > s(b). Thus we assume that T'  contains the arc v---> u, and set 
T~ equal to the segment of T'  from a to v and T~ equal to the segment of T' from 
u to b. It then follows that T1 followed by T~ is a path in D from a0 to b and T~ 
followed by T2 is a path in D from a to b0. Since D is s-compatible, we conclude 
that s(a) > s(bo) and s(ao) > s(b). Since s(ao) <~s(bo), we have s(a) > s(b) and the 
proof is complete. [] 

Lemma 4.4. Let G, K, A,  s, x, and D be as in Lemma 4.2. I f  D c O ( G - x ,  K, s), 
then at least one o l D  U {u->v} ,  D U {v->u}  is in O( G, K, s ). 

Proof. Assume that D e O(G - x ,  K,  s) and D U {v---> u} g O(G, K, s). We must 
show that D U {v---> u} e O(G, K, s). If follows from (4.2.6) that both D U {u--> 
v} and D U {v--->u} have all sources and all sinks in K. Thus we know that 
D U{u-->v} either is not s-compatible or is cyclic, and must prove that 
DU{v- ->u}  is s-compatible and acyclic. If D O { u - , v }  is cyclic, then D is 
acyclic by (4.2.5). Moreover, D must contain a path from v to u and hence, by 
(4.2.9), D U {v---> u} is also s-compatible. Thus we may assume that D U {u---> v} 
is acyclic and not s-compatible. By (4.2.9), D contains no path from u to v and 
thus D U {v--->u} is acyclic. By Lemma 4.3, D U {v->u}  must be s-compatible, 
and the proof of Lemma 4.4 is complete. [] 

The desired additive pivot equation for the function IO(G, K, s)l is an 
immediate consequence of (4.2.8) and Lemmas 4.3 and 4.4 

CorollaJ-y 4.2. I f  G, K, A,  s, and x are as in Lemma 4.2, then 

IO(G, K, s) l  = IO(G - x, K, s)l  + IO(G Ix, r Ix, s) l .  
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If we consider the special case where A = 0, then every edge has an endpoint 
which is not in A. Thus, as a corollary to the previous result, we obtain an 
additive pivot equation for the number Nr(G)  of K-acyclic orientations. 

Corollary 4.3. I f  G is a graph, K is a subset o f  the vertex set of  G, and x is a 
K-proper edge o f  G, then NK(G) = NK(G - x) + NK(G Ix). 

Let v(G, K) = (-1)n-iNK(G),  where n is the number of points of G and i is the 
number of siolated points of G lying in V - K. 

Proposition 4.3. Let G = (V, E) be a graph, K a subset o f  V, and x an edge o f  G. 
Then 

v(G,  K)  = v( O - x, K)  - v (G  Ix, K lx). 

Proof. The pivot equation holds, by Corollary 4.3, if x is a K-proper edge. 
Suppose that x is not K-proper. Then clearly v(G, K ) =  0 as G has no K-acyclic 
orientations. It is also simple to see that when isolated points not in K are 
removed from G - x and isolated points not in K [ x are removed from G I x, the 
resulting graphs are the same. Thus the pivot equation holds with pivot x. [] 

The next theorem follows easily from Proposition 4.2 and Corollary 4.2 by 
noticing that, if x is an edge with at least one endpoint in V - K, then K = K I x 
and G ]x has one less vertex than G. 

Theorem 4.1. Let G = (V, E) be a graph, K a subset o f  V, and x a K-proper edge 
o f  G with at least one endpoint in V - K. Then P(G, K; Z) = P(G - x, K; ;~) - 

P(alx, glx, ) 

The next lemma, though cumbersome, is used repeatedly in inductive proofs 
below that a given function f satisfies the pivot condition. 

Lemma 4.5. Suppose f is a function defined for graphs G, subsets K o f  the vertex 
set o f  G, and an integer parameter ~,. Let G be a graph and x and y be distinct 
edges o f  G. I f  the pivot equation is valid for f with pivot  y on each of  G, G - x, 
and G I x and on each o f  G - y and G I Y with pivot x, then the pivot condition 
holds for f on G with pivot  x. 

Proof. We first note the following simple identities, valid for distinct edges x, y of 
a graph G: ( G - x ) - y = ( G - y ) - x ,  (G [ x ) [ y - ( G  lY)Ix and ( G - x ) [ y -  
(G [y) - x .  Using these observations and the assumption that the pivot equation 
holds for f on each of G - y and G I Y with pivot x, we obtain 

f ( G  - y, K; ~,) = f ( ( G  - y) - x, K; Z) - f ( ( G  - y) I x, K I x; Z) 

= f ( ( G  - x) - y, K; ~,) - f ( ( G  Ix) - y, K lx; Z), 
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and 

f(G lY, KIY;X)=f((G lY) -x ,  KIY;X)-f((G [Y)Ix, (KIy)Ix;X) 
= f ( ( G - x )  lY, K I Y ; X ) - f ( ( G  Ix)[y, (KIx) I y; X). 

If we subtract the second equation from the first then, since the pivot equation 
holds for f on G with pivot y, the resulting equation has left-hand side equal to 
f(G, K; 4). If we rearrange the terms of the right-hand side of the difference, we 
obtain 

f (a ,  K; 4) = ( f ( (a  - x) - y, K; 4) - f((G - x) l Y, g l Y; 4)) 

- ( f ( ( a  Ix) ]y, (g lx )  l Y; 4) - f ( ( a  Ix) - y, g lx; Z)). 

By assumption, the pivot equation holds for f with pviot x on both G - y  and 
G Iy. Thus the right hand side of the previous equation is equal to f ( G -  
x, K; X ) - f ( G  Ix, K lx; 4). [] 

We now come to the main theorem of this section. 

Theorem 4.2. P(G, K; 4) is the unique function, defined on graphs G and integers 
X, which satisfies the pivot and discrete graph conditions. 

Proof. Since we know, by Corollary 4.1, that there is at most one function that 
satisfies the pivot and discrete graph condition, all that remains is to show that 
P(G, K; 4) satisfies these two conditions. It is simple to verify that P(G, K; X) 
satisfies the discrete graph condition, so we turn to the pivot condition. 

It is immediate from definitions that isolated points of G which lie in V -  K 
may be deleted without changing the value of P(G, K; 4). Thus we assume that 
all isolated points of G are in K. Further, it follows from the proof of Proposition 
4.3, that the pivot equation holds when the edge x is not K-proper. We therefore 
prove that P(G, K; 4) satisfies the pivot condition for all K-proper edges. The 
proof is by induction on the number of K-proper edges of G having at least one 
endpoint in V - K. For the basis step, suppose that all edges have both endpoints 
in K. Then, since all isolated points of G are in K, we have K = V. Since 
P(G, V; 4)= P(G; X), the pivot condition holds in this case by Proposition 2.2, 
and the basis step is established. 

For the inductive step, let G be a graph such that at least one K-proper edge of 
G has an endpoint in V-K, and assume that the Pivot Theorem holds for all 
graphs with fewer such edges than G. Now let x be a K-proper edge of G. By 
Theorem 4.1, the pivot equation is valid if x has at least one endpoint in V -  K. 
Thus assume that x has both endpoints in K. Since not every K-proper edge of G 
has both endpoints in K, we may choose a K-proper edge y with at least one 
endpoint in V - K. Clearly y 4: x. Note that since x has both endpoints in K, the 
edge y,  viewed as an edge in G [ x, has at least one endpoint which is not in K [ x. 
Thus the pivot equation holds for G ] x with pivot y. Similarly, the pivot equation 
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holds for G -  x with pivot y. We may now conclude from Lemma 4,5 that the 
pivot equation holds for G with pivot x, and the proof is complete. [] 

It can be easily shown, by induction on the number of edges in G, that the 
discrete graph condition and the pivot condition imply the next two results. 

Corollary 4.4. Let G = (V, E) be a graph and K a subset of  V. I f  G is the disjoint 
union of  graphs G] and G2 then 

P(G, K; ,t) = P(G,, K n V(G,); ~.). P(Gz, K n V(G2); ~.). 

Corollary 4.5. Let G = (V, E) be a graph and K a subset o f  V. I f  G has a 
degree-one point which is not in K, then P(G, K; ).) = 0. 

We also note the following elementary consequence of the definition of 
P(G, K; D. 

Corollary 4.6. Let G = (V, E) be a graph and K a subset of  V. I f  v is an isolated 
point of  G which is not in K, then P(G, K; ~,) = P(G - v, K; 2~). 

We conclude this section with an extension of Stanley's result on acyclic 
orientations. 

Theorem 4.3. Let G = (V, E) be a graph with n points and K a subset of  V. I f  i is 
the number of  isolated points o f  G lying in V -  K, then P(G, K; ~,) Ix=-1 = 
( -  1)"-'Ng(G). 

Proof. By Proposition 4.3, v(G, K) = ( -1)n- iNr(G)  satisfies the pivot equation. 
Since P(G, K; ;~)Ix---1 satisfies the pivot condition, by Lemma 4.1, the two 
functions coincide if they have the same value on edgeless graphs. When G is 
edgeless, n - i = IKI, so that v(G, K) = (-1)ir l .  Since P(G, K; ~,) = ~, jrl when G 
is edgeless, the proof is complete. [] 

5. Topological interpretations of P(G, K; ~) 

In this section we derive topological interpretations for the coefficients of the 
extended chromatic polynomial. Two of these characterizations generalize 
Whitney's theorems on the classical chromatic polynomial (Theorems 2.1 and 
2.2). We also show that the results presented here have, as corollaries, several of 
the alternate characterizations for the invariant dr(G)  originally established in 
[4]. 

Several of the formulations for P(G, K; ,~) given in this section are expressed 
directly as polynomials. Thus we note the following simple proposition. 
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Proposition 5.1. The polynomial f (G,  K; t )  = E'~---1 bj(G, K)A j satisfies the pivot 
condition if and only if b/(G, K) satisfies the pivot condition for every j = 1 , . . . ,  m. 

For any graph H and set K, we denote by c(H, K) the number of connected 
components of H which contain at least one point of K. Recall that e(H) denotes 
the number of edges in H. 

Theorem 5.1. If  G = (V, E) is a graph and K ~ V, then 

P(G, K; I) = ~ (-1)~(s)1 ¢(s' hO, 
s 

where the summation is over all spanning subgraphs S of G. 

Proof. Let f (G, K; I) be the function defined by the right side of the equation in 
the statement of the theorem. If G has no edges, then the only spanning subgraph 
of G is G itself; since e(G) = 0 and c(G, K) = IKI, f (G, K; t )  = Z tin. Since the 
preceding shows that f satisfies the discrete graph condition, we may conclude the 
proof by showing that f satisfies the pivot condition. 

Let G be a graph and x an edge of G. Clearly the spanning subgraphs of G - x 
are precisely the spanning subgraphs of G which do not contain the edge x. Thus 
the value of f ( G , K ; I ) - f ( G - x , K ; t )  is given by the summation in the 
statement of the theorem with S running over the spanning subgraphs of G which 
contain the edge x. If we map each such subgraph S to S i x ,  the result is a 
bijection from the set of spanning supgraphs of G containing x to the set of all 
spanning subgraphs of G Ix. If S is a spanning subgraph of G containing x, then 
c(S, K) = c(S Ix, K lx ) and e(S) = e(S Ix) - 1. Thus 

f (G,  K ; A ) - f ( G ' - x ,  K;A)=  - f ( G  Ix, K Ix;A) 

and the proof is complete. [] 

The terms of the expression for P(G, K; A) given in Theorem 5.1 may be 
rearranged to yield expressions for the coefficients of P(G, K; A) Let So(G, K, j) 
denote the number of spanning subgraphs S of G with e(S) odd and c(S, K) =j. 
Similarly, SE(G, K, j) is the number of spanning subgraphs with e(S) even and 
c(S, K)  = j. 

Corollary 5.1 If  G = (V, E) is a graph and K c_ V with k = ]K[, then 
k 

P(G, K; A) = ~ (SE(G, K, j) - So(G, K, j))A/. 
j = l  

By Proposition 5.1, the coefficients of the extended chromatic polynomial are 
functions which satisfy the pivot equation. Since each such function is determined 
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by its value on edgeless graphs, we may easily deduce as a corollary the following 
result of the paper [4]. 

Corollary 5.2. If G = (V, E) is a graph and K ~_ V, then D r ( G )  = ISo(G, K, 1) - 
Se(G, K, 1)l. 

The next therorem is immediate from Corollaries 5.1 and 5.2. 

Theorem 5.2. If  G = (V, E) is a graph and K is a subset of V, then 

P(G, K;Z)/3.1x=o (-1)aeldK(G). 

Definition 5.1 (K-covering subgraph). Let G = (V, E) be a graph and K a subset 
of V. A K-covering subgraph of G is a subgraph H of G such that H contains all 
points of K, every connected component of H contains a point of K, and every 
edge of G has at least one endpoint in H. 

Notice that if G has no edges, K is the only K-covering subgraph of G. With 
this observation as the starting point, the arguments in the proof of Theorem 5.1 
can be used to prove the following 

Theorem 5.3. I f  G = ( V ,  E) is a graph and K c_V, then P(G, K;)~)= 
~H (--1) e(H)3-cCH), where the summation is over all K-covering subg'raphs H of G, 
e(H) is the number of edges in H, and c(H) is the number of connected 
components of  H. 

The next result may be derived from Theorem 5.3 in exactly the same manner 
as Corollary 5.2 was derived from Theorem 5.1. 

Corollary 5.3. I f  G = (V, E) is a graph and K ~_ V, then Dr = IHo(G, K) - 
HE(G, K)l, where Ho(G, K) and HE(G, K) are the number of connected 
K-covering subgraphs of G with an odd and even number of edges, respectively. 

Our next objective is a topological characterization for the extended chromatic 
polynomial analogous to Theorem 2.2. As in the case of that theorem, the 
characterization involves spanning forests having external activity zero. However, 
the spanning forests must be properly related to the set K. This is made precise in 
the next two definitions. 

Definition 5.2.  (K-proper subgraph). Let G = (V, E )  be a graph and K a subset 
of V. A subgraph H of G is a K-proper subgraph of G if every connected 
component  of  H which is not an isolated point of G contains at least one point 
of K. 
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We next introduce an extended notion of Tutte's internal activity (Definition 
2.2). If x is an edge of a K-proper spanning forest F of G, then we say that x is 
replaceable in F by an edge y if y is not in F - x  and (F - x )  + y is a K-proper 
forest of G. Note that if x is replaceable in F by y, then F and (F - x )  + y have 
the same number of components. The set of all edges y such that x is replaceable 
in F by y is denoted R(F, x). Note that x ~ R(F, X). 

Definition 5.2 (K-internal activity). Let < be a strict linear order on the edge set 
E of a graph G = (V, E) and let K be a subset of V. If x is an edge of a spanning 
K-proper forest F of G, then we say that x is a K-internally active edge of  F in G 
if F - x is not K-proper and x <~ y for all y in R(F, x). The number of K-internally 
active edges of F in G is called the K-internal activity of F in G. 

Note that if K = V, then every spanning forest F of G is K-proper and clearly 
has K-internal activity zero. 

Lemma 5.1. Let G be a graph and K a subset of the vertex set of G. I f  G has a 
degree-one point u which is not in K, then every K-proper spanning forest of  G 
has a K-internally active edge. 

Proof. Let F be a K-proper spanning forest of G. If F does not contain the 
unique edge z of G incident with u, then u is a component of F which contains no 
point of K. Since u is not an isolated point in G and F is K-proper, this is 
impossible. Thus z is an edge of F. As in the previous case, F - z is not K-proper. 
Since u has degree-one in G, R(F, z) = {z} and thus z is an internally active edge 
of F in G. [] 

Theorem 5.4.  Let < be a strict linear order on the edge set E of graph G = (V, E) 
and let K be a subset of V. I f  n = IVI, k = IKI, and i is the number of isolated 
points of G which are not in K, then 

i + k  

P ( G , K ; Z ) =  ~ ( -1)"- /mj(G,K,<)Z j-i, 
j = i + l  

where m/(G, K, < ) is the number of K-proper spanning forests of  G which have 
exactly j connected components and have external activity and K-internal activity 
zero. 

Proof. Let f (G,  K; ~) be the polynomial given in the right side of the equation 
above. Suppose u is an isolated point of G. Then m/(G, K) = mj_l(G - u, K) for 
i + 1 ~<j ~< i + k. Since G - u  has one fewer point and one fewer isolated point 
than G, it is clear that f (G,  K; ~ . ) - f ( G -  u, K; ~). By Corollary 4.6, the same 
relation holds for the extended chromatic polynomial, and thus we may assume 
that all isolated points of G are in K. By Lemma 5.1, f (G,  K; 2~) is zero if G 
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contains a degree-one point which is not in K. Since P(G, K; ,a.) is also zero in 
this case, we henceforth assume that all degree-one points of G are in K. 

It is a simple matter to see that f(G, K; ,k) agrees with P(G, K; ,~) when G is 
edgeless. Thus, by Theorem 4.2, we need only show that f satisfies the pivot 
condition. The proof that f satisfies the pivot condition is by induction on the 
number of edges of G. The basis step, when G is edgeless, is vacuously true, so 
we proceed to the inductive step. Let G = (V, E) be a graph, K a subset of V, 
and < a strict linear order on E. Assume that f satisfies the pivot condition for all 
graphs with fewer edges than G. We must show that the pivot condition holds for 
f on G. We first show that the pivot equation for f on G holds when the pivot is 
the maximum edge x of G in the order <.  Recall that the pivot equation with 
pivot x holds for the polynomial f on G if and only if it holds for each of the 
coefficients of f .  Moreover, since G Ix has one fewer point than G, the pivot 
equation for the coefficient of ZJ in f is equivalent to the following additive pivot 
equation for rnj(G, K): 

mj(G, K) = mj(G - x, K) + mj(G Ix, K lx ). 

We now prove the validity of the additive pivot equation for mj with pivot x. 
Let F be a spanning forest of G which does not contain x. Since x is greater than 
all other edges of G in the order < ,  it is easy to see that F is a K-proper spanning 
forest of G with external and K-internal activity zero if and only if the same holds 
for F in G - x .  Thus mj(G, K ) - r n j ( G - x ,  K) is equal to the number of 
K-proper spanning forests of G with external and K-internal activity zero and 
with exactly j connected components. Therefore, we must show that this is also 
the number of (K t x ) - p r o p e r  spanning forests of G lx with external and 
K-internal activity zero. We do this by showing that if x is an edge of F, then F is 
a K-proper spanning forest with external and K-internal activity zero in G if and 
only if F i x  is a (K [x)-proper spanning forest with external and K-internal 
activity zero in G I X. The only-if portion of the preceding statement is immediate 
from the fact that x is the maximum edge of G. Thus suppose that F i x  is a 
(K I x)-proper spanning forest with external and K-internal activity zero in G Ix. 
It is obvious that F must then be a spanning forest of G with external activity 
zero. It is also clear that x is the only edge of F which could be a K-internally 
active edge of F in G. Assume that this is the case. Then, since x is the maximum 
edge of G, R(F, x) = {x}. Let W be the vertex set of the tree T of F containing x, 
let T1 and T2 be the trees resulting when x is deleted from T, and let W1 and W2 be 
the vertex sets of T1 and T2, respectively. Since F - x  is not K-proper, one of the 
sets W1, W2 must be disjoint from K. Since R(F, x) = {x}, there are no edges of G 
with an endpoint in each of W and V -  W and x is the only edge of G with an 
endpoint in each of W1 and W2. Thus suppose that, say, W2 contains no point of 
K. Since G is assumed to have no degree-one points not in K, T2 must contain at 
least one edge. Let y be the least edge among those with both endpoints in W2. 
Then y is not an edge of F,  since if it were it would be a K-internally active edge 
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of F in G. On the other hand, y cannot be outside F, since if it were it would be 
externally active relative to F in G. From this contradiction we conclude that 
F i x  being a (K ]x)-proper spanning forest with external activity zero in G i g  
implies that F is K-proper spanning forest with external activity zero in G. This 
completes the proof that f satisfies the pivot equation on G with pivot the 
maximum edge of G in the order <.  We may now appeal to Lemma 4.5 to 
conclude that the pivot equation holds for f on G with any edge as the pivot. [] 

We note that Whitney's Theorem (Theorem 2.2) is an immediate corollary of 
Theorem 5.4, since P(G, V; Z)= P(G; Z) and every spanning forest of G = 
(V, E) is V-proper and has K-internal activity zero. 

Another important consequence of Theorem 5.4 is the expression for the 
K-domination discovered in [4] and stated in Proposition 3.4. This is immediate, 
since by Theorem 5.2, the coefficient of ~ in P(G, K; ~) has absolute value equal 
to the K-domination DK(G). 

The following Theorem of Rodriguez [9] may now be derived from Theorem 
4.2 and a result from [4]. 

Theorem 5.5 (Rodriguez). Let G = (V, E) be a graph with n points and e edges, 
let K be a subset of V, and let k = IKI./f e > 0, then 

n - 1  

P(G, K; ~,) = (-1)*(1 - ~.) ~ d(G, K, j),~. 
j = l  

Proof. Let f(G, K; ~,) be the polynomial given by the expression on the right side 
of the equation in the statement of Theorem 5.5. First we note that 
f(G, K; ~,) = 0 if G has a self-loop or degree-one point lying in V - K. Since this 
agrees with the extended chromatic polynomial, we assume that G has no 
self-loops or degree-one points lying in V -  K. We also note that deletion of 
isolated points of G which are in V - K leaves the values of both f(G, K; ~,) and 
P(G, K; ~.) unchanged. Thus we assume that all isolated points of G are in K. 

By Lemma 4.1, we can show that f agrees with the extended chromatic 
polynomial for graphs with nonempty edge set by proving the following two 

claims: 
(1) f(G, K; ~.) = (P(G, K; ;0 if G has exactly one edge, and 
(2) f satisfies the pivot condition. 

Thus let G be a graph with a single edge. Since we assume that G has no 
self-loops, n/> 2. Also, since G has no isolated or degree-one points outside K, K 
is the vertex set V of G. It is easy to verify that P(G, K;A)=P(G;~.)= 
~."-l(~t - 1). It is also easy to see that d(G, K, n - 1) = 1 and d(G, K, i) = 0 for all 
i < n -  1, so that f(G, K; ~.) also has value A"- l ( ; t -  1). Since this establishes 
claim (1), we turn to claim (2). 

We now prove, by induction on e, that f satisfies the pivot equation. By 
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Proposition 5,1, we need only show that for each j, l<~j<-k, the coefficient 
bj(G, K) of 2'J in f (G ,  K; 2') satisfies the pivot equation. Note that bj(G, K) is 
given by: 

bl(G, K) = ( -1 )  e d(G, K, 1), bk(G, K) ---- ( - - 1 )  e+ l  d(G, K, k - 1), 

and 

b j ( G , K ) = ( - 1 ) e [ d ( G , K , j ) - d ( G , K , j - 1 ) ] ,  for 2~<j< k. 

From the above it is clear that we need only show that the function 
( -1 )  e(G) d(G, K, j) satisfies the pivot equation. Multiplying both sides of the 
"reverse" pivot equation for d(G, K, j) given in Proposition 3.4 by ( -1 )  e(c), we 
have 

( -1 )  <6) d(G, K, j) = ( -1 )  <6) d(G Ix, K Ix, j) - ( -1 )  ~(6) d(G - x, K, j) 

-- ( - -1)  e(G)-I d ( V  - X, K, j) - ( - 1 )  e(G)-I d(G [ x, K lx, j) 

= ( - 1 ) e ( ° - X ) d ( G - x , g , j ) - ( - 1 ) ~ ( c l x ) d ( G I x ,  K I x , ] ) .  [] 

6. Computational formulas for P(G, K; A) 

In this section we present explicit formulas for the extended chromatic 
polynomial of graphs having special structures. These results are analogous to 
some of the well-known results concerning P(G; 2') [8]. We first prove the 
following useful lemma. 

Lemma 6.1. Let G = (V, E) be a graph and K a subset of  V. Suppose u e V - K 
is a degree-two point adjacent to two distinct points v and w in G. Let G' be the 
graph obtained from G - u by adding an edge between v and w. Then 

P(G, K; 2') = - P ( G ' ,  K; 2'). 

Proof. Let x be the edge with endpoints u and v in G. First note that G'  is 
isomorphic to G Ix. By the pivot condition, 

P(G, K; 2,) = P(G - x, K; 2') - P(G l x, K Ix; 2'). 

Since G - x  has a degree-one point not in K, we have by Corollary 4.5 that 
P ( G - x , K ; 2 ' ) = O .  [] 

The following result can be easily proved using Lemma 6.1 and the pivot 
equation. 

Theorem 6.1. I f  G = (V, E) is a cycle on n points and K ~_ V is such that 
k = Igl >0, then P(G, K; 2') = (--1)"-k[(2' -- 1) k + (--1)k(2' -- 1)]. 
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Theorem 6.2. Let H = (V, E) be a graph and K a subset of V. Let G be the graph 
obtained from H by adding a new point u and edges connecting u to every point of  
K. Then P(G, K U {u}; A) = AP(H, K; A - 1). 

Proof. One may prove this theorem by direct appeal to the definition. Suppose 
that j is an integer in [Z] and (D, a)  is a proper A-coloring of K within H such 
that, for all v in V, t r (v )~ j .  Notice that there are exactly as many such pairs as 
there are proper (A - 1)-colorings of K within H. We claim that for each such pair 
(D, o:) there is a unique proper Z-colouring (D' ,  tr') of K U {u} within G such 
that D is a subdigraph of D '  and the restriction of 0:' to K is a~. Notice that, since 
u is adjacent to every point of K, such an a~' would have to send u to j. If D '  is 
or-compatible and x is an edge of G connecting u to some point v of K, the arc of 
D '  corresponding to x is of the form u--~ v if tr(v) < j  and v---~ u if a~(v) >j .  Thus 
we see that o~' and D '  are uniquely determined by D and re. If we define tr' and 
D '  as stated above, it is clear that D '  is o:'-compatible. Moreover, D '  is acydic, 
since otherwise D is not a~-compatible. Thus (D' ,  c~') is a proper A-coloring of 
K tO {u} within G. It is simple to see that every proper A-coloring of K U {u} 
within G is obtained in the above fashion. Noting that the sign of P(G, K tO 
{u}; A) is the same as that of P(H, K; A), the theorem then follows. [] 

If G is a graph and u is a point of G, then the closed neighborhood of u in G is 
the subgraph of G induced by u and the points adjacent to u in G. The next 
theorem provides a reduction formula for points of G which are not in K and 
whose closed neighborhoods are complete graphs. A complete graph is a graph 
that has no self-loops or multiple edges, and is such that every pair of distinct 
points are adjacent. 

Theorem 6.3. Let G = (V, E) be a graph, K a subset of  V, and u ~ V - K be such 
that the closed neighborhood of  u in G is a complete graph. I f  d is the degree of  u 
in G, then P(G, K; A) = - ( d  - 1)P(G - u, K; A). 

Proof. The proof is by induction on the degree d of u in G. If d = 0, then u is an 
isolated point of G and P(G - u ,  K; A)= P(G,  K; A) by Corollary 4.6. Since this 
establishes the basis step, we assume d > 0 and that the theorem holds when u has 
degree less than d. Let x be an edge of G incident with u. Since G has no 
multiple edges incident with u, G Ix does not have a self-loop at u. It then 
follows that G I x is just G - u with possibly some replicated edges. Since u is not 
in K, K Ix may be identified with K. Since replication of edges does not affect the 
value of the extended chromatic polynomial, P(G - u, K; A) = P(G Ix, K Ix; A). 
Note that the dosed neighborhood of u in G - x  is a complete graph and that u 
has degree d - 1 in G - x .  By the pivot condition and the inductive hypothesis we 
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have 

P(G, K; 3.) = P(G - x, K; 3.) - P(G Ix, K Ix; 3.) 

= P ( G  - x ,  K ;  3.) - P ( G  - u ,  K ;  3.) 

= - ( d  - 2 ) P ( ( G  - x )  - u ,  K ;  3.) - P ( G  - u ,  K ;  3.) 

= - ( d  - 2 ) P ( G  - u,  K ;  3.) - P ( G  - u ,  K ;  3.) 

= - ( d -  1 ) P (G-  u, K;3.) [] 

We may use Theorem 6.3 to reduce the computat ion of P(G, K; 3.) for G a 
complete graph to the corresponding computation for the classical polynomial. 
The result is the following 

Theorem 6.4. Let G = (V, E) be a complete graph on n points and let K be a 
subset o f  V with [K[ = k/> 2. Then P(G, K; 3.) = (--1)~-k[(n -- 2)!/(k - 2)!]3.(3. - 
1 ) - - - ( 3 .  - k + 1). 

Theorem 6.5. Let G = (V, E) be a graph and K a subset o f  V. Suppose that G is 
the union of  graphs (31 = (V1, El )  and G2 = (V2, E2) whose intersection G3 = 
(V3, E3) is either a point o f  K or a complete graph containing at least two points of  
K. Then P(G, K; 3.) = [P(G,, K O Vl); 3.). P(G2, K n V2); 3.)lIP(G3, K n V3); 3.). 

We omit  the proof of Theorem 6.5, as it follows the same outline as several 
proofs in this paper. Suffice it to say that the proof  uses induction on the number 
of edges of G having at least one endpoint in V - V3. 

The value of the classical polynomial on trees is particularly simple, being 
independent  of the structure of the tree: if G is a tree on n points, then 
P(G, 3.) = 3.(3. - 1) ~-~. The case for the extended chromatic polynomial is a good 
deal more  involved. The value of P(G,  K; 3.) for G a tree does however show 
some degree of independence from the structure of G in that it depends solely on 
the degrees in G of the points in V - K. 

Theorem 6.6 Let T = (V, E) be a tree with n >I 2 points, and let K be a nonempty 

subset of V. If dl, d2, . . . , ds are the degrees in T of the points of V - K and a is 

the sum of those degrees, then 

$ 

P(T, K; 3 . ) -  (3 . -  1) " - l + s - °  I-I [ (3 . -  1)din-1 - 3.d'- ']  - 
m = l  

Proof. Let qg(G, K; 3.) be the polynomial given by the right side of the equation 
in the s tatment  of the theorem. For  any tree T = (V, E)  and K ~_ V, denote by 
a(T,  K)  the sum of the degrees in T of the points in V - K. Assuming that any 
product  from 1 to 0 has value 1, we see that qg(T, V; 3.) = 3.(3. - 1) n-l,  and hence 
that the theorem holds in  this case. We will prove the result for the cases where 
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e(T, K)i> 1 by induction on tr(T, K). First note that if T has a degree-one point 
which is not in K, then one of the degrees dj used in forming the above product is 
1. In this case, the corresponding term of the product, and hence the entire 
product, is zero. Since, by Corollary 4.5, P(T, K; Z) also has value zero in this 
case, the theorem holds when G has an endpoint which is not in K. This 
immediately yields the basis step of our inductive proof, since o = 1 implies that 
d l =  1. We henceforth assume that T has no endpoint in V - K. 

Let T be a tree and K be a subset of the vertex set of T such that tr(T, K) > 1. 
Assume that the theorem holds for all trees T' and associated vertex sets K' with 
o(T' ,  K')  < tr(T, K). Since K and V - K are nonempty, the tree T must contain 
an edge x with an endpoint u in V - K and another endpoint v in K. It is simple 
to see that we may choose x so that the connected component of v in T - x  
contains only points from K. Since all degree-one points of T are in K, the 
connected component of u in T - x  must contain a point w of K. Let x '  be the 
edge with endpoints v and w. Clearly, x' is not an edge of T, and T ' =  
( T -  x ) + x '  is a tree with the same vertex set as T. Applying the pivot equation 
to P(T, K; Z) with pivot x and to P(T', K; Z) with pivot x ' ,  we obtain 

P(T, K; Z) = P ( r  - x, K; Z) - e ( r  l x, K Ix; Z), 

P(T ' ,  K; z) = e ( T '  - x ' ,  K; z) - e ( T '  l x ' ,  K lx ' ;  z). 

Let the degrees in T of the points of V - K be given as d a , . . . ,  ds, with ds the 
degree of u. Then the degrees on the non-K points of T' are the same as the 
degrees of the non-(K Ix') points of T' Ix', namely d x , . . . ,  ds - 1. Moreover, 
the degrees of the non-(K Ix) points of T Ix are d l , . . . ,  ds-1. Thus o(T', K) = 
o(T' l x', K lx' ) = o(T, K) - 1, and tr(T [ x, K) = o(T, K) - d,. Thus we may 
apply the inductive hypothesis to each of these cases. Since T - x  = T ' - x ' ,  we 
arrive at the following: 

P(r ,  K; Z) = P( r ' ,  K; Z) + e ( r '  l x' ,  K Ix'; Z )  - P ( r  I x, K Ix; z) 
= ¢ ( r ' ,  K;Z)+ ~0(r' Ix', K I x'; Z) -¢ (7"  Ix, K I x; Z). 

It is now a matter of algebraic manipulation to show that the immediately 
preceding equation simplifies to P(T, K; Z) = ¢p(T, K; Z). [] 

Conclusions 

In this paper we have introduced an extended chromatic polynomial 
P(G, K; Z) and shown that this polynomial possesses many of the interesting 
properties of the classical chromatic polynomial. As already noted, this work was 
stimulated by a connection between P(G;Z)  and the all-terminal network 
reliability problem, namely that the coefficient of Z in P(G; Z) and dv(G) have 
the same absolute value. In this paper we have established a similar connection 
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between P(G, K; 3.) and dr(G), which is of interest in the K-terminal reliability 
problem. Let G = (V, E) be a graph whose edges fail with known probabilities 
and let K be a subset of V. The K-terminal reliability problem for G is the 
problem of computing the probability that the points of K lie in a connected 
component of G. The invariant dK(G) was shown in [12] to play a key role in the 
computational complexity of a class of solutions for this problem. In Section 3 we 
introduced the extension d(G, K, j), 1 <~j <<- IKI, of dK(G) which naturally leads 
to an extension of the K-terminal reliability problem. We can now define a 
reliability problem for graph G, set K, and positive integer ] as follows: the 
(K, ])-reliability of G is the probability that the points of K lie in at most j 
connected components of G. While there are many known results and applica- 
tions for the K-terminal reliability problem, this new reliability measure remains 
to be explored. Another open problem arising from this paper is to find a way to 
generalize Tutte's characterization of P(G; ;~) to P(G, K; ,~). 
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