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1. INTRODUCTION

The first main goal of this paper is to give a new proof, simpler than the
original one, of the following theorem of Cohn [2]: If R is a filtered ring
such hat the associated graded ring is an Ore domain, then R can be imbedded
in a (skew) field. The important example of a ring which satisfies the
conditions of Cohn’s Theorem is the universal enveloping algebra U(L) of
an arbitrary Lie algebra L; here the graded ring, associated to the
canonical filtration is a polynomial ring (see Jacobson [5]) and hence
Cohn’s theorem implies that U(L) is imbedded into a field D. (The term
“field” will be used throughout the paper in a sense of “skew field”).

We give a short proof of Cohn’s Theorem and of some related results in
Sections 2 and 3. Like Cohn, we make an essential use of the valuation
function in R, related to the given filtration; the main step in our proof is
the following theorem.

THEOREM 1. Let R be a domain and let t be a central element. Assume
that (7 _ ()" =0 and that R/(t) is an Ore domain. Then R can be
imbedded in a division ring D, the valuation function v(x) is extended to D
and the subset RR™" isdensein D. If S = {s € D|v(s) = 0}, then S /1§ = A,
the field of fractions of R /(t).

We then apply Theorem 1 to obtain simple proofs of Cohn’s Theorem
and of the following theorem whose first part is a corollary of Cohn’s
Theorem [2, Sect. 5] and the second part is proven in Lichtman [8, Prop. 3].

THEOREM 2. (i) The algebra U(L) is embedded into a field D with a
discrete valuation function p(x), which extends the canonical valuation v(x)
of U(L); the field D is complete in the topology defined by p(x).
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(ii) If S is the valuation ring of p(x)i.e., S ={x € D|v(x) = 0} and
J(S) is the maximal ideal of S then S/J(S) is a commuative field, purely
transcendental over K.

We now describe the idea of the proof of Theorem 1. To obtain an
imbedding of R into a field D we consider the inverse system of rings
R, =R/(1)" (n=1,2,...); every ring R, contains a nilpotent ideal ¢R,,,
and we prove in Proposition 1 that this ideal can be localized in R, (more
precisely, it is its complement R,\(tR,) which is localized in R,.) We
denote the ring of fractions of R, with respect to the set R, \(tR,) by §,
and obtain an inverse system of rings S,. The inverse limit § =lim_ §,
contains R and we prove the following fact.

PROPOSITION 2. S is a local domain with radical tS, the quotient ring
S/(t) is isomorphic to A, the field of fractions of R/(t). Furthermore,
tS N R = (R, and the ideal 1S defines a t-adic valuation in S; this valuation
extends the valuation v(x) of the ring R C S and the ring S is complete in the
topology defined by it.

Finally, to obtain the ficld D from § we take the ring of fractions of §
with respect to the central subsemigroup ¢, generated by the powers of 1.

Propositions 1 and 2 (see Section 2.1) are the core of our method; they
allow us to simplify the original method of Cohn, which can be outlined in
the following way. It begins with a construction of an inverse system of
semigroups, then each of these semigroups is imbedded into a group of
right quotients, and then a group G which is an inverse limit of these
groups is considered (see [2, Sect. 2); Cohn obtains the field D from this
group G (see [2, Sect. 3,4).

Although we do not prove this fact in the paper, we would like to point
out that if R is a ring which satisfies the conditions of Cohn’s theorem
then both the methods, the original method of Cohn and the method of
this paper, yield the same field D containing R.

The second goal of this article in the study of some classes of fields
which includes the ones constructed in Section 2 for imbedding of uni-
versal enveloping algebras U(L). Let D be a (skew) field with a dis-
crete valuation function v(x). The valuation that v(x) is quasiabelian if
v(xy —wx) > v(x) + v(y) or, equivalently, the graded ring gr(D), associ-
ated to the valuation v(x), is commutative. (See Cohn [3.4]). In Sections 3
and 4 of the paper we develop a method for lifting different valuation
functions from the ring gr(D) to the field D and then obtain the main
technical result of these sections.

THEOREM 4. Let D be a countable (skew) field with a discrete quasi-
abelian valuation 1(d), T ={d € D|v(d) = 0}, J(T) = {d € D|r(d) > 0},
and T = T/J(T) be the residue field of 1(d). Assume that there exists a
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central element t such that v(t) = 1. Let K be a commutative subfield of
D, fIX1=X"+ AX""' + -+, be a polynomial with coefficients A, €
K(a=12,...,n), where t(A,) 2 0 (a = 1,2,...,n — 1}; v(A,) = 0. As-
sume that the valuation 1(d) is quasiabelian (i.e., the associated graded ring is
commutative) and that at least one of the following two conditions hold

(I) charD =20

(I1) At least one of the images A, of the elements A, (a = 1,2,...,n)
in the quotient field T = T /J(T) is transcendental over the prime field 11.

Then there exists in D an infinite system of quasiabelian valuations ®(x)
(i € I) such that

(1) For every i € IP(A,) 20 (a=1,2,...,n) and ®(A,) =0 if
v(A,) = 0; in particular, ®,(A,) = 0 (i € 1).

(2) For every i €1 the restriction W{x) of ®{x) on the subficld
R =11(¢, A\, As, ..., A K is Henselian on the completion of this subfield (we
will call such valuations quasihenselian)

(3) flX] has a root in the residue field of every W.(x).

We apply Theorem 4 to derive Theorems 5 and 6 (see Section 5), which
are our main results about fields with a discrete quasiabelian valuation.

THEOREM 5. Let D be a (skew) field of characteristic zero. Assume that
there exists a discrete quasiabelian valuation v(d) of D, which is trivial on the
prime subfield of D, i.e., v(q) = O for every rational number q + 0. Then the
center Z of D is algebraically closed in D, i.e., if an element a € D is algebraic
over Z then a € Z.

Before formulating the other results of the paper we would like to
describe briefly the main idea of the proof of Theorem 5. (We will present
it now in a form a bit different from our proof.) We reduce first the proof
to the case when ¢(a) = 0 and the extension Z(a) is unramified over Z,
Let T ={d € D|v(d) = 0}, J(T) be the radical of T,A = T/J(T) be the
residue field which is commutative because (d) is quasiabelian. Let f[ X]
be the minimal polynomial of a over Z,f[ X] be the image of f[X]
modulo J(T). We can find a valuation p(r) of A such that f[ X7 has a
root in the residue field of p(r) and hence by Hensel’s Lemma it has a
root in the field A, the completion of A. One can use then the valuation
v(d) of D and p(r) of A to construct a new valuation function ®(x) on D,
as in Theorem 4. Let D and Z be the completions of D and Z with
respect to @(x); then one of the generalizations of Hensel's Lemma
implies that f[ X] has a root in Z. This is impossible because D is a (skew)
field.
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As an immediate corollary of Theorem 1, we obtain the following fact.

COROLLARY OF THEOREM 5. Let D be as in Theorem 5 and let A be a
subfield of D. Then the center of A is algebraically closed in A. In particular,
if A is finite dimensional over its center then it must be commutative.

We obtain from this (see Lichtman [9]) that if char K = 0 then a
Pl-subring of D or of U(L) must be commutative; the center of U(L) is
algebraically closed in U(L).

We consider also the case when char D = p or, more generally, when
the residue field of the valuation v(d) has a finite characteristic:

THEOREM 6. Let ©(d) be a discrete quasiabelian valuation of D, T =
{deDlv(d) = 0}, J(T) = {d € D|v(d) > 0}. Assume that the residue field
T = T/J(T) has a finite characteristic p. Let Z be the center of D and E D Z
be a commutative finite dimensional subfield of D. Then dim(E:Z) is a

power of p.

Once again the proof of this theorem is based on Theorem 4 and the
following fact which might be of independent interest.

PROPOSITION 5. Let 8 be a non-central element algebraic over Z; assume
that v(0) = 0. Then the minimal polynomial of 6 over Z has a form

fIX]=X"+z +fi[X],

where m > 1, z € Z is an element such that v(z) = O and the image Z of z in
T/J(T) is transcendental over the prime subfield Z, (and hence z is transcen-
dental over the prime subfield of D), [ X] is a polynomial with coefficients
from J(T), i.e.,

fIX]=X"" + z(mod J(T)).
Theorem 6 has the following corollary.

COROLLARY OF THEOREM 6. Let D be as in Theorem 6, A be a (skew)
subfield of D with center Z,, a be an element of D algebraic over Z,. Then
din(Z(a): Z)) is a power of p. In particular, if A is finite dimensional over
Z, then dim(A : Z,) is a power of p.

We conclude from this easily that if R is a Pl-subring of D then its
PI-degree is a power of p; this implies that if char K = p then a P/-subring
D or of U(L) must have its PI-degree a power of p. (See Lichtman [9].)

Now let D be the field constructed by Cohn in [2] for imbedding of a
universal enveloping algebra U(L) (this field is obtained also in Theorem 2
of the paper). Lemma 2 in {8] (or Corollary 2 of Theorem 2) imply that the
valuation p(x) on D is quasiabelian and hence Theorems 4—6 and their
corollaries hold for this field; the results of this paper give therefore
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generalizations and simpler proofs of results in Lichtman [9]; we point out
also that Lemma 4 in [9] is incorrect.

If L is a soluble-by-finite dimensional Lie algebra its universal envelop-
ing algebra U(L) is an Ore ring (see Lichtman [10, Prop. 4.1]); hence, the
field of fractions of U(L) is contained in any field generated by U(L). We
see that Theorems 4-6 and their corollarics hold for the fields of these
algebras; similarly, they are true for the fields of fractions of Weyl
algebras.

The author is preparing a paper for publication where some of the
valuation methods developed in the current paper will be applied to the
study of division rings generated by group rings of torsion free nilpotent
and residually torsion free nilpotent groups; in particular, we will consider
the relation between the properties of the fields generated by the groups
rings and the fields generated by the universal enveloping algebras of the
Lie algebras of these groups.

I am grateful to P. M. Cohn and to the referee for a number of useful
remarks and criticism, and [ am indebted to the referee for pointing out a
gap in the first version of the proof of Theorem 5.

2

2.1. Let R be a domain, ¢ be a central element such that N,_ (1)" =0
and the quotient ring R/(¢) is a domain. We conclude immediately that

the ideal T = (¢) defines in R a t-adic valuation by the rule
v(x) =nif x e T"\T"*', v(0) = =,
Our first main result is the following theorem.

THEOREM 1. Let R be a domain, t be a central element. Assume that
N,.t) =0 and R/T is an Ore domain. Then R can be imbedded into a
division ring D and the valuation function v(x) is extended to D and the
subset RR™" is densein D. Let S = {s € D|1(s) = 0). Then S/t§ = A, the
field of fractions of R/ T.

Our proof is based on Propositions 1 and 2 below; we keep in these
propositions the notations of Theorem 1 and assume that the assumptions
of this theorem are satisfied.

PROPOSITION 1. Let an arbitrary natural n be given and let X be the image
of a subset X C R under the natural homomorphism R — R/T". Then the
subset R\T is a right Ore set in R.

Proof. Since the powers of the ideal (r) define a valuation in R a
routine argument shows that the elements of R\ 7T are not zero divisors in

R. Now let x € R\T, y € R be given. Since the conditions of Theorem 1
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imply that the assertion is true for n = 1 we can assume that n > 1 and
there exists u € R, v € R\T such that

xu—yr=zeT" L (2.1)

We can assume that z & 7", otherwise the result is proved; hence,
z =2z," !, z, € R\T and we rewrite now (2.1) in the form

xu —yv —zyt"" =0, (2.1)

On the other hand, for x € R\T, z, € R\T we can find v, € R\T,
u, € R such that

xu, —zgv, €T
and hence
-1 coen—1
xu"" =zt e TN (2.2)

We multiply (2.1') on the right by —¢, and add to (2.2) to obtain
x(u 0" —ur)) +yer, € T (2.3)

However, ¢ € R\T, v, € R\T and hence vr, € R\T. We see now that
(2.3) implies that the set R\ T is localizable in R =R/T" and the
assertion follows.

For every given n = 1,2,... we now denote R, = R/T" and S, the
ring of fractions of R, with respect to the set M, = R, \(¢). Clearly, the
ideal (¢) € R, is nilpotent, (¢)" = 0, and there exists a natural homomor-
phism R,,; — R, with kernel (+")R,, . ,. A routine argument now implies

the following corollary of Proposition 1.

COROLLARY. The ideal (1) € S, is nilpotent, (t)" = 0, and the quotient
ring S, /(t) is isomorphic to the field A, the field of fractions of R/(1).
Furthermore, (1"S,, ) N R, ., = "R, ., and the homomorphism R, | —
R, ../(t") = R, is extended to the homomorphism S, , | = S, ., /(1) = S,

We have now an mverse system of rings R, €S, with a system of
epimorphisms S, , 2 S, such that ¢(R,,)=R,. Let S =1lim_S,,
R = lim_ R, be the inverse limits of these systems. Clearly S2R :) R.

PROPOSITION 2. S is a local domain with radical tS, the quotient ring
S /(t) is isomorphic to A, the field of fractions of R/(t), tS N R = (R, and
the ideal S defines a t-adic valuation in S; this valuation extends the valuation
t(x) of the ring R C S and the ring S is complete in the topology defined by it.

Proof. Every homomorphism §, _, BN S, maps the radical ¢S,,, on
the radical tS,,‘Fof S, and induces an epimorphism of the quotient rings:
S,../US,.) — S, /(S,). These two quotient rings are in fact isomor-
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phic, via Corollary of Proposition 1, to the field A. We conclude therefore
that the ring S contains an ideal ¢S = lim_ (¢S,) such that S/(1) = A.
Every element s € §\(t) must be invertible in S since its images under all
the epimorphisms § — §, are in §,\(s5,) and hence are invertible in
every S, (n = 1,2,...). This shows that S is a local ring with a radical S
and S/t§ = A.

We observe now that N7, _ (¢5)” = 0. This follows from the fact that the
ideal ¢S is mapped on nilpotent ideals S, C S, under the epimorphisms
§— S, (n=1,2,...). It is important also for every n that (y,(t))" =0
but (y,(2))"~! # 0 and hence the element ¢ € S is not nilpotent.

Since §/t5 = A is a field a routine argument now yields that § is a
domain and that the powers of the ideal (¢) define a t-adic valuation p(x)
in §; the topology defined by this valuation is in fact the topology of the
inverse limit § = lim _ §,. It is known (see [7]) that § is complete in this
topology.

Finally, we prove that the restriction of the valuation p(x) on R
coincides with v(x). Let 0 #x € R and p(x) =k. Then x € (t5)*\
(1S) 1 = (t*S$)\ (+¥*1S). Hence, there exists a number N such that for
every n > N we have y(x) € (t*S )\ (+**'S,). Since S, is the ring
fractions of R, and y(x) € R, we obtain easily that y,(x) € (:*R,)\
(t**'R.) for n > N and hence x € (t*R)\ +**'R, i.e., v(x) = k. This
completes the proof.

Now let X be an arbitrary system of coset representatives of S /(tS) = A;
Proposition 1 implies that we can pick X from the elements of the set
RR[', where R, = R\(t). A routine argument now yields the following
corollary of Proposition 2.

COROLLARY. An arbitrary element s € § has a unique representation
s= Lot (e,e€X,i=0,1,...) (2.4)
i=0

and hence the set RR' is dense in S.

Proof of Theorem 1. The proof is now easily obtained. Take the ring .S
and observe that every element s € S has a unique representation s = t*s,
where k = p(s) > 0 and s, is invertible. Let D be the ring of fractions of
S with respect to the central subsemigroup {¢), generated by the element
t. It is easy to verify that D is a field and that every element d € D has a
unique representation

d= }: dit'(d, € X,i = n), (2.5)

i=n

where n can be an arbitrary integer.
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It is well known and can be verified easily that a valuation of a ring is
extended in a unique way a valuation of its ring of fractions, and hence,
the valuation p(x) is extended to D; this follows also from the representa-
tion (2.5) if we define ¢(d) = n. Finally, the representation (2.5) shows that
the set X = RR; ! is dense in D and the assertion follows.

2.2. Let L be an arbitrary Lie algebra over a commutative field K,
U(L) be its universal envelope; let ¢; (i € ) be an ordered basis of L. It is
well known (see [5, V.3]) that U(L) has a filtration

U'=0,U =K+L+L*+ - +L(i=0,1...)

whose associated graded algebra is a polynomial algebra. It is easy to verify
(see [1, p. 524)) that this filtration defines a valuation function ¢(x) by the
following rule:

v(0) ==, o(x)=—-iifxeU\U"" (2.6)

THEOREM 2. The algebra U(L) is embedded into a field D with a discrete
valuation function p(x), which extends the canonical valuation v(x) of U(L).
The field D is complete in the topology defined by p(x). Furthermore, if S is
the valuation ring of p(x), i.e., S ={x€ D|v(x) =0} and J(S) is the
maximal ideal of S then S /J(S) is a commutative field, purely transcendental
over K.

Proof. Consider the direct sum of Lie algebras L, = L + Ke, where Ke
is a one dimensional Lie algebra; then U(L,) is isomorphic to the polyno-
mial ring U(L)[e]. We have a valuation function on U(L,) whose restric-
tion on U(L) coincide with ©:(x); we will denote this valuation function on
U(L,) also by v(x); it is worth remarking that v(e) = —1.

Now consider the ring of fractions R, of U(L,) with respect to the
central subsemigroup E generated by the element e, and extend the
valuation v(x) on R, by the natural way, i, if x =re™*, r€R, k>0
then we define v(x) = v(r) + k. Let R = {x € R, [ v(x) = O}.

We see that R contains a central element ¢t =e ' such that the
valuation function v(x) on R is defined by the powers of the ideal (¢). It is
easy to see also that R, is isomorphic to the ring of fractions of R with
respect to the subsemigroup generated by e,

In order to complete the proof we need the following fact.

PROPOSITION 3. The quotient ring R /(1) is isomorphic to a polynomial
ring K[1,] where 1, is the image of the element t, = e,e ™" (i € I).

The proof of Theorem 2 is now completed easily. Theorem 1 and
Proposition 2 imply that R is imbedded into a field D with a discrete
valuation function p(x) which coincides with v(x) on R. We recall that
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R, is isomorphic to a ring of fractions of R. Hence, D contains a sub-
ring isomorphic to R, and U(L,) € R ¢ D. This completes the proof of
Theorem 2.

Proof of Proposition 3. First observe that every element x € R, has a
unique representation as a sum of elements of a type me™*, where k > 0
and  is a standard monomial in U(L), say 7 = e{""e5* ... e, (we remind
that the set ¢; (i € ) is ordered) and x € T if we have for all of these
monomials a, + a, + - +a, + k = 0; furthermore, if ¢(x) = 0 then we
have for all of these elements

ek =(ee ) (ere™ ") e (ee™ ) (2.7)

this implies that the elements t; = e;e ™' (i € I) generate the quotient ring
R /(t). This quotient ring is commutative: indeed, we have for arbitrary two
elements 1, and ¢,

l'([t,»l,t,:]) = z'([e,-l,e,-:]efz) = 1'([ef‘,e,1]) +2>1

because L'([eil,eizl) > —1.

It remains to prove that the elements ¢, (i € I) are algebraically inde-
pendent modulo (¢); this is equivalent to the fact that lexicographically
different monomials of the type (2.7), together with 1, are linearly indepen-
dent modulo (¢); it is worth remarking that the monomial (2.7) is obtained
from the standard monomial 7 = e{es? ... e if we replace e; by e;e”!
(i=1,2,...,5)

Assume that there exist standard monomials #,,7,,..., m, on the set
of elements 1, =¢,e” ' (i €[) and elements Ay, A, Ay, ..., A, € K such
that

Ag + A+ Aw, + o HA T, € (1) (2.8)
We assume that the degrees of the monomials (2.10) are
O0<r<r,< - <r,.
Now multiply (2.8) by e" and obtain
(Age + NI e~ 4 e " 4 e A, T, e A T
e ('), (2.9)

where for a given j €{1,2,...,m} Tl ; is a standard monomial obtained
from =; by substitution of the element e¢; instead of ee”' (i €1). The
element in the left side of (2.9) belongs to U(L,); moreover, if the
coefficients A; (j =0,1,...,m) are not all equal to zero then this element
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is in fact homogeneous of degree r,, in the canonical filtration of U(L,)
and hence its norm in R, is —r,,; however, this contradicts the fact that
the norm of the right side is greater than or equal to 1 —r,. This
contradiction shows that all the coefficients Ay, A,,..., A, in (2.8) are
equal to zero and the assertion follows.

COROLLARY OF THEOREM 2. The set UCL XU(L )" is dense in D.

2.3. We consider now once again a field D with a discrete valuation
function v(x); let S={d e D|uv(d) >0}, J(§)={d € D|v(s) > 0}). We
will assume that there exists a central element ¢ € D such that ¢(¢) = 1
and hence J(S) = S; this condition holds in the fields obtained in Theo-
rems 1 and 2.

PROPOSITION 4. Let gr(D) be the graded ring of D, associated to the
valuation p(x) of D. Then gr(D) is isomorphic to the group ring St} of an
infinite cyclic group over the commutative field S = S /J(S).

Proof. We give only a sketch of the proof since the argument is
routine. Let for a given integer k D, = (d € D|v(d) = k}. Then D,/D, =
§/J(S) = § is a subring of gr(D) and it is casy to see that D, /D, , , = St*,
where t =t + D, and the map D,/D,,, — St* defines an isomorphism
between gr(D) and S${¢).

We shall now state and prove Theorem 3, which will be later applied in
the proof of Theorem 6. We denote, as usual, by D* the multiplicative
group of D and by y,(D) the nth term of the lower central series of D*.

THEOREM 3. Assume that there exists a central element t such that
o(t) = 1 and that S/(tS) is commutative. Then y(D*)c 1+ t"S (n =
2,3...) and the group D* is residually nilpotent.

Proof. Since ©(x) is a discrete valuation on D we obtain for every
element d € D a representation similar to (2.5)

d=1d,, (2.5)

where n = p(d), p(d,) = 0 and hence d, € §*, the group of units of S.
The representation (2.5') implies immediately that v,(D*) = y(5*) (n =
2,3,...). On the other hand the quotient ring § /¢S is commutative; hence,
for arbitrary two elements x,y € §* we have

l—x"y 'y =x"y '(»—xy) €15, (2.10)

which implies that (§*Y c 1 + £S. A standard argument now implies that
y($*)C 1 +1"S{(n=2,3,...) and hence

v, (D*) C1+'S(n=2,3,...). (2.11)
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Since N},_,t"S = 0 we conclude that the group D* is residually nilpotent
and the proof is complete.

CoroLLARY 1. () If char D = 0 then the group (D*) is residually
torsion free nilpotent.
(i) If char D = p then the group (D*Y is residually ““a nilpotent p-group
of bounded exponent.”

We recall that a group G is residually torsion free nilpotent (residually a
nilpotent p-group of bounded exponent”) if for every element 1 # g € G
a homomorphism G — H can be found such that ¢(g) # 1 and H is
torsion free nilpotent (a nilpotent p-group of bounded exponent).

The assertion follows from Theorem 3 by a routine argument.

COROLLARY 2. Assume that D is as in Theorem 3. Then

(i) If char D = 0 then the group (D*Y is torsion free.

(ii) If char D = p then the elements of finite order in (D*) have orders
powers of p.

The assertion follows immediately from Corollary 1.

Remark. Let L be a Lie algebra over a commutative field K, D be the
field obtained in Theorem 2 for the imbedding of the universal enveloping
algebra U(L) (this field is isomorphic to the field constructed by Cohn
in [2]). The following result, more precise than Theorem 3, was obtained
in [8] for the multiplicative group D* of D:

(i) If char K = 0 then D* = K* X D,, where the group D, is residu-
ally torsion free nilpotent.

(i) If charK =p then D* = K* X D,, where D, is a residually
“nilpotent p-group of bounded exponent.”

3

Let R be a ring, I' be a totally ordered abelian group. Assume that a
valuation function v(r): R — I' U « is defined on R, i.e.,

v(r)y = iff r=0
v(l) =0
v(x +y) = minf{e(x),e(y))
v(w) =v(x) +v(y)-
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We would like to point out that in this paper we will consider only the
valuations with an abelian group of values. A valuation function defines
a filtration in R if we set R, = {xeR|v(x) = v); let R ={x €R]|
v(x) > y}. Then the graded ring S = gr(R) associated to this filtration
(and to the valuation ¢(x)) is defined in the following way. The additive
group of S is £ R /R;if x=(x+R,)ER,/R,, y=(y+ R C
R;/R}; then the product %y is the element (xy + R, z) € R, z/R,, 5. It
is not difficult to verify that this operation is well defined for the homoge-
nous elements and then it can be extended by the distributivity law to
arbitrary elements of ¥ . R /R and that gr R is a ring without zero
divisors. We need the following concept (see Cohn [2, 3]).

Definition. The valuation ©(r) on R is called quasiabelian if the ring
gr( R) is commutative.

The proof of the following lemma is straightforward and we omit it.

LeMMA 1. The valuation v(r) is quasiabelian iff for arbitrary non-zero
a,b € R we have

v(ab — ba) > v(a) + v(b). (3.1)

LEMMA 2. Let R be a ring with a valuation function v(r): R > TU_ , M
be a right denominator set in R. Then the valuation v(r) is extended to the
valuation of the ring of fractions RM ™" by the rule

v(ab™')y =v(a) ~v(b)(a€R,bEM).

Furthermore, if the valuation v(r): R —» [ U ® is quasiabelian then the
extended valuation is also quasiabelian.

Proof. 'The first statement is a well known fact. The second statement
is Lemma 2 in [8].

Let R be a ring with a discrete valuation function v(x); to extend the
valuation ¢(x) from R to the polynomial ring R[¢] we define for an
element f1] = ajy + a;t + - +a,t"

v(f1e]) = min{e(a) + . (3.2)

It is well known (see Bourbaki [4], V1.10.1) that (3.2) defines a valuation
function on Ri{t] which extends v(x); we denote this extended valuation
functon also by v(x).

Now assume that the valuation ¢(x) on R is quasiabelian. We show that
the extended valuation is quasiabelian on R[t]. Indeed, let f[t], gl¢] € Rl¢],
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e(fle) = k|, v(glt]D) = k,. We have to show that
v(flelele] = glelf[e]) > ki + ks (3.3)

It is easy to see from the definition (3.2) that we can assume that in fact
that flt] = X, a;t' where v(a,) +i =k, for all i; similarly, g[t] = X, B,/
with 0( ;) +j = k, for all j. Hence,

flelgle] = glelfle] = X (i B = Bya)r™. (3.4)

.
Since (e, B, — B;a,) > v(«;) + v( B;) we conclude that in (3.4)

U((a, B - ,Bja,)t”f) >e(e) to(B)+i+]
>k itk +i+jzk +k, (3.5)

and (3.3) follows now from (3.5). We proved the following fact.

LEMMA 3. Let R be a ring with a discrete valuation function v(x). Then
v(x) is extended to the polynomial ring Rlt] by formulae (3.2). If v(x) is
quasiabelian on R then the extended valuation is quasiabelian on R[t].

We consider now the ring of fractions of R[¢] with respect to the
multiplicative semigroup generated by the element . Since this ring of
fractions is isomorphic to the group ring of an infinite cyclic group we
obtain the following corollary of Lemma 3.

COROLLARY. Let R be a ring with a discrete valuation t(x), R{t) be the
group ring of an infinite cyclic group {t). Then the valuation v(x) is extended
to R{t), the extended valuation is quasiabelian if v(x) is quasiabelian.

LEMMA 4. Let R be a domain, R{t) be the group ring of an infinite cyclic
group. Assume that there exists in R{t) a discrete valuation v(x) such that
ity =Ll T={xeR{u)|v(x) =0}, T, ={x € R{t) | v(x) > 0}. Then
the quotient ring T/ T, is isomorphic to the graded ring gr(R) of R with
respect to v(x).

Proof. The quotient ring T/T, is generated by the images of the
elements of the form at* (a € R) with ¢(a)= —k. Let R, =
{x € R|uv(x) = —k}. We consider now the image of the set (R_, )t* under
the homomorphism 6: T — T/T,. We see that two elements A,t* and
A t% (A, A, € R_}) are congruent modulo T, iff ¢(A, — A,) = —k + 1.
This implies that there exists a one-to-one additive correspondence be-
tween 6(R_,¢*) and R_,/R . Furthermore, if x = a_, " + a_, 1"
+ e tath where a_, €R_; (j=12...,n)and i, <iy < - <i,
then it is easy to see that x & 7T,,. This implies that @ is extended to a

-1 l/
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one-to-one additive correspondence between gr(R) and T/T, and it is not
difficult to verify that 6 preserves also the multiplication. This completes
the proof.

Remark. We will prove in our next paper [11] that more general facts
are true for arbitrary valuations. At this moment our aim to obtain in
Lemmas 3 and 4 some simple facts which are needed for a proof of Cohn’s
theorem.

We can give now a simple proof of Cohn’s theorem.

Proof of Cohn’s Theorem. Consider the group ring R{¢) and extend
the valuation ¢(x) to R{¢) by Lemma 3 and its Corollary. Let T = {x €
R{t)lv(x) =0} and T, = {x € R{¢) | v(x) > 0} (see Lemma 4). Clearly
T, = tT and the restriction of ¢(x) on T is a p-adic valuation defined by
the powers of the ideal (¢). Since T/T, = gr(R) is an Ore domain we
obtain from Theorem 1 that T is imbedded into a field D. Finally, R{t) is
isomorphic to ring of fractions of T with respect to the multiplicative
semigroup generated by the element ¢ and hence is imbedded in D. This
completes the proof.

4

Now assume that a valuation function p(s): § — T'; U = is defined on
the ring S = gr(R). We will define a new valuation w(x) on R. Take the
direct sum I' + I'; and order this group lexicographically. Let 0 # x € R,
r{x) = a €Tl and denote ¥ = (x + R_) € gr(R). Assume that p(X) =g
and define

w(x)=(a,B)el+T; w(0) = = (4.1)

LEMMA 5. (i) The function w(x) defined by (4.1) is a valuation function
on R
(i) If at least one of the valuations v(r) or p(s) is quasiabelian then so
is w(x).

Proof. Let x,y be non-zero elements of R, w(x) = (v(x), p(X)),

w(y) = (v(y), p(§)). We have w(xy) = (v(xp), p(xp)); however, xy= iy,
hence,

w() = (0(), p(9)) = (¢(x) + (), p(X) + p(7))
=w(x) + w(y). (4.2)
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A similar argument shows that

w(x +y) = min{w(x),w(y))}

and the proof of the statement (i) is completed.
To prove (ii) we have to prove that the relation

w(ab — ba) > w(a) +w(b) (4.3)

holds for two arbitrary non-zero elements a,b € R. If (ab — ba) = 0 then
(4.3) is true; we can assume therefore that (ab — ba) # 0 and hence

w(ab — ba) = (v(ab — ba), p(ab = ba)) (4.4)
On the other hand,
w(a) +w(b) = (v(a), p(@)) + (v(b), p(b))
= (v(a) + ¢(b), p(@) + p(b)). (4.5)

Consider first the case when c(ab — ba) > v(a) + v(b) (this holds, in
particular, when ©(r) is quasiabelian); then (4.3) follows from (4.4) and
(4.5) because of the lexicographic order in ' + T',.

Now assume that ¢(ab — ba) = v(a) + v(b); in this case v(r) is not
quasiabelian and the conditions of the lemma imply that p(s) must be

i

quasiabelian. We have now (ab — ba) € R,y i) \Riviar+ viny Since ab

4

and ba also belong t0 R,y 1y \R{1(a)+ (5 WE Obtain

ab = ba =ab —ba = ab — ba
and hence

p(ab = ba) = p(ab — ba) (4.6)

and
w(ab — ba) = (L*(a) +v(b), p(ab - T)E)) (4.7)

Since p(s) is quasiabelian we conclude now that (4.3) follows from (4.7)
and (4.5) and the proof is completed.

Remark. Consider the important special case when the valuation v(r)
of R is discrete. Let ¢ be an element such that v(¢) = 1 and x # 0 be an
arbitrary element of R. If ¢(x) = a then x = t*y, where y € R\ R, and
we obtain from (4.1) that w(x) = (a, B) where 8 = p(¥). We see that in
this case the valuation w(x) on R is constructed in fact from the valuation
v(x) of R and the valuation p(s) of the quotient ring R,/R,. We will use this
observation later in Lemma 8.
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Now let D be a (skew) field with a valuation v(r): D > T U=, T = {r
eD|uv(r) =0}, J(T)={r € Djuv(r) > 0} be the radical of 7. Let S =
gr(D); clearly the field A = T/J(T) is isomorphically imbedded in the ring
S. Consider a valuation p(s): § — I} U © and then define a valuation
D - (I'+T)U=by@.l). Let U= {x € D|w(x) > 0} be the valuation
ring of w(x). We see that if x € U then it must be ¢(x)> 0 and if
v(x) = 0 then p(x) = 0. Hence U is a subring of 7 and T 2 U 2 J(T),
and if 17 is the valuation ring of p(s), i.e,, V= {s € A| p(s) = 0}, then
U/J(T) = V. We obtained the following lemma.

LEMMA 6. Let ¢ denote the natural homomorphism T — T/J(T) = A.
Then oU) = Vand o(J(U)) = J(V') and hence U/IU) = V/I(V),

Now let R = II(¢,¢,,1,,...,¢,) be a commutative field, finitely gener-
ated over the prime subfield II. Assume that the element ¢, =1t is
transcendental over I1 and defines a r-adic valuation ¢(x) in R. Replacing,
if necessary, the elements ¢, (i = 1,2,..., k) by new elements £, """ we
can assume that v(z;) = 0. ;

Let R be the v-completion of R, T be the ring of integers of R,
T = T/(tT) be the residue field.

LEMMA 7.  Assume that the field T is infinite. Then one of the following
two alternatives holds.

(i) The field T is transcendental over T1. Then there exists a purely
transcendental subfield T1(u |, u,,...,u,) C T such that T is a finite separable
extension T = T{(8), where T, is isomorphic to the Laurent power series ring
M(u,, uy,...,u)llt]]. The residue ficld T = T/(tT) is isomorphic to the field
(&, a,,..., 4, 0), where T1(G,, ity,...,0,) = W, u,,...,u,) is a purely
transcendental field, 9 is algebraic, separable and integral over the polynomial
ring M@, a,,...,a,] Furthermore, if f{ X1 is the minimal polynomial of 6
over T, = M(u,,uy,...,ult]] then the minimal polynomial of 8 over
(i, ,%5,...,4,) is f{ X ], the reduction of f{ X ] modulo (1).

(ii) T is algebraic over the field of rational numbers 1. In this case
T = T\[6], where T, is the power series ring I[[t]l, 6 is algebraic (and
separable) over T,. The residue field T is isomorphic to the algebraic number
field TI(8), where 8 is an algebraic integer and once again its minimal
polynomial is obtained by the reduction modulo (t) of the minimal polynomial
of 8 over T,.

Proof. We give a proof of statement (i); the proof of statement (ii) is
obtained by the same argument with obvious changes and simplifications.
Let ¢,¢,,¢t,,...,t, be a transcendency basis of R. Then R is a finite
algebraic extension of [1(s,¢,,¢,,...,¢,) and hence R is a finite algebraic
extension of R,, the completion of R, = I1(z,¢,,1,,...,¢,); this completion
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is isomorphic to the Laurent power series field II(z,¢,,...,¢)d[¢]]. Since
R is unramified over R, there exists a basis 6,,6,,...,8, of T over T} =
J(T) N R, such that the elements 6, the images of 6, in T = T/J(T)
(i =1,2,...,s), form a basis of T over the subfield TI =t t5,...,8,)
Since the field T is finitely generated over the prime subfield 1T it is
separately generated (see [3, 5.13]). We can pick in T a system of
generators i,, ,, ..., i,, 8 such that the subfield II{(&,, &,, ..., &,) is purely
transcendental and @ is separable over I1(i,, %,,...,4,); clearly, we can
assume that 6 belongs to the integral closure of the polynomial ring
Ml#,, u,,...,u4,] We take now the elements u,,u,,...,u,, 8, the inverse
mages of u,,u,,..., U, 9, in T and these element satisfy all the conclu-
sions of the lemma. This completes the proof.

We will construct now a valuation function on the field T and then
extend it to the ring T. Once again, assume that the field T is infinite. If the
alternative i) of Lemma 7 holds we denote K = (|, @,,...,u4,_,), the
subfield generated by #, U,,...,u,_; let &, = u and u, = u; we take in
the polynomial ring K[&] a maximal ideal A which is not ramified in the
integral closure of K[u] in the field T =K(u, 0); (hence A is also
unramified in the ring (K[@D[#]). The ideal A defines a p-adic valuation
of K{i], we extend it to a valuation of the field of rational functions K(u7)
and then to its algebraic extension 7. In the second case, we take a p-adic
valuation of the rationals which is unramified in T1(8). We obtained in
both cases a p-adic valuation p(x) on T and we define a valuation w(x)
on T by (4.1). (See the remark after the proof of Lemma 5.) We need the
following fact about these valuations.

LEMMA 8. Assume that the field T is infinite and let p(x) be a p-adic
valuation of T which is defined by an unramified p-adic valuation of K[u] or
of IT, ( T) be the Completion of T, T, be the comple(ton of T. Then the ideal

T, is the radtcal of T, the quotient ring (T)/T,) is isomorphic to the field
(T) and the powers of the ideal tT define a t-adic valuation in T the ring
(T) is complete with respect to this valuation.

Let U,V be the valuation rings of the valuations w(x) and p(s), respec-
tively. Then

=

(U,)/(:0,) =V, (4.8)

Proof. Let T, be as in Lemma 7, (1)), be the completion of 7, in the
topology defined by w(x), (T) be the compligtion of T, in the topology
defined by p(s). We observe first of all that (1), is isomorphic to either
(K(u)) the p-completion of the field K(&), or to the field II , the p-adic
completion of the rationals. A straightforward verification shows that the
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ring (Tl) _the w-completion of Tl, is isomorphic either to the power series
ring over (K(u)) or to the rmg H[[t]] We obtain from this that (T )./ (t)

is isomorphic either to K (7)) (@)), or to H i.c., it is isomorphic to (T ),» and
the ideal #(T)), defines a ¢- adic valuatlon in (1)), and (1)), is complete.

Now let V, = V' N T;,U, = U N T,. The same straightforward argument
as in Lemma 6 implies that U, /tU, = V| and

(Ul)n‘/t(lj])w = (I}I)P' (49)

We consider now the rings (T),[0]1=(T), ® r,T\[8] and (Tl) (6] =
(Tl) ®r T [5] they are isomorphic to (T )LX1/(fIXD and
#( Tl) (X /(f[_]) respectively. (We recall that f[X] is the minimal poly-
normal of 8 over (T)), f [x | is the minimal polynomial of § over T,, and
fTX1] is obtained by reduction of f[X] modulo (¢); see Lemma 7.)

We recall now that the valuation p(x) of T is unramified in T (6] and
that @ is separable over T,. Hence the factorlzatlon of fTX]in T,[X] has
a form

Wﬂf_m

a=

where fale (a=1,2,...,m) are distinct irreducible polynomials. The
classical Hensel’s Lemma now implies that

n

flx]= (,Ulf"[X]’

where f[X] (a=1,2,...,m) are distinct irreducible polynomials and
every f,[ X ] is obtained by reduction of f [ X ]mod(s).
We obtain therefore that the homomorphlsm w: (T), = (T),/() =
is extended to a homomorphism (7)), X]/(f[X]) - (T) (xX1/
f | D) (the kernel of this homomorphism is generated by the element 1)
and then to homomorphisms

(1) X1/(LIX]) = (), /FIX)(a = 1,2,...,m).
However, (T,),[X1/(f(X)) is a direct sum of integral domains

(1) X1/ (XD = (1) [X1/(A1x D) + (1), [X)/(LIXD)
+ o+ (1), [X])/(fLX])
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as well as (7,),[ X1/(FTX]) is a direct sum of fields
(7.) [x1/GTXT) = (7.) (X 1/(FIXT) + (T.) (x 1/EXT)
+ (7)) [X1/(TXT).

and for every given a = 1,2,..., m there exists a homomorphism

7 (1), [X1/(LIx]) > (T), /(FIXT).

which extends the homomorphism : (1), - (Tl)

Finally, the domain (T) is isomorphic to one of the domains
(T,) [X1/(fIXD and we obtain a homomorphism of (T) on the ring
(T) /(o [Xx [) = (T(G))p, i.e., we obtained a homomorphmm T, -
(T )/(t) = (T) which extends the homomorphism (T) — (T ),./(t) =
(T) The ideal (¢) defines a t-adic valuation in the ring (1)), and does
not ramlfy in its integral algebraic extension (T) ; it is important that
(T ), 1s complete with respect to this r-adic valuatlon This implies that the
1deal tT defines a valuation of T“ and T is also complete. The relation

(4.8) follows now easily from (4.9) or from the relation T, /¢T, (T)p This
completes the proof.

The following corollary follows now immediately from Lemma 8.

COROLLARY. Assume that the conditions of Lemma 8 are satisfied. Then
0./0(0,) = GV} =V, /(1))

We recall now the following fact from the classical valuation theory. Let
F be a commutative field with a discrete valuation v(x): F > T U oo let
= {x € F|v(x) = 0} be the valuation ring of v(x). Let F and U be the
completlons of F and U respectively, JO) ={xeUlvx)> 0} be the
radical of U, U = U/J(U) be the residue field of v(x). Let flX]le Ulx)
be a monic polynomial, f[ X | be its image modulo J(0). Assume that in
Ulx]

FTXT = AIXTALXT, (4.10)

where f[X], ;[ X] are relatlvely prime. The classical Hensel’'s Lemma
states that there exist monic polynomials f,[X] &€ UlX] (a = 1,2) such
that

fIx] =Alx1A1X] (4.11)



VALUATION METHODS IN DIVISION RINGS 889

and f,[ X1 coincides with f [ X] (a = 1,2) modulo the ideal J(O).

Now let R be a commutative field, ¢(r): R — I' U e« be an arbitrary, not
necessarily discrete, valuation; we will call it quas1hensehdn if the analog
of Hensel’s Lemma holds in the ring R[X] where R is the completion of
R.

We consider now a quasihenselian valuation ¢(r): R > T U= of a
commutative field R; let S = gr(R); clearly the residue field 7 = T/J(T)
is naturally imbedded in the ring §. Once again, we assume that there
exists a valuation p(s): § — I', U % and we construct a valuation w(x) on
R by (4.1).

PROPOSITION 5. Let R be a finitely generated commutative field. Assume
that the valuation v(r) is discrete on R and p(x) be a valuation on T which
was constructed in Lemma 8. Then the valuation w(x): R —» (I' + I'})) U < is
quasihenselian on R.

Proof. We will use the same notations as in Lemma 8. Let f[X] e
U[X] be a monic polynomial; assume that (4.10) holds modulo J(U),
where f,[ X and f,[ X] are relatively prime. Lemma 8 and its Corollary
imply that the homomorphism «: U — U/J(0) can be factored through
the homomorphism B: U — V which is induced by the homomorphism R
T, - (T), with kernel 1T hence, ker B = U N 1T Let f[ X ] be the image
of flX] under the homomorphism g. Since the valuation p is quasi-
henselian and we have for the polynomlal f[X]e V[X] factorization
(4.10) modulo J(V') we obtain that in V[X]

fIXT = AIX150X], (4.12)

where f,[ X] coincides with f,[X] (« = 1,2) modulo JV). Lemma 8
implies that the ring T is complete in the z-adic topology defined by the
powers of the ideal (T and hence U is complete in the topology defined by
the powers of the ideal ker 8 = U N tT. Since fIX] has a factorization
(4.12) modulo the ideal ker 8 and U is complete in the topology defined by
this ideal we conclude by one of the versions of Hensel's Lemma (see
Bourbaki {1, Th. I11.4.1]) that there exist in U[X] monic polynomldls
f£.IX] (a = 1,2) such that (4.11) holds and f,[X] consides with f, [ ]
modulo ker 8 for a« = 1,2 and the assertion now follows.

LEMMA 9. Let K be a commutative field, f[X]1=1,X" + A X""!
+ -+ + A, be a polynomial with coefficients Alt] € K[t] (j =0,1,...,n;

> 1). Then the system of all the polynomials f| f)u[l‘]] (Alt] € K[t]) includes
an infinite number of distinct prime divisors p,[t] (i € I).

Proof. In fact, assume that there exists only a finite number of such
divisors; let p|[t], p,lt],..., p,(¢) be all of them. We apply now a method
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similar to [12, Problem 108]. Pick an arbitrary power of ¢ such that
flt™] # 0. We obtain

flem) =slel = pile] pale]™ o op Le]™

Now let

ol X] = ;{;]—f[rm s pltlpale] . p LS.

It is easy to verify that ¢[ X] is a non-constant polynomial over K[¢] and
o[ X] = 1mod(p,[t]p,le]... p,[t]. Hence, there exists Alt] € K[¢] such
that ¢[Al¢]] is a non-constant polynomial in K[¢] whose prime factors
differ from p[¢] (i = 1,2,...,r); clearly, these prime factors are also
divisors of flt™ + p,[¢]1p,le]... plelslz]Alz]. This contradiction shows that
the set plt] (G = 1,2,...,r) cannot be finite and the proof is completed.

COROLLARY. There exists an infinite set of irreducible polynomials p[t] €
K(t1(i € I) such that fl X has a root modulo p[t] (i € I).

Let K be a commutative field, f[X]=X" + A, X" '+ - +A, be a
polynomial where A, € K(a = 1,2,...,n; n > 1); assume that at least one
of the coefficients A, is transcendental over the prime subfield II. Let
Uy, U,,..., U, B be a separating transcendency basis for the field § =
II(A;, Asy..., ) e., @ is algebraic and separable over the purely tran-
scendental subfield 11Cu,, u,,...,u,). We denote S, = [(u,,uy,...,u,_,),
the purely transcendental subfield generated by w,,u,,...,u,_,, and let
u, =u, so §=5(u0); let T be the integral closure of the polynomial
ring S,[u] in S(u, 0).

LEMMA 10.  There exists an infinite number of maximal ideals A, C T
(i € I) which are unramified over S (u) and define p-adic valuations p, on §
such that p(A,)=0Gel; a=1,2,...,n) and flX] has a root in the
residue field of every p,.

Proof. Let S be the normal extension of S,(u), containing S,(u, 6), T
be the integral closure of S,[u] in S. Assume first that flxle TIX] ie.
AET (a=1,2,...,n) Let fi[X]=f[X] f[X]...,f IX] be all the
polynomials obtained from f[X] by action of the Galois group
Gal(S: S,()) and let o[ X] = Iy lf,-[X]; the polynomial ¢[ X] has all its
coefficients in the polynomial ring S,[u]. By Lemma 9 there exists an
infinite number of polynomials among the divisors of all the polynomials
e[ Alu]l (Mlu] € K[u]). Hence there exists also an infinite number of
maximal ideals B; C T (j €J) which occur in the factorization of the
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principal ideals (@[ Mull) (Alu] € K[u}). This implies easily that there is an
infinite subset J, CJ such that the maximal ideals B; (j € J,) occur in the
factorization of the principal ideals (f[AlulDT (AIu] e K[u]) Finally,
taking the intersections 4, = B; N T (j € J;) we obtain an infinite set of
maximal ideals 4; € T (i € I), which occur in the factorization of the
principal ideals (f[Alu]DT (Au] € K[u]). Every ideal A, defines a p-adic
valuation p, in T and f[ X] has a root in the residue field of p,. Since the
system of ideals A; (i €[) is infinite we can assume that p(A,) =10
(a =1,2,...,n; i €I). The proof is completed for the case when A, € T
(a=1,2,...,n).

If now A, (a = 1,2,...,n) are arbitrary elements of S,(u, 6) we can
represent theminaform A, = . b~ 0% beT,u, € T(a=1,2,...,n)
and observe that the assertion has already been proven for the polynomial
plX]=pu, X"+ uy X"~ ' + -« +p,. Clearly there exists a cofinite subset
I, < I such that p,(b) = 0 for every i € I, and the proof is completed.

LEMMA 11. Let K be an algebraic number field, f[X]= A X" +
AX V4 - + A, be a non-constant polynomial, S = TI(A[, Ay, ..., A).
Then there exists in S an infinite system of p-adic valuations p; (i € I) such
that p(A,) =00 €I, a=1,2,...,n), flLX] has a root in the residue field
of every p, and p; is unramified over the rationals.

Proof. The proof differs from the proof of Lemma 10 only in one point:
for a given polynomial f[X] e Z[X] the set of all the integers f[A]
(A € Z) is composed from an infinite set of prime numbers (sec [11,
Problem 108)) and the proof can be completed by the same argument as in
Lemma 10.

Remark. 1t is worth remarking that the valuations p;, (i € I) con-
structed in Lemmas 10 and 11 satisfy all the conditions of Lemma 8.

LEMMA 12. Let K be a finitely generated commutative field, f[X] =
X"+ AMX" '+ -+, beapolynomial (A, € K, a =1,2,...,n;n > 1).
Assume that at least one of the following two conditions hold.

(1) charK=0
(2) At least one of the coefficients A, (a = 1,2,...,n) of f[X] is
transcendental over the prime subfield of K.
Then every valuation p; (i € I) of the ring S = TI(A, A,,..., A,) which
was constructed in Lemmas 10 and 11 is extended to a p-adic valuation on K.

Proof. Let as in Lemmas 10 and 11 § = TI(A}, A,,..., A,). Since K is
finitely generated we can assume without loss of generality that K is in
fact either a simple algebraic or a simple transcendental extension of S. In
the first case p; is extended to a p-adic valuation of K by Coro. 2 of Th.
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V1.8.2. in Bourbaki [1]; in the second case, we apply Prop. V.10.2 in [1].
This completes the proof.

COROLLARY |. Let K be a countable commutative field, f[X]=X" +
AMX" U+ o +A,n be a polynomial (A, € K, a=1,2,...,n; n > 1). As-
sume that at least one of the conditions 1) or 2) of Lemma 12 hold. Then
every valuation p, (i € I} which is constructed in Lemmas 10 and 11 is
extended to a valuation on K.

Proof. Let K, =TI(A, Ay,...,A)C K, CK,C -+ be a system of
finitely generated subfields such that K= Uo,_ K, We begin as in
Lemma 12 with a system of p-adic valuations p, (i e ) in K;. We extend
then each p; inductively to K; (j = 1,2,...); since K = Ui K, we
obtain eventually that every valuation p, (i € I) is extended to K.

COROLLARY 2.  Let C be a countable commutative domain with a unit, K
be its subfield, f[X]= X" + A, X" "' + -+ + A, be a polynomial with coeffi-
cients from K (n > 1). Assume that at least one of the conditions (1) or (2) of

Lemma 12 hold. Then every valuation p, (i € I) on H(A, A5, ..., A,) which
was constructed in Lemma 10 and 11 is extended to a valuation on C.

Proof.  Replace C by its field of fractions F. The assertion now follows
from Corollary 1.

THEOREM 4. Let D be a countable (skew) field with a discrete quasia-
belian valuation 1(d), T={d € D|v(d) = 0}, J(T) ={d € D|v(d) > 0},
and T = T/J(T) be the residue field of v(d). Assume that there exists a
central element ¢ such that ©(t) = 1. Let K be a commutative subfield of
D, flX]=X"+4+ XX"""+ -+, be a polynomial with coefficients A, €
K(a=1,2,...,n), where (A ) 2 0(a = 1,2,...,n — 1); v(A,) = 0. As-
sume that the valuation v(d) is quasiabelian and that at least one of the
following two conditions hold

() charD =0

(I1) At least one of the images A, of the elements A (a = 1,2,...,n)
in the quotient field T = T/J(T) is transcendental over the prime field 11.
Then there exists in D an infinite system of quasiabelian valuations ®,(x)
(i € 1) such that

(1) Foreveryicl @A) >0(a=1,2,...,n) and ®(Ar,) =0 if
v(A,) = 0; in particular, P(A,) = 0.

(2) For every i €I the restriction Y(x) of ®(x) on the field R =
II(¢, Ay, A,y ...y A,) is quasihenselian.

(3)  fIX] has a root in the residue field of every W,(x).
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Proof. Let T, = TN R and R = T,/J(T,); clearly, R is a subfield of
gr(D). Let f[X] be the image of f[X] under the natural homomorphism
T, — R. The ring gr( D) is countable and commutative, we take the infinite
system of valuations of R which was constructed in Lemmas 10 and 11 and
then apply Corollary 2 of Lemma 12 to extend them to a system of
valuations p,(s) (i € I) on the ring gr(D) such that for each of them the
coefficients of fT X] belong to the valuation ring V; of p,(s) and f] X | has
a root in the residue field of p,(s). We apply now Lemma 5 and (4.1) and
construct from each p(s) a quasiabelian valuation ®,(x) of D. The
restriction of ®(x) on R, which we denote by W¥,(x), is composed from
two quasihenselian valuations: the restriction on R of the discrete valua-
tion ¢(d) and the valuation p,(s) on R. Proposition 5 implies that every
W¥.(x) is quasihenselian. Finally, fora giveni € I let U, = {x € R| ¥.(x) >
0}). Then as in Lemma 6 U,/J(U) = V,/J(V,) and hence f[X] has a root in
U,/J(U,). This completes the proof.

Remark. The condition of countability in Theorem 4 can be removed
by applying some additional argument based on ultraproduct machinery.
Since this theorem is a technical result and its current version is sufficient
for the proofs of our main results, Theorems 5 and 6, we prefer to leave it
in its present form.

5

We prove in this section Theorems 5 and 6; our proofs will be based on
Theorem 4.

Let D be an arbitrary field with center Z, D[¢] be the polynomial ring,
D[] be its field of fractions, i.e., the field of rational functions over D, and
let Z, be the center of D(t). We don’t know whether or not Z, = Z(¢) (it
seems reasonable to believe that this is so), but the following weaker fact
will be sufficient for our further arguments.

LEMMA 13. Let a € D be an element algebraic over Z, f[X] be its
minimal polynomial over Z. Then f[ X] is also the minimal polynomial of a
over Z,.

Proof. We consider the field of Laurent power series D[[¢]]. Clearly,
D(¢) < D[[¢]] and a straightforward argument shows that the center of
DI[t]] coincides with the power series field Z[[¢]]; since Z, centralizes D
we obtain that Z, C Z[[¢]]. On the other hand, the polynomial f[X] is
irreducible over Z and it follows easily that it must be irreducible over
Z[[t]1]; hence, f[X]is irreducible over Z, and the assertion follows.
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THEOREM 5. Let D be a (skew) field of characteristic zero. Assume that
there exists a discrete quasiabelian valuation v(d) of D such that v(q) = 0 for
every rational number q # 0. Then the center Z of D is algebraically closed in
D; i.e., if an element a € D is algebraic over Z then a € Z.

Proof. We observe first that we can assume that D is countable.
Indeed, let D, be an arbitrary finitely generated subfield of D, containing
a. If we prove that the condition of the theorem imply that a belongs to
the center of D, then @ must commute with all elements of D;i.e.,a € Z.
We show then that we can assume without loss of generality that Z(a) is
unramified over Z. In fact, consider the field of rational functions D(¢).
Lemmas 2 and 3 imply that we can extend () to a discrete quasiabelian
valuation of D(z). Let Z, be the center of D(r). The subfield Z,(a) is
algebraic and unramified over Z, since Z, contains an element ¢ with
v(r) = 1. If we assume that the assertion has already been proven for the
unramified extensions then a € Z, andhence ¢ € Z, N D = Z. We proved
therefore that we can assume that Z(«) is unramified over Z.

Taking, if necessary the element a ' we can deal with the case when
v(a) = 0. Furthermore, if ©(a) > 0 then ¢(1 + a) = 0 and we can assume
in fact that ¢(a) = 0. Let f[ X] be the minimal polynomial of a over Z; we
can assume that f[ X]is not linear. Let D and Z be the completions of D
and Z respectively. Since ¢(d) is discrete and Z(a) is unramified over Z
we conclude that f[ X]is also the minimal polynomial of a over Z. This,
together with the fact that ¢(a) = 0 implies that f[ X] has a form

fIX1=X"+ MX"" 14+,
X(n>1L A, €Z(a=1,2,...,n);
v(A) 2 0(a=1,2,...,n—=1);0(A,) =0) (5.1)

Let K be the subfield of Z generated by the elements ¢, A, A,,..., A,.
We apply Theorem 4 (in fact, a special case of it when K = R and is in the
center of D) and find a quasiabelian valuation ®(x) of D such that its
restriction W¥(x) on K is quasihenselian, ¥(A,) > 0 (@ = 1,2,...,n) and
flX] has a root in the residue field of W(x).

Let D and Z be the completions of D and Z, respectively, with respect
to the valuation ®(x) and K be the completion of K with respect to
\I'(x) clearly, D K and Z are fields and Z o K. Let D, be the subrmg of
D generated by Z and D; clearly, D, is a homomorphlc image of Z®D.
But Z ® D is a central simple algebra; hence, D, = ZeD. This implies
in particular that f(X) is the minimal polynomlal of a over Z and hence
over K.

On the other hand, ¥(x) is quasihenselian and f[X] has a root in the
residue field of W(x) which has characteristic zero. This implies that f[X]
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has a root in K. This contradiction shows that in fact a € Z and the
assertion follows.

COROLLARY. Let D be a skew field of characteristic zero with a quasia-
belian valuation v(d) such that v(d) = 0 for every non-zero element d € Q.
If A is a subfield of D finite dimensional over its center than A is com-
mutative.

Proof. We can consider if necessary the subfield A,, generated by A
and Z; this subfield is finite dimensional over its center Z, D Z. If
(A,:Z)) = m?* then A, contains a maximal commutative subfield § 2 Z,
with dim(S : Z,) = m. Hence by Theorem 5 § = Z, and A = Z,.

We consider now the second case when the residue field of the valuation
has a finite characteristic. In particular, this holds in the case when
char D = p. Let u©(d) be discrete quasiabelian valuation in, 7 =
{deD|v(d) =20}, J(T)=1{d € D] v(d) > 0}. Let once again Z be the
center of D.

THEOREM 6.  Let v(d) be a discrete quasiabelian valuation in D, such that
the residue field T = T/J(T) has a finite characteristic p. Let E 2 Z be a
commutative finite dimensional subfield. Then dim(E : Z) is a power of p.

Proof. We have E = E, ® E, where E| is separable over Z and E, is
purely inseparable. Since the dimension of E, is a power of p we can
consider only the case when E = E| is separable. In this case there exists
an element @ such that E = Z(#). Once again, as in Theorem 5, we can
assume that v(#) = 0. The theorem will follow immediately if we prove
the following fact.

PROPOSITION 6. Let 6 be a non-central element algebraic over Z; assume
that 1(8) = 0. Then the minimal polynomial of 6 over Z has a form

fIX]1=x""+z+f£[X], (5.2)
where m 2 1, z € Z is an element such that 1(z) = 0 and the image Z of z in
T/J(T) is transcendental over the prime subfield Z,, (and hence z is transcen-
dental over the prime subfield of D), f\[ X1 is a polynomial with coefficients
from J(T), i.e.,

flX]=X7" + z(mod J(T)) (5.3)
and the degree of f\[ X1 is less than n.

Proof. Once again, as in the proof of Theorem 5, an easy argument
implies that we can assume that [ is countable. We reduce first the proof
to the case when Z(6) is unramified over Z. Once again as in the proof of
Theorem 5 consider the field of rational functions D(#) and extend the
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valuation v(d) to this field by (3.2). Since the center Z, of D(t) contains
the element ¢ we see that Z,(#) is unramified over Z,; however, Lemma
13 implies that f[X] is the minimal polynomial of 6 over Z,.
Let T, ={d € D(t)| v(d) = 0}, J(T)) = {d € D(t)| v(d) > 0}. Since T,/
J(T)) = T/J(T) we see that if the assertion is proven for unramified
extensions, and in particular for the subfield Z(a) 2 Z, of D(¢), then (5.2)
will follow. We showed that we can assume that Z(6) is unramified over Z.

We assume from this moment that Z(#0) is unramified over Z. Since
v(x) is discrete and ¢(6) = 0 the minimal polynomial of 8 has the form

FIX]=X"+ A X" + 42, (5.4)

n

where ¢(A,) 2 0(a = 1,2,...,n), 0(),) = 0. Let for every a = 1,2,...,n
A, denote the image of A, in the residue field of T = T/J(T). We will
give the proof in two steps.

Step 1. Prove first that at least one of the elements A, (a = 1,2,..., 1)
must be transcendental over the prime subfield Z, ¢ T. Indeed, assume
that all these elements are algebraic over the prime subfield Z,cT. We
will show that this assumption leads to a contradiction.

Indeed, under this assumption the element 9, the image of 6 in T, must
be algebraic over Z,. This implies that 8 = 1 for some k. We consider
once again the fields D and Z, the completions of D and Z respectively.
Since v(d) is dlscrete we obtain by Hensel's Lemma that there exists
u € Z(#) such that u* = 1. Let D, be the subring of D, generated by Z
and D; like in the proof of Theorem 5 we obtain D, = Z ® D. Since
u € Z(9) and 6 € D we obtain that u € D ; furthermore uEZie., uis
non-central in D,, which implies that u is non-central in D. Coro. 2 of Th.
VIL4.1 in [6] implies that we can find an element ¢ € D such that
v~ 'ur = u~! and hence the element «” % = v 'wou ! is in the commuta-
tor subgroup of the group D*. Since u 2 has a finite order we conclude
from Corollary 2 of Theorem 3 that the order of u~? must be a power of
p- But we have in fact (u™?)* = 1,(k, p) = L; hence, u™? = 1,ie.,u = +1,
which contradicts the relation « ¢ Z. This contradiction shows that at
least one of the coefficients 7‘” (a=1,2,...,n) must be transcendental
over Z,,.

Step 2. We obtained that at least one of the coefficients A, (a =
1,2,...,n) is transcendental over the prime subfield Z,. We will prove
that this implies that the minimal polynomial of # over Z has a form
fIX]=X""+z(:€Z, m=1) (and p” =n by (5.4)). Since Z(0) is
unramified over Z this is equivalent to the relations (5.3) and (5.2);
furthermore, since at least one of the elements 11,7\2,...,7\" must be
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transcendental this will imply that z = A, is transcendental over Z,; the
proof therefore will be complete.

We assume that f| X|9é X?" + z, (where p™ = n), i.e., there exists an
element A, # 0 (k < n). Once again as in the proof of Theorem 5, let K
be the subfield of Z generated by ¢, A, A,,..., A,; let P(x) be a quasia-
belian valuation of D such that its restriction ¥(x) on K is quasi-
henselian, ¥(A,) > 0 (a = 1,2,...,n), f[X] has a root «a in the residue
field of W(x) and in addition ¥(A,) = 0. We denote by K the residue
field of W(x), by f[ X | the image of the polynomial f[X]in K, and by &,
the image of A.. Since A, # 0 (k < n) and the degree of f[X] is n we
conclude that the multiplicity of the root « is less than n; i.e., there exists
a monic polynomial g[ X ] € K[ X] such that

fIXT= (X~ a) 2(X),(r<n), (5.5)

where X — a is relatively prime with g[ XJ.

Now let as in the proof of Theorem 5 D and Z be the completions of D
and Z, respectively, with respect to ®(x), and K be the completion of K
with respect to ¥(x). Let U={xeK|¥(x) =0} Since ¥(x) is quasi-
henselian we conclude from (5.5) that there exist two monic polynomials
e[ X1, g[X] € U[X] such that

fIX) = e[ X]g[X] (5.6)

and ¢[X]= (X — a)(mod J(0)), glX] = g[ X J(mod J(0)). But once
again, as in the proof of Theorem 5, f[ X] must be irreducible over K.
This contradiction shows that in fact f{X = X?" + Z, and the proof is
completed.

COROLLARY. Let D be as in Theorem 4 and A be a (skew) subfield finite
dimensional over its center Z,. Then dim(A : Z,) is a power of p.

The proof does not differ from the proof of the Corollary of Theorem 5.
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