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Abstract

We calculatethespectralindexandtensor-to-scalarratio for patchinflation arisenfrom theGauss–Bonnetbraneworldsce-
nario.Thepatchcosmological models consistof Gauss–Bonnet(GB), Randall–Sundrum (RS),and4D generalrelativistic (GR)
cases.In orderto comparewith theobservationdata,we performleading-ordercalculationsfor all patchmodelsby choosing
large-field,small-field,andhybrid potentials.Weshowthat the large-fieldpotentials aresensitiveto agivenpatchmodel,while
thesmall-fieldand hybrid potentials areinsensitive toa givenpatchmodel.It is easierto discriminatesbetween quadratic po
tentialandquartic potentialin theGB modelratherthanRSandGR models. Irrespectiveof patchmodels,it turnsout that the
small-fieldpotentialsarethepromisingmodelsin view of theobservation.
 2005ElsevierB.V. Open access under CC BY license.
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1. Introduction

Therehasbeen muchinterest in thephenomenon o
localizationof gravity proposed byRandallandSun-
drum (RS)[1]. They assumeda positive three-brane
embeddedin the5D anti-de-Sitter(AdS5) spacetime.
They obtainedalocalizedgravity onthebraneby fine-
tuningabranetension toabulk cosmological constan
Recently,severalauthorshavestudiedcosmological
implications of the braneworldscenarios.We wish
to mentionthat thebranecosmologycontainssome
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importantdeviations fromtheFriedmann–Robertson
Walker(FRW) cosmology[2,3].

On the other hand, it is generally acceptedthat
curvatureperturbationsproduced duringinflation are
considered to be theorigin of inhomogeneitiesnec-
essary forexplainingcosmic microwavebackground
(CMB) anisotropiesand large-scalestructures.The
WMAP [4], SDSS[5,6], andotherdataput forward
more constraintsoncosmologicalmodels.Theseshow
thatan emergingstandardmodelof cosmologyis the
ΛCDM model. Further, theseresultscoincide with
theoreticalpredictions oftheslow-roll inflation based
on general relativitywith a singleinflaton.The latest
data[6] showsa nearlyscale-invariant spectrumwith
the spectralindexns = 0.98+0.02

−0.02, no evidenceof the
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tensor-to-scalar ratio withR < 0.36, and no evidenc
of the running spectral index withαs � 0.

If the brane inflation occurs, one expects tha
provides us quite different results in the high-ene
region[7–14]. Since the Gauss–Bonnet term modifi
the Friedmann equation at high-energy significan
its application to the brane inflation has been stud
widely in the literature[15–21].

In this Letter, the patch cosmological models
duced from the Gauss–Bonnet braneworld are
troduced to study the brane inflation for large-fie
small-field, and hybrid potentials. We use mainly t
leading-order spectral index and tensor-to-scalar
tio to select which patch model withq is suitable for
explaining the latest observation data.

The organization of this Letter is as follows. In Se
tion 2 we briefly review the patch cosmology aris
from the Gauss–Bonnet braneworld scenario, and
troduce relevant inflation parameters as observab
We introduce various potentials to compute their th
retical values and compare these with the observa
data in Section3. Finally we discuss our results in Se
tion 4.

2. Patch cosmological models

We start with an effective Friedmann equati
arisen from the Gauss–Bonnet brane cosmology
adopting a flat FRW metric as the background spa
time on the brane1 [11,15,17]

(1)H 2 = β2
qρq,

whereH = ȧ/a, q is a patch parameter labelling di
ferent models andβ2

q is a factor with energy dimensio

1 For reference, here we add the action for the Gauss–Bo
braneworld scenario:

S = 1

2κ2
5

∫
bulk

d5x
√−g5

[
R − 2Λ5

+ α
(
R2 − 4RµνRµν + Rµνρσ Rµνρσ

)]
+

∫
brane

d4x
√−g [−λ +Lmatter]

with Λ5 = −3µ̃2(2 − β) for an AdS5 bulk andLmatter for infla-
tion. Its exact Friedmann equation is given by a complicated fo
2µ̃(1+ H2/µ̃2)1/2[3− β + 3βH2/µ̃2] = κ2

5(ρ + λ).
Table 1
Three relevant models and their parameters classifying patch
mological models

Model q (θ ) β2
q

GB 2/3 (−1) (κ2
5/16α)2/3

RS 2 (1) κ2
4/6λ

GR 1 (0) κ2
4/3

[βq ] = E1−2q . An additional parameterθ = 2(1 −
1/q) is introduced for convenience. We call the abo
defined on theq-dependent energy region as “pat
cosmology”. We summarize three different mod
and their parameters inTable 1. κ2

5 = 8π/m3
5 is the

5D gravitational coupling constant andκ2
4 = 8π/m2

Pl
is the 4D gravitational coupling constant.α = 1/8gs

is the Gauss–Bonnet coupling with the string ene
scalegs andλ is the brane tension. Relationships b
tween these are given byκ2

4/κ2
5 = µ̃/(1+ β) andλ =

2µ̃(3 − β)/κ2
5, whereβ = 4αµ̃2 � 1, µ̃ = 1/� with

AdS5 curvature radius�. The RS case of̃µ = κ2
4/κ2

5
is recovered whenβ = 0. We have to distinguish be
tween GB (β � 1, butβ �= 0 exactly) and RS (β = 0)
cases.

Before we proceed, we note that the Gauss–Bo
braneworld affects inflation only when the Hubble p
rameter is larger than the AdS curvature scale (H �
µ̃). As a result, we have the two patch models of G
case withq = 2/3 and RS case withq = 2 case. For
the other case ofH � µ̃, one recovers the 4D gener
relativistic (GR) case withq = 1. Furthermore, we as
sume that all of AdS curvature scaleµ̃, Gauss–Bonne
couplingα, and brane tensionλ are stable, even if th
vacuum energy on the brane is so large in the h
energy regions thatH � µ̃.

Let us introduce an inflatonφ whose equation is
given by

(2)φ̈ + 3Hφ̇ = −V ′,

where dot and prime denote the derivative with
spect to timet andφ, respectively. The energy de
sity and pressure are given byρ = φ̇2/2 + V and
p = φ̇2/2−V . From now on, we use the slow-roll fo
malism for inflation: an accelerating universe(ä > 0)

is being derived by an inflaton slowly rolling down i
potential toward a local minimum. Then Eqs.(1) and
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(2) take the following form approximately:

(3)H 2 ≈ β2
qV q, φ̇ ≈ − V ′

3H
,

which are the background equations for patch cos
logical models. It implies that the cosmological acce
eration can be derived by a fluid with a vacuum-l
equation of statep ≈ −ρ. If p = −ρ for φ̇ = 0, this
corresponds to a de Sitter inflation witha(t) = a0e

Ht .
This is a model to obtain gravitational waves from t
braneworld scenario[22]. In order for inflation to ter-
minate and for the universe to transfer to a radiati
dominated universe, we needa slow-roll mechanism
To this end, we introduce Hubble slow-roll paramet
(ε1, δn) and potential slow-roll parameters (ε

q

1 , δ
q
n ) as

ε1 ≡ − Ḣ

H 2 ≈ ε
q

1 ≡ q

6β2
q

(V ′)2

V 1+q
,

(4)δn ≡ 1

Hnφ̇

dn+1φ

dtn+1 ≈ δ
q
n,

with2

δ
q

1 = 1

3β2
q

[
(V ′)2

V 1+q
− V ′′

V q

]
,

(5)

δ
q

2 = 1

(3β2
q )2

[
V ′′′V ′

V 2q
+ (V ′′)2

V 2q

− 5q

2

V ′′(V ′)2

V 2q+1
+ q(q + 2)

2

(V ′)4

V 2q+2

]
.

Here the subscript denotes slow-roll- (SR-) ord
in the slow-roll expansion. A slow-roll paramet
of ε

q
1 � 0 governs the equation of statesp = ωqρ

with ωq = −1 + 2ε
q

1/3q , which implies that an ac
celerating expansion occurs only forε

q

1 < 1 (ωq <

−1 + 2/3q) [23]. ε
q

1 = 0 (ωq = −1) corresponds to
de Sitter inflation. On the other hand, the end of
flation is determined byεq

1 = 1 (ωq = −1 + 2/3q).
Hence, the allowed regions for inflation are diffe
ent: −1 � ω < −1/3 for GR models,−1 � ω < 0
for GB model, and−1 � ω < −2/3 for RS model.
If one chooses the inflation potentialV , then poten-
tial slow-roll parameters (εq

1 , δ
q
n ) will be determined

explicitly.

2 For another notation, we useδq
1 = qε

q
1/2 − η

q
1 with η

q
1 ≡

1
3β2

V ′′
V q .
q

We describe how inflation parameters can be
culated using the slow-roll formalism. Introducin
a variableuq = a(δφq − φ̇ψq/H) where δφq is a
perturbed inflaton andψq is a perturbed metric, it
Fourier modesuq

k in the perturbation theory satisfy th
Mukhanov equation[24]:

(6)
d2u

q

k

dτ2 +
(

k2 − 1

zq

d2zq

dτ2

)
u

q

k = 0,

whereτ is a conformal time defined bydτ = dt/a,
andzq = aφ̇/H encodes all information about a slow
roll inflation for a patch model withq . Asymptotic
solutions are obtained as

(7)u
q
k →

{
1√
2k

e−ikτ as − kτ → ∞,

Cq
k zq as − kτ → 0.

The first solution corresponds to a plane wave on s
much smaller than the Hubble horizon ofdH = 1/H

(sub-horizon region), while the second is a grow
mode on scale much larger than the Hubble h
zon (super-horizon region). We consider a relat
of R

q

ck = −u
q

k/zq together withu
q

k(τ ) = aku
q
k (τ ) +

a
†
−ku

q∗
k (τ ). Using a definition of the power spectrum

P
q
Rc

(k)δ(3)(k − l) = k3

2π2

〈
R

q

ck(τ )R
q†
cl (τ )

〉
,

one finds the power spectrum for curvature pertur
tions in the super-horizon region

(8)P
q
Rc

(k) =
(

k3

2π2

)
lim−kτ→0

∣∣∣∣u
q
k

zq

∣∣∣∣
2

= k3

2π2

∣∣Cq
k

∣∣2.
Our next work is to find unknown coefficientsCq

k by
solving the Mukhanov equation(6). In general, it is
not easy to find a solution to this equation direc
Fortunately, we can solve it using either the slow-r
approximation[25,26]or the slow-roll expansion[27,
28]. We find theq-power spectrum to the leading
order[18]

(9)P
q
Rc

= 3qβ2−θ
q

(2π)2

H 2+θ

2ε1
→ 1

(2π)2

H 4

φ̇2
,

where the right-hand side should be evaluated at h
zon crossing ofk = aH . Using d lnk � Hdt , theq-
spectral index defined as

(10)n
q
s (k) = 1+ d lnP

q
Rc

d lnk
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(11)n
q
s (k) = 1− 4ε

q
1 − 2δ

q
1 .

The q-running spectral index is determined, to t
leading-order, by

(12)
d

d lnk
n

q
s = −8(ε

q

1)2

q
− 10ε

q

1δ
q

1 + 2
(
δ
q

1

)2 − 2δ
q

2 .

The tensor-to-scalar ratioRq is defined by

(13)Rq = 16
A2

T ,q

A2
S,q

,

where theq-scalar amplitude is normalized by

(14)A2
S,q = 4

25
P

q
Rc

.

The GR (q = 1) tensor amplitude is given by

(15)A2
T ,GR = 1

50
PT,GR,

wherePT,GR = (2κ4)
2(H/2π)2 because a tensor ca

be expressed in terms of two scalars likeδφ. Tensor
spectra for GB and RS are known only for de Sit
brane withp = −ρ [15,22]. It implies that tensor cal
culation should be limited to the leading-order comp
tation. These are given by

(16)A2
T ,q = A2

T ,GRF 2
β (H/µ̃),

where

(17)F−2
β (x) =

√
1+ x2 −

(
1− β

1+ β

)
x2 sinh−1

(
1

x

)
.

In three different regimes, we approximateF 2
β as

F 2
q : F 2

1 ≈ F 2
β (H/µ̃ � 1) = 1 for GR model;F 2

2 ≈
F 2

β=0(H/µ̃ � 1) = 3H/(2µ̃) for RS model;F 2
2/3 ≈

F 2
β (H/µ̃ � 1) = (1+β)H/(2βµ̃) for GB model. The

tensor amplitude up to leading-order is given by

(18)A2
T ,q = 3qβ2−θ

q

(5π)2

H 2+θ

2ζq

with ζ1 = ζ2/3 = 1 and ζ2 = 2/3 [16]. Finally, the
tensor-to-scalar ratio is determined by

(19)Rq = 16
A2

T ,q

A2
S,q

= 16
ε1

ζq
in the patch cosmological models. Considering a
lation for tensor spectral indexnq

T = −(2 + θ)ε1, one
finds the consistency relations

R1 = −8n1
T = 16ε1, R2 = −8n2

T = 24ε1,

(20)R2/3 = −16n
2/3
T = 16ε1.

The above shows that the RS consistency relatio
equal to that for GR case, but it is different from th
for GB case.

3. Inflation with potentials

A generic single-field potential can be charact
ized by two energy scales: a height of potentialV0
corresponding to the vacuum energy density dur
inflation and a width of the potentialµ correspond-
ing to the change of an inflaton�φ during inflation.
In general its form is given byV = V0f (φ/µ). Differ-
ent potentials have differentf -forms. The heightV0 is
usually fixed by normalization and thus the free pa
meter is just the widthµ. We classify potentials into
three cases: large-field, small-field, hybrid potentia

3.1. Large-field potentials

It was shown that the quartic potential ofV = V0φ
4

is under strong observation pressure (ruled out ob
vationally) for GR and RS (GB) models, while th
quadratic potential ofV = V0φ

2 is inside of the 1σ -
bound for GR and GB models with the range ofe-
folding number 50� N � 60. This is obtained from
the likelihood analysis based on the leading-order
culations tonq

s andRq with patch cosmological mod
els [19]. Here we choose the large-field potentials
V LF = V0φ

p with p = 2,4,6 for testing these with
the patch cosmology. In this case potential slow-
parameters are determined by

(21)ε
q

1 = qp

2

1

[(q − 1)p + 2]N + qp
2

,

(22)δ
q

1 = 1

2

(2− 2p + qp)

[(q − 1)p + 2]N + qp
2

.

Substituting these into Eqs.(11) and (19), one finds
two inflation parameters.For a full computation of
inflation parameters, see Ref.[20]. The LF-spectral in-
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(23)nLF
s = 1− (3q − 2)p + 2

[(q − 1)p + 2]N + qp
2

in the leading-order calculation. The LF tensor-
scalar ratio takes the form

(24)RLF
q = 8qp

ζq

1

[(q − 1)p + 2]N + qp
2

.

Fortunately, there is no free parameter for large-fi
models. The numerical results[5,20] for large-field
potentials are shown inTable 2.

3.2. Small-field potentials

In this subsection we choose the small-field pot
tials ofV SM = V0[1− (φ/µ)p] with p = 2,4,6. Here
µ plays a role of the free parameter. For convenienc
we treatp = 2 andp > 2 cases separately. For th
p = 2 case, potential slow-roll parameters are de
mined by

(25)ε
q
1 = q

2

(
φf

µ

)2

x
q
pe−x

q
pN,

(26)η
q

1 = −x
q
p

2

{
1+ q

(
φf

µ

)2

e−x
q
pN

}
,

with a dimensionless parameter

(27)x
q
p ≡ 2p

3β2
qµ2V

q−1
0

whose form is given explicitly by

xGR
p = p

4π

(
mPl

µ

)2

, xRS
p = p

2π

(
mPl

µ

)2
λ

V0
,

(28)xGB
p = 2p

3(2π)2/3

(
m

2/3
Pl

µ

)2(V0β
2

µ̃2

)1/3

.

Here we find useful inequalities:xGR
p � 1 for µ �

mPl, xGR
p � 1 for µ � mPl; xRS

p � 1 for λ/V0 → 0,

xRS
p � 1 for µ � mPl; xGB

p � 1 for β → 0, xGB
p � 1

for µ � mPl. This means that the RS model is o
tained from the RS braneworld in high-energy regi
while the GB model is mainly determined from th
Gauss–Bonnet term in the braneworld. Also the
and GB models recover a result of the GR mode
the low-energy limit ofmPl � µ. From a relation for

the number ofe-folding: N � −3β2
q

∫ φf

φ (V q/V ′)dφ,
one finds a relation,φ = φf e−x
q
pN/2. The SF-spectra

index is given by

nSF
s = 1− 6ε

q

1 + 2η
q

1

(29)= 1− x
q
p

[
1+ 4q

(
φf

µ

)2

e−x
q
pN

]
in the leading-order calculation. The SF tensor-
scalar ratio is

(30)RSF
q = 16ε

q
p

ζq

= 8q

ζq

(
φf

µ

)2

x
q
pe−x

q
pN .

We determineφf from a condition of the end of in
flation: ε

q
1 (φf ) = 1. For p = 2 case, one obtains

condition of x
q
p < 1 from nSF

s < 1. In the case o
r
q
p = qpx

q
p/4 � 1, it providesφf � µ/(1+ q)1/p for

numerical computation.
In the case ofp > 2, we have different slow-rol

parameters

(31)ε
q
1 = qpx

q
p

4
[(φf

µ

)2−p + p−2
2 x

q
pN

] 2(p−1)
p−2

,

(32)

η
q

1 = − (p − 1)x
q
p

2
[(φf

µ

)2−p + p−2
2 x

q
pN

] 2(p−1)
p−2

− 2(p − 1)

p
ε
q

1 .

A relation betweenφ andφf is given by(φ/µ)2−p =
(φf /µ)2−p + (p − 2)x

q
pN/2. In general, the SF

spectral index is given by

nSF
s = 1− (p − 1)x

q
p(φf

µ

)2−p + p−2
2 x

q
pN

(33)− 5p − 2

8p
ζqR

SF
q ,

where the SF tensor-to-scalar ratio is

(34)RSF
q = 4qpx

q
p

ζq

[(φf

µ

)2−p + p−2
2 x

q
pN

] 2(p−1)
p−2

.

Also we getφf from a condition of the end of in
flation: ε

q

1 (φf ) = 1. However, there is no constrai
on x

q
p. In the case ofrq

p(x
q
p) � 1, we haveφf �

µ/(1+ q)1/p, while for r
q
p(x

q
p) � 1, we find a con-

nection

φf � µ

(r
q
)1/2(p−1)

= µ

(qpx
q
/4)1/2(p−1)

.

p p
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p � 1, two inflation parameters ar

given by

(35)

nSF
s = 1− (p − 1)x

q
p

(1+ q)
p−2
p + p−2

2 x
q
pN

− 5p − 2

8p
ζqRSF

q ,

(36)RSF
q = 4qpx

q
p

ζq

[
(1+ q)

p−2
p + p−2

2 x
q
pN

] 2(p−1)
p−2

.

On the other hand, for the case ofx
q
p � 1, the spectra

index is

(37)

nSF
s = 1− (p − 1)x

q
p( qpx

q
p

4

) 2−p
2(1−p) + p−2

2 x
q
pN

− 5p − 2

8p
ζqRSF

q ,

and the SF tensor-to-scalar ratio takes the form

(38)RSF
q = 4qpx

q
p

ζq

[( qpx
q
p

4

) 2−p
2(1−p) + p−2

2 x
q
pN

] 2(p−1)
p−2

.

In the limit of x
q
p → ∞, we obtain the low-energ

limit of GR case from RS and GB models. Also,
the limit of xGR

p → ∞(mPl � µ), one finds a well-
known general relativistic case. These all lead to
same expression given by

(39)nSF
s = 1− p − 1

p − 2

2

N
,

which is independent of the patch parameterq . In the
limit of x

q
p → ∞, one finds an asymptotic behavior f

the tensor-to-scalar ratio

(40)RSF
q ∼ 1

(x
q
p)p/(p−2)

→ 0.

On the other hand, forxq
p � 1, there exist upper limits

for R
q
p such that[29]:

(41)RSF
q < R̄SF

q ,

with R̄SF
q = RSF

q |xq
p=x̄

q
p
. Here

{
x̄

q
p

} =
{

p

4π
,

p

2π

λ

V0
,

2p

3(2π)2/3

(
V0β

2

µ̃2

)1/3}

is thex
q
p-value formPl = µ in Eq.(28). The numerica

results forxq
p � 1 [5] and those from graphical anal

sis forxq
p � 1 [10] are summarized at the last colum

in Table 2.
Table 2
The spectral index (ns ) and tensor-to-scalar (R). Here we choose
N = 55 to find theoretical values for the large-field potentials (L
and bounds for small-field potentials (SF). For SF case, each p
model in high-energy region is recovered whenx

q
p � 1, while their

low-energy limits are recovered whenxq
p � 1. The patch cosmo

logical model is allowed only forxq
p � 1 because forxq

p � 1, it
degenerates GR case

Patch p LF SF (xq
p � 1) SF (xq

p � 1)

GB (q = 2/3) 2 ns = 0.97 ns � 1 N/A
R = 0.14 R � 0.04 N/A

4 ns = 0.95 ns � 1 0.95� ns � 1
R = 0.56 R � 1.9× 10−3 R � R̄4

2/3

6 N/A ns � 1 0.96� ns � 1
N/A R � 6.0× 10−4 R � R̄6

2/3

GR (q = 1) 2 ns = 0.96 ns � 1 N/A
R = 0.14 R � 0.05 N/A

4 ns = 0.95 ns � 1 0.95� ns � 1
R = 0.29 R � 1.3× 10−3 R � 9.5× 10−4

6 ns = 0.93 ns � 1 0.96� ns � 1
R = 0.43 R � 3.0× 10−4 R � 5.7× 10−4

RS(q = 2) 2 ns = 0.96 ns � 1 N/A
R = 0.22 R � 0.16 N/A

4 ns = 0.95 ns � 1 0.95� ns � 1
R = 0.29 R � 8.0× 10−4 R � R̄4

2

6 ns = 0.94 ns � 1 0.96� ns � 1
R = 0.32 R � 1.0× 10−4 R � R̄6

2

3.3. Hybrid potentials

Finally we choose the hybrid-field potentials (HY
like V HY = V0[1 + (φ/µ)p] with p = 2,4,6. In this
case it requires an auxiliary field to end inflation. He
we separatep = 2 and p >2 cases.

For thep = 2 case, the potential slow-roll param
ters are determined by

(42)ε
q
1 = q

2

(
φf

µ

)2

x
q
pex

q
pN ,

(43)η
q

1 = x
q
p

2

{
1− q

(
φf

µ

)2

e−x
q
pN

}
,

with a dimensionless parameterx
q
p = 2p/3β2

qµ2V
q−1
0

defined in Eq.(28). FromN � −3β2
q

∫ φf

φ (V q/V ′) dφ,

one finds a relation,φ = φf ex
q
pN/2 for p = 2. Here

µ and φf are regarded as free parameters. The
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spectral index is then given by

nHY
s = 1− 6ε

q

1 + 2η
q

1

(44)= 1+ x
q
p

[
1− 4q

(
φf

µ

)2

ex
q
pN

]

in the leading-order calculation. The HY tensor-
scalar ratio is found to be

(45)RHY
q = 16ε

q
p

ζq

= 8qx
q
p

ζq

(
φf

µ

)2

ex
q
pN .

In order that Eqs.(44) and (45)be meaningful, we re
quire a condition ofxq

p < 1. On the other hand, there
no way to determineφf from ε

q

1 (φf ) = 1 for HY case
becauseφf is determined by other mechanism. Hen
φf plays a role of the free parameter. Fortunate
|(φ/µ)|2 < 1 is required because if|(φ/µ)|2 > 1 in
V HY, it is not much different from the large-field po
tentials. From Eq.(44), one finds a restrictive con
straint|(φ/µ)|2 < 1

4q
which comes from the conditio

of nHY
s > 1.

In order to see a feature of the hybrid models,
need numerical results. In the case ofxGR

p=2 = 0.04
(µ = 2mPl), ln(φ/φf ) = 1 and N= 50, we have a
blue spectral indexnHY

s � 1 + x
q
p = 1.04 but a small

tensor-to-scalar ratioRHY
GR = 0.32(φ/µ)2 < 0.08.

In the case ofp > 2, we have different slow-rol
parameters

(46)ε
q

1 = qpx
q
p

4
[(φf

µ

)2−p − p−2
2 x

q
pN

] 2(p−1)
p−2

,

(47)

η
q

1 = (p − 1)x
q
p

2
[(φf

µ

)2−p − p−2
2 x

q
pN

] 2(p−1)
p−2

− 2(p − 1)

p
ε
q

1 .

In general, the HY-spectral index is given by

(48)

nHY
s = 1+ (p − 1)x

q
p(φf

µ

)2−p − p−2
2 x

q
pN

− 5p − 2

8p
ζqRHY

q ,

where the HY tensor-to-scalar ratio is

(49)RHY
q = 4qpx

q
p

ζq

[(φf

µ

)2−p − p−2
2 x

q
pN

] 2(p−1)
p−2

.

A HY-relation for p > 2 is given by (φ/µ)2−p =
(φf /µ)2−p − (p − 2)x

q
pN/2 > 0, which implies that
an inequality ofNmax> N exists with the definition o
Nmax as(φf /µ)2−p ≡ (p − 2)x

q
pNmax/2.

Consequently, the HY-spectral index is given by

(50)nHY
s = 1+ p − 1

p − 2

2

Nmax− N
− 5p − 2

8p
ζqRHY

q ,

where the HY tensor-to-scalar ratio is

(51)

RHY
q = 4qp

ζq(x
q
p)

p
p−2

[ (p−2)Nmax
2

] 2(p−1)
p−2

1[
1− N

Nmax

] 2(p−1)
p−2

.

4. Discussions

We introduce various potentials which are clas
fied into large-field, small-field, and hybrid types f
the ordinary inflation in the GR case. Using the pa
cosmological models together with various potenti
we compute the two cosmological observables, sp
tral index and tensor-to-scalar ratio.

In large-field models without free parameter, t
spectral indexns and tensor-to-scalar ratioR depend
on thee-folding numberN only. Actually this sim-
plicity provides strong constraints on large-field mo
els. Further, combining the Gauss–Bonnet branew
with large-field potentials provides more tighten co
straints than the 4D general relativistic case. The
case is regarded as the promising model for testing
large-field potentials because it accepts the quadrat
potential. On the other hand, it rejects the quartic
tential because theoretical points are far outside
2σ -bound[19]. Actually, the GB cosmological mode
improves the theoretical values predicted by the
model, whereas the RS model provides indistinc
values more than the GR case. As is shown inTable 2,
the GB model splits large-field potentials into thr
distinct regions clearly: forN = 55, nGB

s = 0.97 →
0.95 (p = 2 → p = 4), RGB = 0.14 → 0.56, and a
power-law inflation withp = 6: nPI

s = 1 − [(2r −
1)/2r4]1/3, RPI = 16/r [18]. Contrastively, we have
nGR

s = 0.96 → 0.95 → 0.93 (p = 2 → p = 4 →
p = 6), RGR = 0.14→ 0.29→ 0.43, whereasnRS

s =
0.96 → 0.95 → 0.94, RRS = 0.22 → 0.29 → 0.32.
Theoretical points predicted by the RS model lie v
close to the border between the regions allowed
disallowed by observation. Consequently, the lar
field models depend on critically which model is us
for calculation.
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In small-field potentials, one has a free parame
µ(x

q
p) related to the potential shape. It is thus diffic

to constrain inflation parameters, in compared to
large-field potentials. However, combining the grap
cal analysis with the data[10], we find useful bounds
For x

q
p � 1, there is no constraint on the lower-bou

for the spectral index, but all of its upper boun
are given by 1. This means that patch cosmolog
model is not useful for testing small-field potentia
Forxq

p � 1 andp > 2, one finds lower-bounds for th
spectral indices. Furthermore, there is no constrain
the spectral indices forp = 2 case. This implies tha
althoughns is independent of the patch parameterq ,
the small-field potentials are in good agreement w
the observational data[5,6]. Combining the Gauss
Bonnet braneworld with small-field potentials, the
exist unobserved differences in the upper-bound of
tensor-to-scalar ratioR.

Concerning the hybrid models, we find a blue sp
tral index with nSF

s > 1. However, there is no actu
difference between patch cosmological model beca
one more free parameter is necessary to determin
end of inflation (φf ), in addition toµ(x

q
p). It implies

that the scheme of inflation (q) is less important than
mechanism of the hybrid inflation (µ,φf ). As a re-
sult, we do not find any new result when combini
the Gauss–Bonnet braneworld with the hybrid pot
tials.

In conclusion, the GB model is still a promisin
one to discriminate between the quadratic and q
tic potentials in the large-field type by making use
the observation data. Although the small-field pot
tial are insensitive to patch cosmological models, th
are considered as the promising potentials in view
the observational data. Finally, we do not find any n
result when combining the Gauss–Bonnet branew
with the hybrid potentials. This implies that it is n
easy for hybrid type to compare with the data[5,6].
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