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Abstract

We calculatethe spectralindex andtensor-to-scalaratio for patchinflation arisenfrom the Gauss—Bonndbraneworldsce
nario. Thepatchcosmological models consist Gauss—BonndiGB), Randall-Sundrum (RSnd4D generatelativistic (GR)
casesln orderto comparewith the observatiordata,we performleading-ordercalculationsfor all patchmodelsby choosing
large-field,small-field,andhybrid potentialsWe showthat the large-fielghotentials aresensitiveto a given patchmodel,while
the small-fieldand hybrid potentials ar@sensitive taa given patchmodel.lt is easierto discriminatesbetween quadratic po-
tentialandquartic potentialn the GB modelratherthanRSandGR models. Irrespectivef patchmodels,it turns out that the
small-fieldpotentialsarethe promisingmodelsin view of the observation.

0 2005ElsevierB.V. Open access under CC BY license.

1. Introduction

Therehasbeen muctinterest in thgghenomenon of
localizationof gravity proposed byRandalland Sun-
drum (RS)[1]. They assumedh positive three-brane
embeddedn the 5D anti-de-Sittef{AdSs) spacetime.
They obtained localizedgravity onthe braneby fine-

tuningabranetension teabulk cosmological constant.

Recently,severalauthorshave studied cosmological
implications of the braneworldscenarios.We wish
to mentionthat thebranecosmologycontainssome

E-mail addressysmyung@physics.inje.ac.k¥.S. Myung).
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importantdeviations fronthe Friedmann—Robertson—
Walker (FRW) cosmology[2,3].

On the other hand, it is generally acceptetiat
curvatureperturbationgproduced duringnflation are
considered to be therigin of inhomogeneitienec
essary forexplainingcosmic microwavebackground
(CMB) anisotropiesand large-scalestructures.The
WMAP [4], SDSSI[5,6], and otherdataput forward
more constraintsncosmologicamodels.Theseshow
thatan emergingtandardnodelof cosmologyis the
ACDM model. Further, theseaesultscoincide with
theoreticalpredictions ofthe slow-roll inflation based
on general relativityvith a singleinflaton. The latest
data[6] showsa nearlyscale-invariant spectrumith
the spectralindexn, = 0.98"5:95, no evidenceof the
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tensor-to-scalar ratio witl® < 0.36, and no evidence
of the running spectral index witda; ~ 0.
If the brane inflation occurs, one expects that it

provides us quite different results in the high-energy Model

region[7-14]. Since the Gauss—Bonnet term modifies
the Friedmann equation at high-energy significantly,

its application to the brane inflation has been studied GR

widely in the literaturg15—-21]
In this Letter, the patch cosmological models in-

duced from the Gauss—Bonnet braneworld are in-

troduced to study the brane inflation for large-field,
small-field, and hybrid potentials. We use mainly the

leading-order spectral index and tensor-to-scalar ra-

tio to select which patch model with is suitable for
explaining the latest observation data.

The organization of this Letter is as follows. In Sec-
tion 2 we briefly review the patch cosmology arisen

from the Gauss—Bonnet braneworld scenario, and in-
troduce relevant inflation parameters as observables.

We introduce various potentials to compute their theo-

Table 1
Three relevant models and their parameters classifying patch cos-
mological models

q () B2
GB 2/3(-1) (K2/16a)2/3
RS 2(1) %/6/\

1(0)

[B,]1 = EY=%. An additional parametef = 2(1 —
1/q) is introduced for convenience. We call the above
defined on they-dependent energy region as “patch
cosmology”. We summarize three different models
and their parameters ifable 1 /<52 = 87r/m§ is the
5D gravitational coupling constant arg = 87 /m3,
is the 4D gravitational coupling constamt.— 1/8g;
is the Gauss—Bonnet coupling with the string energy
scaleg; anda is the brane tension. Relationships be-
tween these are given l&ﬁ/KS =n/(1+ B) andr =

retical values and compare these with the observation 2/4(3 — B)/ig, wheref = daji® < 1, ju = 1/¢ with

data in Sectio. Finally we discuss our results in Sec-
tion 4.

2. Patch cosmological models

We start with an effective Friedmann equation

AdSs curvature radiug. The RS case ofi = K4/K5
is recovered whem = 0. We have to distinguish be-
tween GB 8 « 1, butg # 0 exactly) and RSA = 0)
cases.

Before we proceed, we note that the Gauss—Bonnet
braneworld affects inflation only when the Hubble pa-
rameter is larger than the AdS curvature scaiext

arisen from the Gauss—Bonnet brane cosmology by /). As a result, we have the two patch models of GB

adopting a flat FRW metric as the background space-

time on the brank[11,15,17]

2_p2. g
H —:qu ’ (1)
whereH = a/a, q is a patch parameter labelling dif-
ferent models anﬁlq2 is a factor with energy dimension

case withg = 2/3 and RS case with = 2 case. For
the other case aff « (i, one recovers the 4D general
relativistic (GR) case witly = 1. Furthermore, we as-
sume that all of AdS curvature scgle Gauss—Bonnet
couplinge, and brane tensioh are stable, even if the
vacuum energy on the brane is so large in the high-
energy regions thatl > 1.

Let us introduce an inflatop whose equation is

1 For reference, here we add the action for the Gauss—Bonnet given by

braneworld scenario:

S=— / dx \/=g5[R - 245
g bulk
+ a(R? = 4R,y R™Y + Ryppo RHVP)]
+ / d*x V=g -+ Lmatted
brane

with Ag = —3j12(2 — B) for an AdS; bulk and £matter for infla-
tion. Its exact Friedmann equation is given by a complicated form:
201+ H%/i?)Y2[3— B+ 3pH? /1% = kZ(p + 1)

¢+3Hp=—V', @)
where dot and prime denote the derivative with re-
spect to timer and ¢, respectively. The energy den-
sity and pressure are given hy= ¢2/2 + vV and

p = ¢2/2— V. From now on, we use the slow-roll for-
malism for inflation: an accelerating univerge> 0)

is being derived by an inflaton slowly rolling down its
potential toward a local minimum. Then Eq4) and
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(2) take the following form approximately:

V/

which are the background equations for patch cosmo-
logical models. It implieshat the cosmological accel-
eration can be derived by a fluid with a vacuum-like
equation of state) ~ —p. If p = —p for ¢ = 0, this
corresponds to a de Sitter inflation witlir) = age’’.
This is a model to obtain gravitational waves from the
braneworld scenarif22]. In order for inflation to ter-
minate and for the universe to transfer to a radiation-
dominated universe, we needslow-roll mechanism.
To this end, we introduce Hubble slow-roll parameters
(e1, 8,) and potential slow-roll parameters/( §7) as

HZ%,B(qu,

a=- T o g (7
1= 2”1—6/3§V1+q’
1 dn+1¢ p
=g o @
with?2
g_ L[ v
Lo3gzlvive va |
(Sq B 1 V///V/ (V//)Z
2 (3/35)2 V2q V2q
B¢ V'(V)?  qlg+2) (V) 5)
2 y+1 2 V2q+2 |

Here the subscript denotes slow-roll- (SR-) order
in the slow-roll expansion. A slow-roll parameter
of eg > 0 governs the equation of statgs= w,p
with @, = —1 + 2] /3g, which implies that an ac-
celerating expansion occurs only fef <1 (wg <
—1+2/3g) [23]. €] =0 (wy; = —1) corresponds to
de Sitter inflation. On the other hand, the end of in-
flation is determined by{ = 1 (w, = —1+ 2/39).
Hence, the allowed regions for inflation are differ-
ent: -1 < w < —1/3 for GR models,—1 < w <0
for GB model, and-1 < w < —2/3 for RS model.

If one chooses the inflation potentidl, then poten-
tial slow-roll parametersef, §;/) will be determined
explicitly.

2 For another notation, we usﬁ = qeil/Z - ng with n(i =

l V//
3pz V"

We describe how inflation parameters can be cal-
culated using the slow-roll formalism. Introducing
a variableu? = a(8¢7 — ¢9/H) where§¢4 is a
perturbed inflaton and/? is a perturbed metric, its
Fourier modeg{ in the perturbation theory satisfy the
Mukhanov equatiofi24]:

dz_uz + <k2 — idzﬁ)
dt? zq dt?
wheret is a conformal time defined byt = dt/a,
andz, = a¢/H encodes all information about a slow-
roll inflation for a patch model with;. Asymptotic
solutions are obtained as

ul =0, (6)

1 ikt _
MZ N me as —kt — oo, %
Clzg as —kr — 0.

The first solution corresponds to a plane wave on scale
much smaller than the Hubble horizondy; = 1/H
(sub-horizon region), while the second is a growing
mode on scale much larger than the Hubble hori-
zon (super-horizon region). We consider a relation
of RY, = —u}/z, together withul () = axul () +

aikuz*(t). Using a definition of the power spectrum

PL (k)s®(k — 1) = L R% (t)RYT
r. (k)87 (K — )_W( k(DR (T)),

one finds the power spectrum for curvature perturba-
tions in the super-horizon region

3 2

q [k .
Pr.(0) = (F) _m
Our next work is to find unknown coefficiencg by
solving the Mukhanov equatiof6). In general, it is
not easy to find a solution to this equation directly.
Fortunately, we can solve it using either the slow-roll
approximation[25,26]or the slow-roll expansiof27,

28]. We find theg-power spectrum to the leading-
order[18]

2—0 17240 4
H 1 H
PZ = 3qﬂq — -, (9)
c (2m)2 2e1 (2m)2 ¢2
where the right-hand side should be evaluated at hori-

zon crossing ok = aH. UsingdInk >~ Hdt, theq-
spectral index defined as

ul k3 2
+l = ﬁ|CZ| :

®)

2q

dIn P}
nl (k) =14 ——

dink (10)
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is given by
ni(k)y=1-4¢l — 251 (11)

The ¢-running spectral index is determined, to the
leading-order, by

d q
dink” =
The tensor-to-scalar rati, is defined by

8 q\2
BT g0ast 1257 - 258, (12)

2

A
R, =16—2, (13)
S.q
where theg-scalar amplitude is normalized by
4
2 _ q
AS.q = 5Pk (14)
The GR ¢ = 1) tensor amplitude is given by
A2 —Lp (15)
T.GR — 50 T,GR,

where Pr gr = (2«4)°(H /27)? because a tensor can
be expressed in terms of two scalars li Tensor
spectra for GB and RS are known only for de Sitter
brane withp = —p [15,22]. It implies that tensor cal-
culation should be limited to the leading-order compu-
tation. These are given by

2 2 2 ~
Ar,q = AT,GRFg (H/[),

where
-2 Vita2— (228 2sinnt( 1), a7
Fﬂ (.X)Z + x4 — m x~sin ; . ( )

In three different regimes, we approximat% as
F2: Ff~ FZ(H/ji < 1) = 1 for GR model;Ff ~

F§:0(H/[L > 1) = 3H/(21) for RS modeI;F22/3 ~

Fg(H//l > 1) = (14 B)H/(2Bv) for GB model. The
tensor amplitude up to leading-order is given by

, 361/3579 H2+0
Ta™ (5m)2 2

with ¢ = ¢23 =1 and & = 2/3 [16]. Finally, the
tensor-to-scalar ratio is determined by

(16)

(18)

A% €1
R, = 16AT’q =16— (19)

S.q %q

in the patch cosmological models. Considering a re-
lation for tensor spectral indené} = —(2+6)e1, One
finds the consistency relations

R1=—8n} =166,
Roj3=—1617> = 16¢1.

Ry = —Sn% = 24¢,
(20)

The above shows that the RS consistency relation is
equal to that for GR case, but it is different from that
for GB case.

3. Inflation with potentials

A generic single-field potential can be character-
ized by two energy scales: a height of potentigl
corresponding to the vacuum energy density during
inflation and a width of the potential correspond-
ing to the change of an inflato¢ during inflation.

In general its form is given by = Vo f (¢ /). Differ-

ent potentials have differerft-forms. The heightyp is
usually fixed by normalization and thus the free para-
meter is just the widthu. We classify potentials into
three cases: large-field, small-field, hybrid potentials.

3.1. Large-field potentials

It was shown that the quartic potentialbf= Vop*
is under strong observation pressure (ruled out obser-
vationally) for GR and RS (GB) models, while the
quadratic potential o¥/ = Vp¢? is inside of the &-
bound for GR and GB models with the range ef
folding number 50< N < 60. This is obtained from
the likelihood analysis based on the leading-order cal-
culations ton! and R, with patch cosmological mod-
els[19]. Here we choose the large-field potentials of
VLE = vopP with p = 2, 4,6 for testing these with
the patch cosmology. In this case potential slow-roll
parameters are determined by

q_4p 1

el =12 , 21

" 2 (g-Dp+2N+ % D
1 2-2

57 ( p+4qp) (22)

17 2[g-Dp+2aN+ L

Substituting these into Eq¢11) and (19) one finds
two inflation parameterdg-or a full computation of
inflation parameters, see REX0]. The LF-spectral in-



H. Kim et al. / Physics Letters B 608 (2005) 1-9 5

dex is given by
W Bg—2)p+2

* [((g—Dp+2N+%
in the leading-order calculation. The LF tensor-to-
scalar ratio takes the form

LF_ 8qp 1

T 4 g-Dp+2AN+ Y
Fortunately, there is no free parameter for large-field

models. The numerical resul{§,20] for large-field
potentials are shown ifable 2

(23)

(24)

3.2. Small-field potentials

In this subsection we choose the small-field poten-
tials of VSM = Vo[1 — (¢/)P] with p =2, 4, 6. Here
u plays a role of the free pameter. For convenience,
we treatp = 2 and p > 2 cases separately. For the
p = 2 case, potential slow-roll parameters are deter-
mined by

g_a(9r\ 4 _xin
=5 ) e P (25)
q 2
i == lara(L) i), (26)
2 w
with a dimensionless parameter
2p
q _
Xp: 1 (27)
36212V
whose form is given explicitly by
Lor_ P (me\* ms_ p (mer\* A
P ag\ o ) N A A
2 2/3\ 2 VaB2\1/3
XGBZ 4 mPl Oﬂ (28)
r 3(27.[)2/3 n ﬁz :

Here we find useful inequalities:>R <« 1 for u >
mpl, xSR > 1 for u < mp; xfjs < 1fora/Vo— 0,
xffs > 1 for u < mpy; xI?B <« 1forp— 0, xI?B >1

for u <« mp;. This means that the RS model is ob-
tained from the RS braneworld in high-energy region,
while the GB model is mainly determined from the
Gauss—Bonnet term in the braneworld. Also the RS
and GB models recover a result of the GR model in
the low-energy limit ofmp; > w. From a relation for

the number o-folding: N ~ —382 ff(vq/v/)d¢,

one finds a relationp = ¢ ;¢=7V/2, The SF-spectral
index is given by

(29)

nSt=1-6el + 2]
1 q br ? —xIN
=1-x,|1+4q|—) e "
"
in the leading-order calculation. The SF tensor-to-
scalar ratio is
16 q 2
qSFz P _ %<ﬁ> x?,e_x;j’N. (30)
g g \ 1
We determinep; from a condition of the end of in-
flation: GZ((bf) = 1. For p = 2 case, one obtains a
condition of xj < 1 from nPF < 1. In the case of
rh =qpx}/4< 1, it providesp s ~ u/(1+ q)Y/? for
numerical computation.
In the case ofp > 2, we have different slow-roll
parameters

€1 = L 20-1° (31)
(L7 + BN P
)= (p— Dx} .
2[(4)* 7 + 2xgN] 7
_ Mef. (32)

p

A relation betweerp and¢ ¢ is given by(¢p/ )% P =
(Pr/)* P + (p — 2xpN/2. In general, the SF-
spectral index is given by

nSF—1_ (p—Dxj
s (ﬂ)zﬂ’ 4+ Pz2,4 N
"w 2 7P
Sp—2 sk
~ & &R, (33)
where the SF tensor-to-scalar ratio is
q
RSF= %4pxp (34)

20-D °
p—2

20— _
G[(F)7 + 22N

Also we getg, from a condition of the end of in-
flation: ei’ (¢ ) = 1. However, there is no constraint
on xj. In the case ofrj(x}) < 1, we haveg, ~
w/(L+q)YP, while for 7} (x}) > 1, we find a con-
nection

P 0 1

/= V20D " (gpaljAM2p-D’
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For the case of < 1, two inflation parameters are
given by

nsSFz 1_ (P - 1)x;q7
(1+q) P + —xpN
5 2
= SRS (35)
q
RSF= 4qPXp 2([) 1) ) (36)
;q[(1+q) v + 223N e

On the other hand, for the case)d,f > 1, the spectral
index is

SF_q_ (p—Dxj 5 =2 pse
s q  2-p 8 8q q
()2 4 220 N P

4 2 p 37)
and the SF tensor-to-scalar ratio takes the form
q
SF_ 4‘11”‘17
R>" = T (38)

£ [(2k) 705 4 22t N]

In the limit Ofxp — o0, we obtain the low-energy
limit of GR case from RS and GB models. Also, in
the limit of XSR — oo(mpy > w), one finds a well-
known general relativistic case. These all lead to the
same expression given by
p—12

nSF_

(39)

s p—2N’
which is independent of the patch parameten the
limit of xZ — 00, one finds an asymptotic behavior for
the tensor-to-scalar ratio

SF

~

R Y 0 (40)

On the other hand, forg > 1, there exist upper limits
for R? such thaf29]:

SF _ pSF
R)™<RJ, (41)

with R>F = R3F| 4_z¢. Here

=l rx 2 (VopP\'P

P 4’ 21 Vo' 3(2m)%3\ [

is thexg—value formp) = p in EQ.(28). The numerical
results forxf, > 1[5] and those from graphical analy-

sis forxf, <« 1[10] are summarized at the last column
in Table 2

Table 2

The spectral indexn() and tensor-to-scalarR(. Here we choose

N =55 to find theoretical values for the large-field potentials (LF)
and bounds for small-field potentials (SF). For SF case, each patch
model in high-energy region is recovered wh¢1<< 1, while their
low-energy limits are recovered wharg > 1. The patch cosmo-
logical model is allowed only for? « 1 because for} > 1, it
degenerates GR case

Patch p LF SF () < 1) SF @} > 1)
GB(g=2/3) 2 ng=097 ny<1 N/A
R=014 R<0.04 N/A
4 ng=095 ny<1 095<ny <1
R=056 R<19x1073 R<RF;
6 N/A ng <1 096<ny <1
—4 56
N/A R<60x10% R<RS;
GR(g=1 2 ny=096 ny<1 N/A
R=014 R<005 N/A
4 ng=095 ny<1 095<ny <1
R=029 R<13x10% R<95x10°%
6 ny=093 ny<1 096<ny <1
R=043 R<30x10% R<57x10™*
RS(g=2 2 ny=096 ny<1 N/A
R=022 R<0.16 N/A
4 ng=095 ny<1 095<n; <1
R=029 R<80x10% R<R]
6 ns=094 ng<1 096<ny <1
R=032 R<10x10* R<RS

3.3. Hybrid potentials

Finally we choose the hybrid-field potentials (HY)
like VI = Vo[1+ (¢/w)P] with p = 2,4, 6. In this
case it requires an auxiliary field to end inflation. Here
we separatg =2 and p >2 cases.

For thep = 2 case, the potential slow-roll parame-
ters are determined by

q¢f2 IN
d=5(%) st

q
q Xp ¢f —x4
=211 r
771 2{ q(u) }

with a dimensionless parametef = 2117/3,1‘,*q2,u2V0q’l
defined in Eq(28). FromN ~ —3p2 f(f-"(vq/v’) do,

one finds a relationp = ¢ e*N/2 for p = 2. Here
u andg are regarded as free parameters. The HY-

(42)

(43)



H. Kim et al. / Physics Letters B 608 (2005) 1-9 7

spectral index is then given by

n =1—6¢] + 2]

$r\°
=1+x1q,|:1—4q<7f> eXpNi|

in the leading-order calculation. The HY tensor-to-
scalar ratio is found to be

166?, 8qxp <¢f) SN
Cq Cq 1%
In order that Eqs(44) and (450e meaningful, we re-
quire a condition ofcf, < 1. Onthe other hand, there is
no way to determing s from Gg((bf) =1 for HY case
because  is determined by other mechanism. Hence
¢ plays a role of the free parameter. Fortunately,
l(¢/m)|? < 1 is required because [f¢/u)|? > 1 in
vHY it is not much different from the large-field po-
tentials. From Eq(44), one finds a restrictive con-
straint|(¢/w)|? < % which comes from the condition

of n's"Y > 1.

In order to see a feature of the hybrid models, we
need numerical results. In the casedit, = 0.04
(1 = 2mpy), In(¢/¢py) =1 and N=50, we have a
blue spectral index"Y ~ 1 + x] = 1.04 but a small
tensor-to-scalar ratlﬁg}g =0.32(¢ /)% < 0.08.

In the case ofp > 2, we have different slow-roll
parameters

(44)

RHY = (45)

q
qpx
Eg - r : 2<p 1) ’ (46)
a[(Fh)r — IAgN]
q_ (p =D _2p-1
= 2[(¢t‘)2*P p—2 qN] 2(/’_21) p S
A — ——x D —
"w 2 7P (47)
In general, the HY-spectral index is given by
q
HY (p—Dxp Sp—2 RHY
n = 1 + - é‘ )
N e
(48)
where the HY tensor-to-scalar ratio is
q
HY Aqpxp
R = $r\2-p _ p=2 an170E 49
GG = BN

A HY-relation for p > 2 is given by (¢/u)> 7 =
@7/m)2 P — (p — 2x4N/2 > 0, which implies that

an inequality ofNmax > N exists with the definition of

Nmax as(‘Pf/M)z_p =(p— 2))Cfa]\/max/z-
Consequently, the HY-spectral index is given by

-1 2 5p—-2
Y1472 222, R, (50)
p—2Nmax— N 8p
where the HY tensor-to-scalar ratio is

RHY — 4qp 1

oy 7 [ (P2 Nmax] A R
Gq(xp) P2 [ 2 [1— ]

(51)

4, Discussions

We introduce various potentials which are classi-
fied into large-field, small-field, and hybrid types for
the ordinary inflation in the GR case. Using the patch
cosmological models together with various potentials,
we compute the two cosmological observables, spec-
tral index and tensor-to-scalar ratio.

In large-field models without free parameter, the
spectral index:; and tensor-to-scalar rati® depend
on thee-folding numberN only. Actually this sim-
plicity provides strong constraints on large-field mod-
els. Further, combining the Gauss—Bonnet braneworld
with large-field potentials provides more tighten con-
straints than the 4D general relativistic case. The GB
case is regarded as the promising model for testing the
large-field potentials becaa it accepts the quadratic
potential. On the other hand, it rejects the quartic po-
tential because theoretical points are far outside the
20 -bound[19]. Actually, the GB cosmological model
improves the theoretical values predicted by the GR
model, whereas the RS model provides indistinctive
values more than the GR case. As is showmahle 2
the GB model splits large-field potentials into three
distinct regions clearly: foiv = 55, nsGB =0.97 —
095 (p=2— p=4), Reg =0.14— 0.56, and a
power-law inflation withp = 6: n”!' =1 — [(2r —
1)/2r*1Y/3, Rp; = 16/r [18]. Contrastively, we have
n®R=096—- 095093 (p=2—p=4—

p =6), Rgr = 0.14— 0.29— 0.43, whereasRS =
0.96 — 0.95 — 0.94, Rrs = 0.22 — 0.29 — 0.32.
Theoretical points predicted by the RS model lie very
close to the border between the regions allowed and
disallowed by observation. Consequently, the large-
field models depend on critically which model is used
for calculation.



In small-field potentials, one has a free parameter
;L(xf,) related to the potential shape. It is thus difficult
to constrain inflation parameters, in compared to the
large-field potentials. However, combining the graphi-
cal analysis with the dafd 0], we find useful bounds.
Forx} <« 1, there is no constraint on the lower-bound
for the spectral index, but all of its upper bounds
are given by 1. This means that patch cosmological
model is not useful for testing small-field potentials.
Forx}, > 1 andp > 2, one finds lower-bounds for the
spectral indices. Furthermore, there is no constraint on
the spectral indices fop = 2 case. This implies that
althoughn; is independent of the patch parameger
the small-field potentials are in good agreement with
the observational datgp,6]. Combining the Gauss—
Bonnet braneworld with small-field potentials, there
exist unobserved differences in the upper-bound of the
tensor-to-scalar rati®.

Concerning the hybrid models, we find a blue spec-
tral index with»5F > 1. However, there is no actual

difference between patch cosmological model because
one more free parameter is necessary to determine the

end of inflation ¢ ), in addition tO/L()CZ). It implies
that the scheme of inflatiory ] is less important than
mechanism of the hybrid inflationu( ¢ ). As a re-
sult, we do not find any new result when combining
the Gauss—Bonnet braneworld with the hybrid poten-
tials.

In conclusion, the GB model is still a promising
one to discriminate between the quadratic and quar-
tic potentials in the large-field type by making use of
the observation data. Although the small-field poten-
tial are insensitive to patch cosmological models, these
are considered as the promising potentials in view of
the observational data. Finally, we do not find any new
result when combining the Gauss—Bonnet braneworld
with the hybrid potentials. This implies that it is not
easy for hybrid type to compare with the dgz].
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