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We show in this Letter that the Z3 flavor symmetry, which can successfully produces the tri-bimaximal
mixing and flavor pattern of neutrino sector, has a possible explanation in the framework of gauge
symmetry by constructing a wavefunction of flavor state particles with the help of the Wilson loop.
In this implementation of Z3 flavor symmetry, we suggest that the flavor charge in weak interaction can
be interpreted as topological charge. Its possible implications and generalizations to the quark sector are
also discussed.

© 2009 Elsevier B.V. Open access under CC BY license.
1. Introduction

The Standard Model describes almost all laboratory data with
28 free parameters, most of them arise from the flavor and mass
parameters in the Yukawa coupling yij between fermions and
Higgs boson H , the Lagrangian is

LYukawa = yu
ij ūiq j H + yd

i jd̄iq j H∗ + ye
i j ēil j H∗, (1)

where q, l, (ū, d̄, ē) are left (right) handed quarks and leptons. Al-
though 17 in 22 of the flavor parameters are measured [1], to un-
derstand these free parameters is a great challenge. The dominant
approach is constructing flavor symmetry to reduce the number of
free parameters, e.g. [2].

Beyond the Standard Model, neutrino oscillation experiments
[3], give us strong evidences that the neutrino also have non-zero
masses and non-trivial mixing between mass eigenstates and fla-
vor states

να =
3∑

a=1

Uαaνa, (2)

in which a denotes the mass eigenstate and α the flavor state,
Uαa is the MNS matrix [4] that has the form of nearly tri-
bimaximal [5].

The request of understanding the tri-bimaximal mixing de-
mands a theory of flavor, and the neutrino masses and mixing
matrix have inspired many model buildings, e.g. non-Abelian dis-
crete flavor symmetries [6], GUT×discrete group models [7], shift
symmetries [8] etc., in which a heuristic model is the Abelian Z3
flavor symmetry, e.g. [9].

The observational facts that the mixing between mass eigen-
states and flavor states, as well as the universality of the flavor
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states in weak interaction imply that the elementary excitations of
weak process are non-Fock [10], and have non-trivial structures. As
it is known that the Fock quantization is closely related to the par-
ticle interpretation of non-interacting QFT in which momentum,
energy (mass) and spin of particle are good quantum numbers.
However, the flavor state does not carry definite mass and spin as
its quantum numbers, but definite flavor charge which is instead
seem as good quantum number for weak interaction. Actually, the
flavor states are the eigenstates of the weak interaction and the
Haag’s theorem [11] states that Fock state does not exist for inter-
acting QFTs.

Such non-Fock degrees of freedom (DoF) may be crucial for un-
derstanding the mixing phenomenon in weak processes. We sug-
gest that the Z3 flavor symmetry model for neutrino mixing is very
heuristic, since the Wilson loop operator has a natural implemen-
tation of Z3 symmetry and can be used as a guidance to construct
the non-Fock elementary excitations. In this Letter, we will give a
possible explanation of Z3 symmetry in the framework of gauge
symmetry with the help of Wilson loop by introducing it to each
particle wavefunction. Then according to the non-Fock wavefunc-
tion, the eigenvalues are not related to the mass and spin, but
rather a winding number of Wilson loop, so we could give the
flavor charge a possible interpretation.

The Letter is organized as follows. We review a simple Z3 flavor
symmetry for neutrino in Section 2, our implementation of the Z3
flavor symmetry is in Section 3 by using the Wilson loop, we give
a topological quantum number interpretation to the flavor charge.
The generalization to the quark sector, which will reproduce the
Froggatt–Nielsen’s scenario for the Yukawa couplings, is discussed
in Section 4.

2. Z3 flavor symmetry and neutrino mixing

In this section, we review a simple and heuristic model of neu-
trino mixing based on the Z3 flavor symmetry. Consider the Z3
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elements (ω,ω2,1), where ω = e
2π i

3 . We assume neutrinos are Ma-
jorana particles, and a general Lagrangian of Majorana mass term
is

L = yν̄cΦν, (3)

where y is a coupling constant, c stands for the charge conjuga-
tion νc = C ν̄T . Since Z3 is a one-dimensional Abelian group, so the
transformation is purely multiplying an imaginary phase, ωi ∈ Z3.
The Lagrangian is invariant under the Z3 transformation

νi → ωiνi, ν̄c
i → ν̄c

i ω
i, φi → ωiφi, (4)

where the index i from 1 to 3, three Higgs fields are introduced in
the model. After the transformation, the coupling takes the form

y
(
ωiω jωk)ν̄c

i φ jνk, (5)

where ωiω jωk in the parentheses should be an invariant of Z3,
so it leads to i + j + k = 0 mod 3, which constrains the relations
between i, j, k. Expanding it into matrix in flavor basis, the texture
of coupling then has the form

y
(
ν̄c

1 ν̄c
2 ν̄c

3

)(
φ1 φ3 φ2
φ3 φ2 φ1
φ2 φ1 φ3

)(
ν1
ν2
ν3

)
. (6)

It is easy to verify that the mass matrix can be almost diagonalized
by the tri-bimaximal mixing matrix

U tb =
⎛
⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

⎞
⎟⎠ . (7)

We have

U †
tbΦU tb =

⎛
⎝φ1 − φ2

2 − φ3
2 0

√
3

2 (φ3 − φ2)

0 φ1 + φ2 + φ3 0√
3

2 (φ3 − φ2) 0 −φ1 + φ2
2 + φ3

2

⎞
⎠ , (8)

which is diagonalized when φ2 = φ3. The neutrino mass matrix
is obtained by developing VEV for φi . Because of the non-zero
(1,3) and (3,1) elements, the matrix needs further diagonaliza-
tion which will give a deviation from the tri-bimaximal matrix
and leads to a non-vanishing θ13. The deviation or, equivalently,
the non-vanishing θ13 will depend on the magnitude of the non-
zero (1,3) and (3,1) elements, i.e. the difference of the VEV of φ2
and φ3. Here, the VEVs of Higgs fields 〈φi〉 does not necessary to
be the electroweak scale for the masses of neutrino are small, in
some models they could be a tiny scale, e.g. in Higgs triplet model
〈φi〉 ∼ 10−3 eV.

In the following sections, we will implement the transformation
properties Eq. (4) of the discrete Z3 symmetry in the framework of
continuous gauge symmetry and construct similar Z3 invariants as
Eq. (5) to be the Yukawa couplings.

3. Implementation of Z3 symmetry and possible implications

Now in general we discuss the discrete Z N symmetry from the
continuous gauge SU(N) symmetry. The possible implications of
ZN flavor symmetry will be a good guidance for us to find the
non-Fock wavefunction of the flavor state.

As it is well known that the gauge transformation on a particle,
whose operator is near the identity element of gauge group G =
SU(N) (we call it small gauge transformation), it transforms as a
fundamental representation of G ,

Ψ → eiθata
Ψ 	 (

1 + iθata)Ψ, (9)

where ta is the generator of G , θa is the parameter of transforma-
tion and Ψ is the wavefunction of the particle. A gauge potential
A = e Aa
μta dxμ induces a finite phase to the particle when it passes

along a path l(x, x′) from x to x′ ,

Ψ (x′) = ei
∫

l(x,x′) A
Ψ (x). (10)

The gauge potential A transforms as

A → Ag = g−1 Ag + 1

i
g−1dg = A + 1

i
g−1 Dg, (11)

where g ∈ G defines a mapping from the base manifold to the
gauge group, g(x) = eiθa(x)ta

, i.e. g(x) : M → G , and D is the co-
variant derivative D = d + i A. If the mapping g is non-trivial, then
an extra phase appears which related to the gauge transformation
whose operator does not contain the identity element, in other
words, the gauge transformation has non-zero “winding number”
and we call it large gauge transformation. We have

Ψ (x′) = ei
∫

l(x,x′) Ae
∫

l(x,x′) g−1 Dg
Ψ (x), (12)

it gives a decomposition of a small gauge perturbation and large
gauge transformation. The former responds to the local phase for a
Fock-like particle, while the latter phase needs an extra quantum
number to describe which has no effect on the local phenomenon.

When we consider that the path is closed to be a loop γx at a
base point x, the first phase factor tends to vanish as the closed
loop shrinks to the point x, while the second one remains for the
obstacle in the non-simply connected space,

Ψ (x′)|x′→x → e
∮
γx

g−1 Dg
Ψ (x). (13)

Obviously, the trace of phase factor, which does not rely on the
choice of the basis of the gauge group, is an invariant function
under gauge transformation and independent with the spacetime
metric, so it is expected to be an observable and be part of the
wavefunction. The general form of the physical phase is written as
the so-called Wilson Loop [12]

Wγ

[
Ag] = tr

(
Pei

∮
γ Ag )

, (14)

where P denotes the path ordering along γ .
When the mapping g is non-trivial for some topological obsta-

cle exist, e.g. all scalar fields form ZN -vortices, the relevant gauge
group G = SU(N)/ZN is not simply connected,

π1
(
SU(N)/ZN

) = ZN , (15)

for the mapping g(x) : S1 → SU(N)/ZN , then g becomes multival-
ued, consider the closed loop γ parametrized by an angle θ with
0 � θ � 2π , and γ (2π) = γ (0), we have g(2π) = e2πni/N g(0) with
0 � n < N . We say that the field has a winding number n in such
a configuration.

As a consequence, there does not exist a global section to be
the wavefunction in the case that the bundle is topological non-
trivial, and each section differs by an extra phase representing
a large gauge transformation. So according to the decomposition
Eq. (12), the wavefunction of particle can be represented as a triv-
ial wavefunction Ψ0(x) multiplying by an extra phase exhibited by
the non-contractible Wilson loop at the base point x which char-
acterized its topological class. In general each topological class of
wavefunction can be constructed as

Ψ (x) = Wγx [A]Ψ0(x). (16)

Under the gauge transformation Eq. (11), we note that

Wγ

[
Ag] = tr e

∮
γ g−1dg Wγ [A] = e2πn(γ )i/N Wγ [A], (17)

where n(γ ) is the number of times the loop γ winding around the
obstacle, which is topological stable against small perturbations,

nγ [A] = nγ [A + δA]. (18)
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Even if the SU(N) symmetry is broken completely, the phase
factor still values on the residual center of SU(N), the ZN , so we
assume in this Letter, only the Z N DoF are relevant to the wave-
function, which is transformed as the representation of ZN group,

Ψ (x) → Ψ ′(x) = Wγ

[
Ag]Ψ0(x) = e2πni/N Wγ [A]Ψ0(x)

= e2πni/NΨ (x), (19)

where e2πni/N is the element of ZN .
It is direct to check that the wavefunction Eq. (16) is the eigen-

function of the Dirac operator /D(Ag) = /∂ + i/A g . As it is well known
that the gauge transformation of /D(A),

g−1(x)/D(A)g(x) = /D
(

Ag), (20)

consequently, every eigen-function Ψ of /D(A),

/D(A)Ψ = λΨ, (21)

has an associated gauge transformed eigen-function gΨ ,

/D
(

Ag)gΨ = λgΨ, (22)

so is W [Ag]Ψ ,

/D
(

Ag)W
[

Ag]Ψ = λW
[

Ag]Ψ, (23)

since W [Ag] valued on the center of group element g , without
losing generality, taking the pure gauge Ag = g−1 dg , we have

Wγ

[
Ag] = tr

(
e
∮
γ g−1 dg) = tr

(
g(2π)g†(0)

)
. (24)

In summery, if non-contractible loops exist (i.e. when the
π1(G) �= 0 due to topological obstacle), the wavefunction of el-
ementary excitation can be constructed as a topological trivial
wavefunction multiplied by a non-trivial Wilson loop that exhibits
its extra topological quantum number. So in this case, we suggest
possible connections between such extra topological DoF and the
flavor DoF:

(1) The wavefunction Eq. (16) is the eigen-function of the Dirac
operator, so it is the eigenstate of interaction similar with the
flavor state, but rather the energy eigenstate. The eigenvalue
e2π Q i/N = ωQ classifies the equivalence class of the wavefunc-
tion, where the winding number measures topological charges
Q that similar with the flavor indices i of ωi in Eq. (4).

(2) The flavors have similar formal behavior with the topological
DoF under ZN symmetry Eq. (19), the ZN transformation is
interpreted as a large gauge transformation and has no effects
on local process. The local gauge quantum numbers assigned
by gauge group for different flavors are the same.

(3) The flavor charge seems stable against local gauge interactions
similar with the behavior of Eq. (18), local flavor changing
processes such as Lepton Flavor Violation (LFV) and Flavor
Changing Neutral Current (FCNC) are highly suppressed in our
observation by far.

(4) Note that if we reverse the orientation of the loop γ and ex-
change the representation of G with its complex conjugate, the
definition of Wilson loop is unchanged, it is equivalent to take
the charge conjugation of the wavefunction.

These are important formal properties of the flavor DoF and the
topological DoF of the non-Fock wavefunction Eq. (16). The wave-
function will have non-trivial consequences when we dealing with
the VEVs of the Wilson loops in which the connection A is seen
as dynamic field operator. In the following discussing, we will base
on the non-trivial wavefunction Eq. (16) and take N = 3.
4. The quark sector

In this section, we will generalize the previous discussion to
quantum version by seeing the wavefunction Eq. (16) as a field
operator. In the standard treatment of effective QFT, the high en-
ergy DoF will be integrated out and contribute to the effective
low energy DoF, we will find that the VEVs of the Wilson loops
in particle’s wavefunction will play a crucial role in their effective
couplings which give a natural realization of strong hierarchy of
quark masses.

First we briefly reconsider the neutrino case. Assume that the
wavefunction of neutrino is almost identified with the trivial wave-
function Ψ 	 Ψ0, that is 〈W [A]〉 	 1, the VEV of the transformed
Wilson loop in the neutrino wavefunction is then purely an imag-
inary phase valued on Z3,〈
W [A]〉 → 〈

W
[

Ag]〉 = ωn〈
W [A]〉 	 ωn ∈ Z3, (25)

in other words, the wavefunction of neutrinos are the eigenstates
of the Wilson loop operators with eigenvalues ωn . Hence the result
is the same as Section 2. The Lagrangian takes the similar form of
Eq. (6), only the Higgs fields develop non-vanished VEVs with the
scale of, e.g. in Higgs triplet model, 〈φi〉 ∼ 10−3 eV.

However, when we consider the quark sector, the quantum ex-
pectation values of Wilson loops will not be trivial, if the local DoF
of quarks are confined. Writing the Yukawa coupling terms in ordi-
nary form, where the gauge potential in the Wilson loop operators
should be integrated out and the VEVs of such loop operators then
make contributions to the effective Yukawa couplings, they for-
mally become the correlation function of these Wilson loop oper-
ators, which are observables that gauge invariant under SU(3)/Z3.
They require their VEVs and the Lagrangian of quark mass terms
take the form,〈
W †

qaL W Hc Hc WqbR

〉
q̄aLqbR , (26)

where the subscript a, b, c of the Wilson loop are integers repre-
senting the corresponding winding number of the loop, or equiva-
lently in this Letter, the flavor species, we write it as

Wna = tr

(
P exp i

∮
γ (na)

A

)
, (27)

where na is the winding number. Taking the number 〈Hc〉 out of
the bracket, we have the expectation value of the correlation func-
tion of these three Wilson loops, which can be calculated by the
standard Feynman path-integral, formally it can be written as〈
W †

a Wc Wb
〉 = Z−1

∫
D AW †

a Wc Wbe−S[A]. (28)

The symbol D A represents Feynman’s integral over all gauge or-
bits, that is, all equivalence classes of connections modulo gauge
transformations, and S[A] is the action of gauge theory in 4 di-
mension with gauge group G = SU(3)/Z3. The approximate behav-
iors of Eq. (28) can be given as follows. We assume that the loop
operators are almost independent, the expectation value can be
decomposed as〈
W †

a Wc Wb
〉 	 〈

W †
a
〉〈Wc〉〈Wb〉eiδ(γa,γc ,γb), (29)

in which eiδ(γa,γc ,γb) is an observable angle depending on three
Wilson loops. A crucial properties of 〈Wγ 〉 is that if the DoF of
quarks are confined it has area law [13],

〈Wnγ 〉 = tr exp

(
−

∮
γ

dxμ

∮
γ

dyν
〈
Aν(y)Aμ(x)

〉) 	 e−σ Aγ , (30)

where 〈Aν(y)Aμ(x)〉 is the propagator, Aγ is the area of surface
whose boundary is the loop, it is approximate that the area, which
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the flux goes through, increases with the winding number, i.e.
Aγ 	 nγ A, and σ is a fixed constant.

It gives quark a strong mass hierarchy. Neglecting the complex
phase we have the Yukawa couplings

yab 	 gH e−σ(na AqL +nb AqR ), (31)

where only one Higgs field is involved and the 〈W H 〉 contributes
to the coupling gH , the VEV of Higgs field is of the electroweak
scale 〈H〉 	 246 GeV.

Comparing it with the form of the Yukawa couplings result-
ing from approximate Froggatt–Nielson [2] Abelian U (1) Flavor
Symmetries, in which the general scheme is a small symmetry
breaking factor for each quark field, εq,ū,d̄ 	 〈θFN〉

Λ
that leads to the

Yukawa coupling elements

yu
ik = gε i

ūε
k
q , yd

jk = g′ε j
d̄
εk

q , (32)

in which 〈θFN〉 is the VEV of an introduced field, Λ an energy scale
and i, j, k are the integer flavor indices. Therefore, in our scenario
it is natural to have the identification

ε i
ū = e−σna AuL , ε

j
d̄

= e−σnb AdL , εk
q = e−σnc AqR , (33)

where the integer flavor indices i, j, k identify with the winding
number na , nb , nc . So it is a possible scenario to fit the flavor pat-
tern of quark sector well.

5. Conclusion

In this Letter, we discussed a simple and heuristic Z3 flavor
symmetry model for neutrino masses, and gave it a possible re-
alization by constructing a non-Fock wavefunction involving the
Wilson loop, Eq. (16). In this scenario, we show that the flavor
charge can be interpreted as topological charge. The flavor DoF has
similar behavior with the topological DoF under Z3 symmetry, and
it is stable against local small gauge perturbation which is consis-
tent with the fact that flavor changing processes are suppressed in
our observations by far.

A possible generalization to the quark sector is also discussed,
in which we gave a possible scheme to compute the Yukawa cou-
plings for quarks by calculating the correlation function of the
Wilson loops in their wavefunctions. This scheme leads to strong
hierarchy for the quark Yukawa couplings and reproduce the simi-
lar textures from the scenario of Froggatt–Nielson’s Abelian Flavor
Symmetries.
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