
Theoretical Computer Science 76 (1990) 93-114

North-Holland
93

Din0

Department of Computer Science and Engineering, Mail Code MC-014, University ?f California at

San Diego, La Jolla, CA 92093, USA

While query la uages have been extensively studied in the fra

relational model, tabase updates and transactions have only rece

object of forma! inves igation. Indeed, most studies of transactions have focused

on concurrency issues [2,7]. In [I, 51, a formal model for sequential update transac-

tions in relational databases was introduced, and several basic results on transaction

equivalence and opti ization were obtained. In the present paper we introduce a

model for parallel update transactions, which is an extension of the model deve

in [l] for sequential transactions. Our results focus on the problem of maxi

the degree of parallelism within parallel transactions, and producing optimal

s of sequential transactions.

Parallel transactions are viewed here as partially ordered sets of atomic database

updates forming a semantic unit. We consider a widely accepted class of atomic

consist of insertions, deletions, and modifications, where the selection

deleted or modified) inrolves the inspection of individual attribute

values for earn tuple. We first look at the specification of parallel transactions. Since

specifying a parallel transaction by a partially ordered set of updates can be awkward,

we propose a more convenient syntax, called “in-line”, and examine its relationship

to partially fbrdered sets of updates. While the “in-line” syntax is more restrictive,

we show thzlt it is powerful enough to capture the same relevant information o

the degree of para lelism as arbitrary partial orders of updates.

The main results of the paper focus on algorithms for maximizing the degree of

parallelism within parallel transactions. The algorithms can be used to opti

given parallel transactions, or to parallclize given sequential transactio n order

to understand the nature of the questions involved, it is useful to consider the

following intuitively suggestive problem, corresponding to a special case of the

optimization proble;n. Suppose m boxes

is either empty or contains some balls.

* The authors were supported in part by the National Science Foundation, under Grant numbers
IST-8511538 and IRI 8816078.

** On leave from Rudjer Boskovic Institute, Zagreb. Yugoslavia.

0304-3975/90/$03.50 Q 1990-Elsevier Science Publishers B.V. (North-Holland)

94 D. Karabeg, K Vianu

sequence of moues, m(Bj, &) each of which consists of putting the entire content

of box Bj into box Bk* uppose that the balls must be redistrib d among boxes

according to a given mapping f from boxes to boxes (f(Bj) = means that the

content of box I?” must wind up in box Bk after ihe re-distribution). The pro

in this case is to find a parallel schedule of moves which accomplishes the re-

distribution in minimal time (assuming that each move takes e unit of time). It
is shown (Theorem 3.13) that this problem is NP-complete.

shown that the pro em has a very good polynomial-time approximation algorithm,

which produces a s tion differing from the optimal at most by the absolute constant

1. Such results are of particular interest, since they provide new examples of

NP-complete problems wit very good polynomial approximations. Also, t

of problem described abov is likely to occur in other contexts as well.

The approximation algorithm for the general case produces parallelizations within

a constant factor of the optimal.

The paper consists of four sections. Section 2 summarizes the model for sequential

transactions of [13. In Section 3, parallel transactions are defined and the optimiz.*

ation problem is shown to be NP-complete. In Section 4 we present the pclynomial-

time approximate 0 timization algorithms.

on sequential transactions

In this section we review the mode! of sequential transactions and some results

previously obtained in [l].

We assume knowledge of the basic concepts and notation of relational data-bases,

as in [6,8]. e only review here briefly some notation an terminology used in the

paper. We assume the existence of an infinite set of symbols, called attributes, and

for each attribute A, of an infinite set of u&es, denoted dam(A), called the domain

of A. A re9ationaf schema is a finite set of attributes. Let U be a relational schema.

A tuple t over U is a mapping from U such that, for each A in U, t(A) is in dom(A).

A relation over U is a finite set of tuples over U. A data-base schema is a finite set

t3f relation schemas. We usually denote attributes by A, B, . . . , tuples by t, zc, u, . . . ,

relation schemas by P, Q, 9.. . and database schemas by

The sequential transactions we consider are finite sequences of insertions, dele-

tions, and modifications. We focus on the large class of “domain based” transactions,

where the selection of tuples to be deleted or modified involves the inspection of

ividual attribute values of a tuple, independently of other attribute values in the

le and of other tuples in the relation.

The following is a simple example of a domain-based transaction in SQL [3].

Parallel update transactions 95

managers from the parts department other than oe. Finally, all e
the parts department who are not managers are transferred to the servic

The rank remains unc e new salary is 20

insert into E values (‘moe’, ‘parts’, ‘manager’, 30K)

where N E + ‘moe’ and

and

P set DEPT= ‘service’, SALA

T = ‘parts’ and NK # “manager’.

We now define the notions of a “condition” and satisfaction of a condition by a

tuple.

Let U be a set of attributes. A condition over U is an expression of

a or A # a, where A E U and a E dam(A). A tuple u over U satisjes

a condition A = a (A # a) iff u(A) = a (u(A) f a). A tuple u satisjes a set C of

conditions if it satisfies every conditio

We do not explicitly use logical connectors to build up complex conditions. It

can be easily seen that this would not add power to our transactions. Note however

that logical connectors may provide a more succint representation (at most by a

factor exponential in the number of attributes and constants in the transaction).

Nonetheless, we adopt the natural syntax described above for the sake of simplicity.

Although the conditions use only equality and inequality, this assumption is not

central to &c. development (it is straightforward to extend the conditions so that

comparisons ot‘ the B”srm A > a, A < a are allowed).

In the following, only satisjable sets of conditions are considered, that is, sets

of conditions with no mutua!!y exclusive conditions. Two sets of conditions are

incompatible pi there is no tuple satisfying both sets of conditions.

A set of conditions over U is used to specify a set of tuples over U (those

satisfying the conditions). Due to the form of our conditions, we use the intuitively

suggestive term “hyperplane” to identify such sets of tuples.

iticb .3. The hyerplane H(U, C) defined by a (sa

over U is the set (t E Tup(U) 1 t satisfies C}.

14 set C of con

For simplicity, we sometimes use the same notation for a set C of conditions

over U and for the hyperplane

G” instead of “

a hyperplane

8

96 D. Karabeg, V. Vianu

We now define the updates used to build our transaetfons. An insertion Over a
database schema is an expression ix(C) -*here X is a r
C is a set of con
an expression & (C), where X is a relation sche;-P<: ’ I:

X, either’ cl 1 A =

indicate how tuples in H(X, C,) are
modification, then support (C,) C_ suppo
or modification. Following is an example of updates.

.4. Consider again the database of Example 2. I. The following are updates
over L: corresponding to the SQL dates in Example 2.1:

(1) i,((moe, parts, manager, 30
E f Moe, DEPART&NT = parts, RANK = manager) (this deletes

all managers in the parts department whose names are not Moe)$
(3) m,(DEPARTMENT= parts, RANK Z manager; DEPARTMENT = service,

RANK # manager, SALARY = 2OK).
This transfers all e ployees who are not managers from the parts department to
the service department. The rank remains unchanged. The new salary is 20K.

In the following we sometimes omit the subscripts in writing updates. For instance,
we write i(C) instead of ix(C), whenever X is understood.

A transaction over a database schema is a finite sequence of updates over
The semantics of a transaction t is defined by a mapping associating old instanees
and new instances, called the efict of t and denoted by eff(?) (see [Al] for for
definition of effect). Transactions t, and tz are equivalent (I, = c,) if they have the

_
same effects.

Since the effects of updates over different relation schemas are independent, we
will consider from now on only transactions over uni-relational schemas.

e next introduce a non-procedural method for describing the effect of a transac-
tion on a database. The effect is described at the tuple level using the notion of a
“‘trancition”. Transitions can be specified in an intuitively appealing er and
are a useful tool. For each tuple, a transition indicates whether the tuple is deleted
or. if not, how it is updated. In addition, a transition gives a finite set of inserted
tuples. A transition will be specified by first partitioning the space of tuples into
suficiently ma yperplanes. It is assumed that the partition is sufficiently fine so

all tuples in eat e of the partition are either de!eted or updated to
another byperplane in the partition. This is specified using a trmsition graph

whose vertices a the hyperplanes in the partition. If H1 is modified to
is an edge from I to eleted there is no edge leaving k’, .

’ If C is a set of conditions over U and
attribute A.

E U, then C(, denotes the set of comhtions boa C involving

Parallel update transactions 97

each vertex in a transition graph has out-degree at most I.

nveniently specified using t
ransition specification (spec) is a pair (G, Insert), where

nsert is a set of newly
of the transition spec), such t at there is no e

te that the latter condition is not restricti
ets are redundant and can be re

the effect of the transaction. (In afiicular, note that this holds als

with Cl E Insert, in which case Cl is deleted rather than left unchan
condition will e .tseful in our parallelization algorithms.

We now give a simple example of a transition spec (see [11 for the formal nition
of transition specs an for more elaborate examples j.

Let U = AB and G be the transition graph represented in
Insert = {(1, I)}. Then (G, Insert) is a transition specification over AB. The transition
specified by (G, Insert) consists of inserting the tuple (I, 1) and deleting all tuples
t where t(A) = 0 and the tuple (l,l). All other tuples remain unchanged.

Fig. 1.

We next lciok at the relation between transactions and transitions. For each
transaction there exists a corresponding transition which represents t
of the transaction. In order to construct the transition spec corresponding to a
transaction, it is first necessary to perform some “preprocessing” of the transaction.
Specifically, the transaction is modified so that all hyperplanes corresponding to
distinct sets of conditions occurring in the transaction are disjoint. A transaction
having this property is said to be in First Normal Form (I! NF). The I NF property
simplifies considerably our algorithms and results. It
transaction can be transformed into an equivalent 1N
every hy perplane occurring in it into sufficiently small
normalization may increase he length of the transaction by a
the number of attrib constants in the transacti

. (i) Consider the transacti

8 D. Karabeg, V. Vianu

(ii) e transition speci cation comsponding to
.
9

is (

the transaction over

Parallel update transactions 99

of a pa~ial~y or <)iS;a

such that e,fe3,ezfe3 and e,<e,<e,.

ne unit of time.

-e) be a parallel transaction.

(e) over all updates e in

e transaction is the restriction of

e above definition of a parallel transaction has the disadvan

e “in-line parallel

100 D. Kambeg, V. Vianu

(ii) If t, and f2 are in IPTrans(U) then t,; f2 is in IPTrans(U), eff(r,; t2) =

eff(ti) 0 eff&), and Iti; tal = It,l+ (tz(.
in IPTrans(U) and for each i, j, 1 s i <j G n, eat date in

update in tj, then

(ti I f2 1 l l l I t,) is in IPTrans(U),

eff((r,]t,[l = - It,))=eff(t, -. . t,) and*

I(t, 1 f2 1 l l l 1 &)I = max((ti 1: 1 s i =s n}.

An in-line transaction t’ that is equivalent to the parallel transaction t given as

input can be obtained by assigning to each vertex in PTG(t) its depth and outputing

- (ei, I l l = I eilr,), where i is t e length of t, and { ek, ,

of vertices of depth k, 1 s k s i. We refer to this procedure

-LINE”. It is easy to verify that such an algorithm

t is also clear that the length of t’ is equai to the lengt

input parallel transaction t.

3.5. Although the output of Algorithm IN-LINE is equivalent to the input

parallel transaction and has equal length, it is clear that some loss of information

occurs when a parallel transaction is represented by a corresponding in-line transac-

tion produced by the algorithm. For example, consider the transaction t whose

parallel transaction graph is ({e, , e2, e,}, ((e, , e,)}). The in-line parallel transaction

corresponding to t produced by Algorithm IN-LINE is t’= (e, I e2); e3. In the

transition from t to t’ the information that e2 and e3 can be performed concurrently

is lost. Note that, in this case, the complete information can be captured by a

different in-line transaction: (e,; e3 I e2). However, there are parallel transactions for

which there is no in-line transaction capturing precisely the same information. For

instance, consider the parallel transaction graph G = ({e, 5 e2, e3, e4}, {(e, , e3),

(e, , e4), (e2, eJ}). It is easily seen that, in every in-line transaction consistent with

&;, either e, p e,, or e2 precedes e3. It is straightforward to modify Algorithm
IN-LINE so ou t in-line transaction captures the same information as

e input, if such an in ne transaction exists. We do not do this because the

formation lost when applying Algorithm IN-LINE does not affect the length of

the output, which we use l- --- +- ICI c a3 a measure of parallelism. The additional information

may become relevant if a more refined measure of parallelism is used.

Given a sequential, or, more generally, a parallel transaction, it is desirable to

d an equivalent parallel transaction of mini.nal length. This gives rise to an

optimization problem that is the focus df this paper. We first present an examp!e

arallel transaction and its corresponding optimal parallel transactio

’ Note that, dire to the co

pd-ntutation u of n.

uired of the t!‘s, eff(f, _.. ?,,)=eff(t,,,,:,,,, ,... I, ,,,,, J for every

Parallel update transactions 101

igure 3 exhibits (a) a PTCi of a transaction t, (b)
corresponding optimal ansaction t”: and (c) the in-line parallel transaction

that corresponds to t*. , b* is obtained by “cutting” the long path in the

TG of I into segments. This is accomplished by implementing some of the updates

on the long path by pairs of modifications, using the empty hyperpfanes correspond-

ing to the leaves of short paths as temporary storage.

sent some technical concepts and results that will !jelp understand

the factors that limit parallelism within a parallel transaction. These results will

then be used to evaluate the complexity of the optimization problem and, in the

next section, to develop parallelization algorithms.

We use transitis specifications to represent effects of transactions to be parallel-

ized. Recall that, ’ the transition specification of a transaction t, edges f C, , C,)

that end at hyperplanes inserted by t are omitted. Intuitively, this is usefu

eliminates redundant edifications while increasing the number of deleted hyper-

pitines that can subsequently be used as temporary storage to speed up the computa-

tion. On the other hand, increasing the number of deletions does not in general

increase the length of a parallel transaction since all deletions can be performed in

parallel.

he hyperplane C is deleted by transaction t if C has no outgoing

edges in the transition graph G of t. Hyperplane C is emptied by t if C has no

ingoing edges in G. Hyperplane C, is stored in hyperplane C2 by t if there is an

edge (C,, C) in G.
It is clear (sg:e Example 3.6) that if many hyperplanes are deleted by a transaction

t, then t will be likely to have an equivalent parallel transaction of a small length.

Indeed, it is easy to see that if the number of hyperplanes that are deleted by a

transaction t is as large as half of the total number of hyperplanes of f, and if all

m(CW2) d(C3) d(C4)

(m(Cl:C2) I d(C3) I d(C4)) ; (m(C5;Cl) I m(C7;C3) I m(C9;C4)) ;
(m(C6;C5) I m(CW7) I m(ClO;CB)) ; (m(C3;C6) I m(C4;C8) I m(C1 1;ClO))

m(C3;C6) m(C4;CX) m(C11;ClO)

b

c

Fig. 3.

102 6). Karabeg, V. Vianu

the hyperplanes have the same support, then there always exists a parallel transaction
equivalent to t whose length does not exceed the constant 4 (the deletions a
in the first parallel step, all the modifications
the transition graph of P are done in the secon
are done in the last h step). Of course, an arbitrary transaction t will in general
not have such an e ent parallelization even i all its hyperpla es have the same

support. We now discuss the factors that limit arallelism within a para
action.

To begin with, it is clear that the number
then used as temporary storage to speed u computation is limited. Indeed,
when a hyperplane is dele ed, its contents are permane lost. Hence only those

hyperplanes that are delet d by t can be deleted. This s rise to the following

technical result (the proof is straightforward and is om

.% Let e = d (C) be a deletion in Q para I tr~~sQctio~ t. l&w each hyperplane

that is stored in C t(ptime(e’-” is deleted by t.

Intuitively, since all the deletions as well as all the insertions can be performed
concurrently, the number of modifications will provide a measure of the essential
part of “work” that needs to be done by any parallel transaction that is equivalent
to some given transaction t. We focus on modifications that are likely to contribute
to the effect of the transaction.

ification e = m(C,; C,) of a parallel transaction t is actiw if
(i) C, # C, and

(ii) if t (ptime(e)-” stores some hyperplane C in C, then C is not deleted

Note that a non-active modification can either be removed (i) or replaced by a
deletion (ii). In particular, a non-active modification does not contribute towards
implementing an edge in the transition graph.

The number of active modifications in a transaction t is related to the number of
edges (excluding loops) in a transition graph of t, as those edges h

lemented by modifications. Cycles require one additional modification
e temporary storage, unless there is a “natural” storage for that cycle. This is
fined as follows.

A natural storage for a cycle in a transition graph is a hyperplane
adjacent to the cycle, with the same support as the hyperplanes in the cycle. The
set of cycles in a transition graph G which ,.ve no natural stora
Cyclesadj(G).

Parallel update transactions 103

Let (c, I) be t e transition specification of some parallel transact
‘(G), E(G)), and the ljumber of‘ active modijkations in t.

edifications can not always be performed in parallel due to precedence con-
ts that exist between modifications. The next result follows from the obsewation

that if two hyper lanes are stored in a common hyperplane, they can not be
S

Let t be a parallel transaction, and let C, , C,, C be any hyperplanes

1 , C) and (C, , C)are edges in the transition graph of t”) some 7.
Then either C, and C2 are both deleted by t or C, and C, are stored in so common
hyperplane by t.

We are now iCXljl to define and discuss the parallel transaction optimization
problem.

. An algorithm solves the Parallel Transaction Optimization (

problem if, given as input a parallel transaction t, it produces as output an optimal
parallel transaction t’ such that t’= t.

The following shows that the PTO probiem is intractable even in a simplified
version.

The parallel transaction optimization problem is N P-com$ete even

when the input transaction consists only of deletions and r;crod$kations, a11 the hyper-

planes in the input transurtion have the Same support, and all vertices in the transition
specijicaticrn graph have indegrees no greater than 1.

roof. As customary, we prove NP completeness using the “language recognition”
problem. We say that an algorithm solves the (language recogni-

tion) PTO problem if, given a parallel transaction t and an integer
decides whether there exists a parallel transaction t’ such that t’== t

It is easy to see that the language recognition PTO is in NP, since a non-
deterministic Turing machine can “guess” a parallel transaction t’, verify that t’=

he corresponding transition specifications, and then verify if 1 t’] <

ial time. The proof that the PTO is ard is by reduction fr

nstance of 3-PARTITION consits of a finite set
E Z+, and a ““size” s(a) E 2’ for each u E F, s

s(a) < N/2 and the
algorithm solves the

into m disjoint sets S, , Sz, . . . ,

104 D. Karabeg, K Vianu

NP-complete even when all the element sizes are bounded by a polynomial function

of the total number of elements (see the discussion in [4, p- 991).

We now show that the PTQ problem is NP-hard by cx

reduction of the 3- TITIQN with element sizes b

polynomial in the ents, to the restricted version of the PTQ.

he corresponding instance

s constructed as ut parallel transaction t is

eletions of the form ck(CI), . . . , d(Cm),
nce of 31pt syntactic cycles, one for each

element of the set E The syntactic cycle for each element ai of F consists of a

sequence of M =s(Q~ modifications of the form m(C’;l; Cl) m (Ciz; C'il)

. . * m(GM-1; GM-Z) mC CiM_I), where Cg={A=iN+m+j} (this g

that the Co are incompatible). Note that each such syntactic cycle implements

a cycle of length s(ai) - 1, using C, as temporary storage. The constant K is set

to r+T+1.
It is clear that this transformation can be done in time that is polynomial in the

size of the 3-PARTITIQN instance. It is left to show that the instance of the PTO

ha.s an affirmative solution if and only if the instance of 3-PARTITION has an

affirmative solutio . The idea of the oof is that the pT0 has an aflirmative solution

iff the 3m syntacti ycles can be equ y distributed among the m empty hy

Ci in groups of three, such that the three syntactic cycles assigned to Ci

temporary storage. Clearly, this can be done iff the instance of 3-PARTITION has

a solution. We now sketch the proof. Notice that the transition graph G of the
transaction t consist0 n cJ Unly of cycles and vertices with no incident edges. Consider
an arbitrary parallel transaction t, that is equivalent to f. By Lemma 3.10, b, contains

at least mM active modifications. It is easy to verify, using the Lemmas 3.7 and 3.11

and the fact that all the indegrees in the transition graph G of t are at most 1, that

for any r there %re at most m active modifications e in t, s ch that ptime(e) = 7.

There are exactly k active modifications in the parallel ste 7 only if at least k

hyperplanes are empty at the beginning of r. Since no hyperplanes are em

to the first para 1 step, no modifications can be performed in the first parallel step.
ence if I!, I= + 1 then the first partiX!el step of t, consists of m deleti

en mN modifications are performed in t e following N parallel steps, m of them

at a time in parallel.

It is easy to see that this is possible if an only if the syntactic cycles can be

into m subsets of t ree syntactic cycles each, such that the number of

ns in each subset is equal to N. (The three syntactic cycles in the same

use the same hyperplane Ci as temA/orary storage.) This :‘s equivalent

on to the 3-PARTITION instance. The idea of the proof is

Parallel update transactions 105

4
m(C12;Cl1) m(C42;C41)

4 4
m(Cl;C12) m(C l;C42j

4 JI
m($2l;Cl) m,zwz2)

m(C23;CZ)
J,

m(Cl;C23)
4

m(C31;Cl)
J

m:C32;C3 1)

4
m(C33;C32)

\1
m(C34;C33)

J
m(Cl;C34)

m&2;C52)
&

m(C6 1;@2)
$

m(C62;C61)

m:Cti3:C62)

d
m(CW;C63)

4
m(C65;CM)

4
m(C2;C65)

a b

Fig. 4, .4 solution to an instance of 3-PARTITION (a), and the solution to the corresponding instance
of Fro (tib.

instances are restricted to contain only acyclic transactions. A proof similar to the

;;bove exists for this version of the PTO problem.

Since the PTO problem can be solved in polynomial time on

unlikely case that P= NP, practically feasible approximation algorithms are nee

for solving the problem. In this section we consider several such

first introduce polynomial-time algorithms for two special cases, and show that they

approximate the exact solutions with’ an absolute constant (and 2, respectively).

Finally, we use t se algorithms to velop a polynomial-ti e algorithm for the

general case, whit approximates the exact solution within a consta

The two special cases we consider involve transactions

with the same sup or-t. These cases correspond intuitively to

problem describe in the introduction

We now exhibit our app

transition graph of the

and indegree at most

106 D. Karabeg, V. Vianu

m(Ci;C2)

o-
m(Cl;C2) m(C3;Cl)

(b)

Fig. 5. (a) A short path and a long path. (b) The ourcome of Procedure CUT-AND-PASTE.

isolated vertices. At the heart of the algorithm is procedure CUT-AND-PASTE,
which equalizes the paths in the PTG by “cutting” the long paths and “pasting”
them to short paths. We discuss this procedure informally, then exhibit the complete
algorithm. Figure 5(a) exhibits a “short” path ending in e, = m(C 1; C2) and a long
path where the updates m(C4; C5) and .an(C3; C4) are adjacent and occur “after”
e, (with respect to parallel time). In the long path, the updates following rpz(C3; C4)
(represented by the double arrow) are delayed in order for C3 to become empty.

owever, hyperplane Cl has been freed by now in the short path, and can be used
temporarily store C3 and thus allow execution of the double-arrow path. Thus,

double-arrow path is “cut” from the long path and “pasted” onto the short
th. Eventually, C3 is for to the intended destination (C4) using t

e resulting G is represented in Fig. 5(b). Note the
length of the parallel transaction. The complete algorithm consists essentially of
repeated applications of CUT-AND-PASTE until the paths are equalized as far as
possible. The complete algorithm follows.

Parallel update transactions IO7

arallel transaction t’ such that t’= t.

1. Compute the t sition specification (G, 8) of t.

2. Set P = C -PTG(6).
3. Set = [(PI/q] + 1, where ipi is the number

and q is the number of connected components in
there exists an update e in P such that ptime(e) = K an

of e is not equal to zero.
egin

tdegree

CUT-AND-PASTE(e);
end

6. output I?

re COMPUTE-PTG(G)

2. For each hyperplane C in G that has no outgoing edges add a deletion d(C)
to I?
3. For each directed path in G that does not belong to a cycle add a corresponding
sequence of modifications (directed path) to P, and an edge from the first
modification to the appropriate deletion.
4. For each cycle in G add to P a syntactic cycle S that implements the cycle
by using an arbitrary empty hyperplane C as temporary storage. Add an e
from the update that empties C to the first update of S.
5. Return P.

-AND-PASTE(e)
ate e, in P with outdegree equal to zero f.uch that ptimeje,) s K - 2.
= d(C1) or e, = m(C1; C2) for some hyperplanes Cl, C2. Let

e = m(C3; C4), for some hyperplanes C3 and C4.
2. Add a ww vertex pt= m(C1, C4) to I?
3. Replace the unique edge from the ancestor of,e to e by an edge from the same
ancestor to e2.
4. Replace e by e, = m(C3, Cl) in both the vertex set and in the edge set of
5. Add edges (e,, e2) and (e, , e,) to I?

air The empty hyperplane used for temporary storage in Step 4 of
COMPUTElPTG exists by Lemma 5.5 in [I].

108 D. Karabeg, K Vianu

by FIRST APPROXIMATION under input t. Tken 1 t’l =G It*1 + 1, where t* is the
optimal parallel transaction corresponding to t.

roof. We prove (ii) in two steps:
(“1 It’is K;

(**) It*1 3 K - 1.

Claim (i) will be proved within Step (*).
Proof of (*): Recall 1 t’l G K is the termination condition for the algorith

and that otherwise C AND-PASTE (CAP) is applied. We now show t

following:
(a) Whenever there exists an update whose parallel time exceeds K, it is possible

to apply CAP.
(b) CAP can be applied to b, at most 9 times, where q is the number of connected

components in P after Step 2 of the algorithm.
Clearly, (a) a nd (b) tmply (*). Notice also that (b) implies (i), since it is easy to .

see that CAP as well as Steps l-3 of FIRST APPROXIMATION require only
polynomial time.

In order to prove (a) and (b) we define a partition of the updates in P into
equivalence classes as follows. Before CAP is applied to P, each equivalence class
consists of one connected component of P (a path or an isolated vertex). When
CAP is applied on an update e, then e and its descendents are “cut off” and “pasted”
to another update el (since P is a directed acyclic graph, the set of dessendents is
well defined). At thai point we change the partition so that 4 and its descendents
are moved from their equivalence class R to the equivalence class to which e,
belongs (e is at this time changed into e3). The newly created update eZ is added
to R.

Notice that at any time each equivalence class R is a totally ordered subset of P,
and that for each update e in R, the position of e in that total order corresponds
to ptime(e). The unique u datein Rtha*‘----- --_ c LILLY IIU uuiguing edges in F (or, equivaieniiy,
that has the largest parallel time in R) will be called “the last” in R and denoted

bY LW.
Note that, if a certain equivalence class R contains exactly K updates at some

time during the execution of the algorithm, CAP can not be subsequently applied
to any update in R. Indeed, neither contains an update whose outdegree is greater
than 0 and whose parallel ate whose outdegree is 0 and whose
parallel time is no larger t -2. Recall from the algorithm that, when CAP is
applied to an update e, th he equivalence class that previously contained
e is reduced to K. Hence we have proved (b).

It follows by the above argument that every equivalence class of size K has at
most one update created in p 2 of CAP. Let P, be the subgraph of P obtained

by removing all the vertices at belong to equivalence classes of size K after n
executions of CAP. It ’ see by using the observation frown he beginning
of this paragraph that smaller than the

PmaClel updote transactions

all Pi contained in erefore if there is an update e in P,, whose
.-‘ust exist another update e, such that e, is last in its

lied. This completes
the proof of (a) an

e modification e = m(C I;

concurrently with e. ence, at any time 3, t* can perform at mo
modifications as there are emptied hyperplanes after parallel step r -- I
3.7 and 3.11 the e are at most as man empty hyperplanes in t* at any
are zero-outdegree yperplanes in G. y construction, the number of ze
hyperplanes in G equals the number 4 of connected components o
Thus, t* can perform active modifications in each parallel ste
otkr hand, from Lemma 3.10 it follows that any p
t must perform at least as many active modificat
Additionally, only deletions can be performed in th

I I PI-q t*:j+ - r 1 =K-1. q
4

The above result suggests that there may exist good approximation algorithms
even for more general PTQ problems. We now show that this is indeed the case.
The following algorithm computes a nearly optimal parallel transaction for any
transaction in which all the hyperplanes have the same support.

We first explain the intuitive idea behind the algorithm, and then define the
algorithm in detail. It is clear that, if a certain hyperplane has several ingoing edges
. .
Iii ihe GZfiSiiiGii gXiph, LL--_ rl- -a1:c,,c:,,, .lm.%+ *AII.-bs.---A ..-. &L-.-e AA”h.. fbnm llltll LiIF; IIIUUIIILauu~~3 LIIQC bum IGJ~UIIU LU LII~ZG culjc:, baNI

be executed in parallel. Then not only multiple active modifications a
time, but also empty hyperplanes are created, which can subsequently be used as
temporary storages to speed up the computation.

The algorithm has two phases The first phase (Steps l-10) divides the hyperplanes
into equivalence classes of hyperplanes that are stored into the same h
by the input transaction t. It then generates the first parallel
parallel transaction in which all the hyperplanes that are
by deletions, and all r each equivalence class are joke

cations.
The problem that remains to be solved a

solved by Al
TION is calle
step. The algorithm is defined in detail below, an ustrated by an exa

a 6.

110 D. Karabeg, K Vianu

Cl0 Cl-c2 8 C8 C9 Cl0

6'8 C9

m(CkC3) m(C8;C7) mW;C7) d(CW

a b

m(C8;C2) m(C9;C3) m(C IO;C4) m(C6;CZi)

C

Fig. 6. (a) Transition graph G of the input transaction, (b) G and P before Step 11, and (c) the
output PTG.

SECOND APPROXI

ut: A transaction t such that all the hyperplanes in t have the same support.

Output: A PTG P of a parallel transaction t’ such that t’= t.

1.

2.

3.

5.

Compute the transition specification (G, I) of t.

Set P = (0,0).

eat for each vertex C in G that has no outgoing edges:
dd a vertex d(C) to I?

ivide the vertices of G that have outdegrees greater than 0 into e
classes such that a vertex Cj is in the e uivalence class S(Ci) if (Cj, Ci) is an
edge in G.
6. eat for each equivalence class S(Ci)

if S(Ci) has more than one element then

Purcllel update transactions 111

10. ove edge (Cj, C’i) from G.
end

end

mitting Steps 1 and 2.

created in Steps 4 and 9:

if e, has no ingoing edges in

begin
14. Add vertex e = i(C) to I?

ert for each vertex e, # e in P:

if e, has no outgoing edges in P then
14. Add edge (e,, e) to I?

end
$5. output R

ure SELECT-ELE
if Ci E S(Ci) then

1. Set C5= Ci.
else if Ci belongs to a cycle in G and there exists

a Cj E S(G,) that is not on the cycle and that has the same support as Ci t
2. Set C = Cj*

else
3. Set C = C, where Ck is an arbitrary element of S(C’i)e

4. Return (C).

(i) AQorithm SECOND APPROXIMATION is polynomial-time in the
&es of the inpEt.

e the parallel transaction produced by SECOND APP~~_~I~ATI~N

on input t, les t* be an optimal par*allel transaction equivalent to t. 7len !r’i s 1 t*l f 2.

If t has no insertions then 1 t ‘1 s 1 t*l + 1.

t*(l) consists just of deleti
and C2 are equivalent. Cl

1 19
A” D. Karabeg, V. Vianu

the effect OK the transaction). Then t* = f*(‘)fg*(rl), where t$ is an optimal parallel
transaction whose transition gra his G$=TG(t)-{(C C3>i 4C1, C2) is i
and (Cl, C3) is in TG(t)} (0th ise, it is easy to see t t t* is not opti
note that the number
edges in G,*) and

lCycles(G$)

of non-loop edges in G& is at most the n

= ICyclesadj(Gg)la (Cyclesadj(Gh)l

= (Cycles(GA)/ = IC clesadj(TG(t))l.

From Lemma 3.10 it follows that to*(“) has at least as many active modifications
as t:‘? By an argument similar to that of the proof of Theorem 4.2, 1 tb’>“l s

1 t*(“) I + 1 . Hence It’1 s It*1 + 1. This concludes the proof of (ii) in the case when t

d&s not contain insertions. Suppose now that t contains insertions. Clearly, if t:

and tT are obtained by eliminating the insertions from t’ and t*, then
by the above. Next, note that t’ is obtained from ti by adding a parall
all insertions are performed. Thus, 1 t'l = 1 t;l + 1 s 1 tTl+ 2 +=, 1 t*l -k 2.
the proof of (ii). Cl

So far we have considered a restricted version of the PTO problem, where all
hyperplanes hav the same support. We next consider the general case, where
hyperplanes may ave different sup arts. In that case we can divide the hyperplanes
into equivalence classes of hyperplanes with the same support. Intuitively, since the
number of different equivalence classes is fixed and relatively small (assuming a
fixed schema), most of the computation still occurs within individual equivalence
classes. This suggests that a reasonable approximation algorithm can be obtained
simply by applying the SECOND APPROXIMATION algorithm to each
equivalence class independently. This gives rise to the following algorithm.

THIRD APPROXIMATION

t: A transaction t.

Output: A PTG P of a parallel transaction t’, t’= t.

1. Set P=(@,@).

support.

e transition specification (G, I) of t.

ertices in G into equivalence classes of hyperplanes with equal

4. Repeat for each equivalence class S:
5. Apply SECOND APPR N to P and the subgraph of G spanned
by S, omitting Steps 1 and 2.

l Repeat for each equivalence class S:
7. Repeat for each edge (Ci, Ci) in G such that
C’i E S, Cj E S’ and S # S’:

begin
8

Parallel update transactions 113

if there exists a vertex e’ in the subgraph of
correspon S’ such that e’ = d (Cj)

e CL and e’ has no outgoing
then

end
dge (e’, e) to l?

core OXI TION runs in polyno
(ii) Let t’ be the transaction produced by THIRD ~F~~OX

t and let t* be the timal parallel transaction that correspon

K(t*l+ K + 1, where is the number of attributes in t.

t is easy to see that THIRD APPROXIlMATION is a polynomial-time
. To prove (ii), it is first shown that, intuitively, any optimal t* must also

be optimal within each equivalence class of updates using the same support. Next,
consider any sequence S = e, , e2, . . , tzm of updates in the FIG of t’ such that

ei< ei+l and the number of modifications in S is equal to 1 t’l. Since the existence
of m(C1; C2) plies support (Cl) e support (C2), the hyperplanes in S belong
to at most K inct equivalence classes of hyperplanes with the same support.
Consider the segments s,, s2,. . . , s, (m s K) of S consisting of updates within the
same equivalence class, in the order in which they appe in S. The iength of segment
s1 is at most that of the oc:put of SECOND APPROXI on the equivalence
class of sl. The length of each Si, i > 1, is at most the length of the output of
SECOND APPROXIMATION on the equivalence class of si, minus 1 (it is easy
to see that eolz. G!es from the first parallel step produced by SECOND APP
TION on the equivalence class of si, i > 1, do not occur in the path considered).
Thus, I~ll~lt*l+I and Isils It*l. Th us, the maximum number of updates in S
involving hyperplanes within the same equivalence class is
S may conta rn at most K - 1 modifications m(C,; C2) where support(Cl) c
support(Thus, at most K - 1 modifications in the se uence S involve hyper-
planes from different equivalence classes. Finally, S contains at most one insertion

ence, the length of S is at most K It*1 +

In practice the number K of attributes in a relational database is a s
hence the worst case behavior of T RQ ATION will

by a constant factor from the optimum. owever, it is clear t

occurs only in very unusual circumstances, and t rac~ical or expecte

avior of the algorithm will be much better.

. The behavior of th

114

local to each equivalence class of hyperplanes. Specifically, a modified version of
the procedure FIRST AP OXIMATl[ON can be
information about the $0 ength of chains in the
of chains within a given equivalence class. However
the worst-case behavi the algorithm. Indeed, we conjectu

the solution of the in the general case within an

NP-complete.

rlow ent

The authors wish

rences

u3

I21

[31
r41
VI

161
VI

PI

S. Abiteboui and V.
(1988) 70-120.

to thank Richard Hull for useful discussions on this paper.

Vianu, Equivalence and optimization of relational transactions, J. ACM 35

P. Bernstein and N. Goodman, Concurrency control in distributed database systems, Compur. Suru.
13(1981) 185-222.
C.J. Date, _A Guide to DB2 (Addison-Wesley, Reading, MA, 1984).
M.R. Garey and D.S. Johnson, Compuaers and Zntmctabilitr, (Freeman, San Francisco, CA, 1979).
A. Karabeg, D. Karabeg, K. Pzpakonstantinou and V. Vianu, Axiomatization and stmplification
rules for relational transactions, in: Proc. ACM SZGACT-SZGMOD Symp. on Principles of Duru!x~~e
S_vstems (1987) 254-259.
D. Maier, ?7ae Theor?, of Reluaaional Databases (Computer Science Press, Rockville, MD, 1983).
C.H. Papadimitriou, B.A. Bernstein and J.B. Rothnie, Computational problems related to database
concurrency control, in: Proc. Con! on 7Xeoretical Compacter Science, Waterloo, Ontario, Canada
(1977) 275-282.

J. Ullman, PPincip1e.s of Database Systems (Computer Science Press, Rockaille, MD, 1980).

