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We derive an estimate for 

A Ip(e”)ldf:p(z)=l+a,z+ . ..+a.~“, 

Re(p(z)) > 0 for IzI < 1 

In particular it is shown that 

A,,,<l+log(C,(n+l)+l), 

where C, = 0.686981293.... It is also shown that 2/n < lim inf,, +? A? !/log n. 
Finally, upper bounds are found for the L,-norms of polynomials with posltlve real 
part on the unit disk. ‘( 1991 Academic Press. Inc 

Let s4, denote the collection of polynomials in z which have positive real 
part on the open unit disk centered at 0 and which take the value 1 at 0. 
Let lifll, = ((27~)’ jf If( p &)‘I” for pd 1 and let Ilfli, denote the 
corresponding L,-norm ofJ: In this paper we study the following extremal 
problems: 

A “./I = suPI llfll, :f‘E J$p>7 l<p&co, n&l. (1) 

Our work has its origins in the problem posed by Holland in [ 11, namely, 
to solve (1) in the case where p = 2. Of course, by “solving” (1) we mean 
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calculating A,,, p and characterizing the extremal functions. It is only in the 
case p = cc that (1) has been completely solved. (See [S].) 

In the case p = 2 the problem (1) is related to the following: 

n.=sup{\lrll;:rEF~},), (2) 

where Ym denotes the set of non-negative trigonometric polynomials having 
degree <n and constant term equal to 1. Indeed, it is easy to see that 
4,=2A;,,- 1. The following continuous analogue of (2) has a strong bear- 
ing on our present investigations: 

C, = sup{lL, If(x dx :fis positive definite and continuous 
on ( - co, cc ), vanishes outside of [ - 1, 11, and f(0) = 1 }. (3) 

Equation (3) has been studied extensively by Garsia, Rodemich, and 
Rumsey in [4]. They have calculated C1 to many decimal places via a 
certain iterative scheme. (C, =0.686981293....) In [2] we were able to 
show that 

C,(n + 1) d A, d 1 + C,(n + 1). (4) 

We will use (4) together with Theorem 2 below to obtain an estimate for 
A n,, . Once we have established our estimate for A,,,, , we will combine it 
with results from [2, 51 to obtain upper bounds for A,,, p. 

We begin with a result which is in the spirit of discussions found in 
Zygmund [7, p. 261-2621. 

THEOREM 1. Suppose that f = u + iv is analytic and has positive real part 
in some neighborhood of the closed unit disk centered at 0. Suppose also that 
f(0) = 1. Then 

(270)’ I*= If( dt 6 1 + (2x))’ iZn u(e”) log u(e”) dt. 
0 0 

ProojI By straightforward calculations involving the use of the 
Cauchy-Riemann equations we have 

v2 If( = If’(Z)12/lf(Z)I 

V2u(z) log u(z) = If’(412/44, 

where V2 denotes the Laplacian. Since u < Ifl, it follows that the function 
If1 - u log u is subharmonic. Hence, we have 

(2~))’ i’” (If( - u(e”) log u(e”)) dt 
0 

< If(O)1 -u(O) log u(0) < 1. 
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THEOREM 2. Suppose that .f‘ belongs to the usual Hardy space H2 of’ the 
unit disk. Suppose also that f has positive reul part on the interior of’ the unit 
disk and that ,f (0) = 1. Then 

(27~)’ 8” If( dt < 1 +log((2a) ’ 1” (Ref’(e”))’ dt). 
0 

Proof We prove the inequality first in the case where f= u+ iv is 
analytic and has positive real part in a neighborhood of the closed unit 
disk. Let the measure v be defined by dv = u(e”) dt/2x. We note that v is a 
positive measure with total mass equal to 1. By Theorem 1 we have 

(27~)’ 1:’ If( At < 1 + s’” log u(e”) dv. 
0 

It follows from the concavity of the log function that 

(271) ’ 1:’ If( dt < 1 + log /in u(e”) dv 

< 1 +log((2x))’ 1’” (Ref(e”))2 dt). 
0 

To handle the general case we simply replace f by the function f, defined 
by f,(z) =f(rz), where r < 1, and then use a limiting argument. 

THEOREM 3. A.,, 6 1 -tlog(C,(n+ I)+ 1). 

Proof: Consider a polynomial p in ,F4,. By Theorem 2 it follows that 

(2~)~‘j~~ Ip( dt< 1 +log((2n) -‘/‘” (Rep(e”))‘dt). 
0 0 

Since Rep belongs to Fj, it follows from (4) that 

(27~-‘/*~ Ip( dt< 1 +log(C,(n+ l)+ 1). 
0 

THEOREM 4. 

d < (1 +log(C,(n+ l)+ 1))““-‘(C,(n+ 1)/2+ l)‘-l’p, 
{ 

ldpd2. 
n, P ’ (C,(n+ 1)/2+ 1)“” (n+ 1)‘-2’p, 2<p<cc. 

ProojI The theorem follows from Theorem 3, the inequality (4), the 
result of Holland [S, Th. 23, and the Riesz-Thorin interpolation theorem 
(see [6, p. 961). 
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By Theorem 3 the sequence {d,z,, } is bounded above, term by term, by 
a sequence which behaves asymptotically like log n. We will show that 
there is a sequence { tn} which behaves asymptotically like (2/7c) log n and 
satisfies t, d A,,, , for large n. The idea is to use the polynomial 

f(z) = 1 + 2 i (1 - k/(n + 1))~~. 
k=l 

Holland has shown that f is extremal for the problem (1) in the case where 
p = co. It follows from Hardy’s inequality for HI-functions that 

(277-l 1’” If( dt>c’ 1+2i (l-k/(n+l))/(k+l)) 
0 k=l 

Thus, we have 

A,,,>t,=n--’ 1 +2 i (1 -k/(n+ l))/(k+ 1) 
( 

. 
k=l 

Since t, behaves asymptotically like log IZ, we have proved the following: 

THEOREM 5. lim inf, j o. A,. , /log n 3 2/7c. 
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