JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 156, 150-153 (1991)

L_p-Norms of Polynomials with Positive Real Part

J. BROWN

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

AND

M. GOLDSTEIN AND J. MC DONALD

Department of Mathematics, Arizona State University, Tempe, Arizona 85387

Submitted by R. P. Boas

Received September 26, 1988

We derive an estimate for

$$\mathcal{A}_{n,1} = \sup\left\{ (2\pi)^{-1} \int_0^{2\pi} |p(e^u)| \ dt : p(z) = 1 + a_1 z + \dots + a_n z^n, \\ \operatorname{Re}(p(z)) > 0 \ \text{for} \ |z| < 1 \right\}.$$

In particular it is shown that

$$A_{n,1} \le 1 + \log(C_1(n+1) + 1),$$

where $C_1 = 0.686981293...$ It is also shown that $2/\pi \le \liminf_{n \to \infty} \Delta_{n,1}/\log n$. Finally, upper bounds are found for the L_p -norms of polynomials with positive real part on the unit disk. \bigcirc 1991 Academic Press, Inc.

Let \mathscr{A}_n denote the collection of polynomials in z which have positive real part on the open unit disk centered at 0 and which take the value 1 at 0. Let $||f||_p = ((2\pi)^{-1} \int_0^{2\pi} |f(e^{it})|^p dt)^{1/p}$ for $p \ge 1$ and let $||f||_{\infty}$ denote the corresponding L_{∞} -norm of f. In this paper we study the following extremal problems:

$$\Delta_{n,p} = \sup\{\|f\|_p : f \in \mathscr{A}_p\}, \qquad 1 \le p \le \infty, \quad n \ge 1.$$
(1)

Our work has its origins in the problem posed by Holland in [1], namely, to solve (1) in the case where p = 2. Of course, by "solving" (1) we mean

$$L_p$$
-NORMS 151

calculating $\Delta_{n,p}$ and characterizing the extremal functions. It is only in the case $p = \infty$ that (1) has been completely solved. (See [5].)

In the case p = 2 the problem (1) is related to the following:

$$\Lambda_n = \sup\{\|r\|_2^2 : r \in \mathcal{T}_n\},\tag{2}$$

where \mathcal{T}_n denotes the set of non-negative trigonometric polynomials having degree $\leq n$ and constant term equal to 1. Indeed, it is easy to see that $\Lambda_n = 2\Lambda_{n,2}^2 - 1$. The following continuous analogue of (2) has a strong bearing on our present investigations:

$$C_1 = \sup\{\int_{-1}^{1} |f(x)|^2 dx : f \text{ is positive definite and continuous} \\ \text{on } (-\infty, \infty), \text{ vanishes outside of } [-1, 1], \text{ and } f(0) = 1\}.$$
(3)

Equation (3) has been studied extensively by Garsia, Rodemich, and Rumsey in [4]. They have calculated C_1 to many decimal places via a certain iterative scheme. ($C_1 = 0.686981293...$) In [2] we were able to show that

$$C_1(n+1) \le \Lambda_n \le 1 + C_1(n+1). \tag{4}$$

We will use (4) together with Theorem 2 below to obtain an estimate for $\Delta_{n,1}$. Once we have established our estimate for $\Delta_{n,1}$, we will combine it with results from [2, 5] to obtain upper bounds for $\Delta_{n,p}$.

We begin with a result which is in the spirit of discussions found in Zygmund [7, p. 261–262].

THEOREM 1. Suppose that f = u + iv is analytic and has positive real part in some neighborhood of the closed unit disk centered at 0. Suppose also that f(0) = 1. Then

$$(2\pi)^{-1} \int_0^{2\pi} |f(e^{it})| \, dt \leq 1 + (2\pi)^{-1} \int_0^{2\pi} u(e^{it}) \log u(e^{it}) \, dt.$$

Proof. By straightforward calculations involving the use of the Cauchy-Riemann equations we have

$$\nabla^2 |f(z)| = |f'(z)|^2 / |f(z)|$$
$$\nabla^2 u(z) \log u(z) = |f'(z)|^2 / u(z),$$

where ∇^2 denotes the Laplacian. Since u < |f|, it follows that the function $|f| - u \log u$ is subharmonic. Hence, we have

$$(2\pi)^{-1} \int_0^{2\pi} \left(|f(e^{it})| - u(e^{it}) \log u(e^{it}) \right) dt$$

$$\leq |f(0)| - u(0) \log u(0) \leq 1.$$

THEOREM 2. Suppose that f belongs to the usual Hardy space H_2 of the unit disk. Suppose also that f has positive real part on the interior of the unit disk and that f(0) = 1. Then

$$(2\pi)^{-1} \int_0^{2\pi} |f(e^{it})| dt \leq 1 + \log((2\pi)^{-1} \int_0^{2\pi} (\operatorname{Re} f(e^{it}))^2 dt).$$

Proof. We prove the inequality first in the case where f = u + iv is analytic and has positive real part in a neighborhood of the closed unit disk. Let the measure v be defined by $dv = u(e^{it}) dt/2\pi$. We note that v is a positive measure with total mass equal to 1. By Theorem 1 we have

$$(2\pi)^{-1} \int_0^{2\pi} |f(e^{it})| \, dt \leq 1 + \int_0^{2\pi} \log u(e^{it}) \, dv.$$

It follows from the concavity of the log function that

$$(2\pi)^{-1} \int_0^{2\pi} |f(e^{it})| dt \le 1 + \log \int_0^{2\pi} u(e^{it}) dv$$
$$\le 1 + \log((2\pi)^{-1} \int_0^{2\pi} (\operatorname{Re} f(e^{it}))^2 dt).$$

To handle the general case we simply replace f by the function f_r defined by $f_r(z) = f(rz)$, where r < 1, and then use a limiting argument.

THEOREM 3. $\Delta_{n,1} \leq 1 + \log(C_1(n+1) + 1).$

Proof. Consider a polynomial p in \mathcal{A}_n . By Theorem 2 it follows that

$$(2\pi)^{-1} \int_0^{2\pi} |p(e^{it})| dt \leq 1 + \log((2\pi)^{-1} \int_0^{2\pi} (\operatorname{Re} p(e^{it}))^2 dt).$$

Since Re p belongs to \mathcal{T}_n , it follows from (4) that

$$(2\pi)^{-1} \int_0^{2\pi} |p(e^{it})| \, dt \leq 1 + \log(C_1(n+1) + 1).$$

THEOREM 4.

$$\mathcal{A}_{n,p} \leq \begin{cases} (1 + \log(C_1(n+1)+1))^{2/p-1}(C_1(n+1)/2+1)^{1-1/p}, & 1 \leq p \leq 2. \\ (C_1(n+1)/2+1)^{1/p} (n+1)^{1-2/p}, & 2 \leq p \leq \infty. \end{cases}$$

Proof. The theorem follows from Theorem 3, the inequality (4), the result of Holland [5, Th. 2], and the Riesz-Thorin interpolation theorem (see [6, p. 96]).

L_p -NORMS

By Theorem 3 the sequence $\{\Delta_{n,1}\}$ is bounded above, term by term, by a sequence which behaves asymptotically like $\log n$. We will show that there is a sequence $\{t_n\}$ which behaves asymptotically like $(2/\pi) \log n$ and satisfies $t_n \leq \Delta_{n,1}$ for large *n*. The idea is to use the polynomial

$$f(z) = 1 + 2 \sum_{k=1}^{n} (1 - k/(n+1))z^{k}.$$

Holland has shown that f is extremal for the problem (1) in the case where $p = \infty$. It follows from Hardy's inequality for H_1 -functions that

$$(2\pi)^{-1} \int_0^{2\pi} |f(e^{it})| \, dt \ge \pi^{-1} \left(1 + 2\sum_{k=1}^n (1 - k/(n+1))/(k+1)) \right).$$

Thus, we have

$$\Delta_{n,1} \ge t_n = \pi^{-1} \left(1 + 2 \sum_{k=1}^n (1 - k/(n+1))/(k+1) \right)$$

Since t_n behaves asymptotically like log n, we have proved the following:

THEOREM 5. $\liminf_{n \to \infty} \Delta_{n,1} / \log n \ge 2/\pi$.

ACKNOWLEDGMENT

We thank Professor M. Ismail for some valuable suggestions.

REFERENCES

- 1. J. M. ANDERSON, K. F. BARTH, AND D. A. BRANNAN, Research problems in complex analysis, *Bull. London Math. Soc.* 9 (1977), 129–162.
- 2. J. BROWN, M. GOLDSTEIN, AND J. MC DONALD, A sequence of extremal problems for trigonometric polynomials, J. Math. Anal. Appl. to appear.
- 3. W. FELLER, "An Introduction to Probability Theory," Vol. II, 2nd ed., Wiley, New York, 1971.
- 4. A. GARSIA, E. RODEMICH, AND H. RUMSEY, On some extremal positive definite functions, J. Math. Mechanics 18, No. 9 (1969), 805, 834.
- F. HOLLAND, Some extremal problems for polynomials with positive real part, Bull. London Math. Soc. 5 (1973), 54-58.
- 6. Y. KATZNELSON, "Harmonic Analysis," Wiley, New York, 1968.
- A. ZYGMUND, "Trigonometrical Series," Vol. I, 2nd Ed., Cambridge Univ. Press, London/ New York, 1959.