
Journal of Pure and Applied Algebra 49 (1987) 11-32
North-Holland

CARTESIAN BICATEGORIES I

A. CARBONI
Dipartimento di Matematica, Universita di Milano, Italy

R.F.C. WALTERS
Department of Pure Mathematics, University of Sydney, NSW 2006, Australia

Communicated by P.J. Freyd
Received 12 February 1985

Introduction

Il

In this paper we continue the programme (initiated by Benabou [2] and Lawvere
[12]) of developing the theory of bicategories as a calculus of modules. Here we in­
vestigate some basic examples: sets and relations, additive relations, ordered sets
and ideals.

These examples share with bicategories of the form r-mod (r-categories and
"JI-profunctors , r a cocomplete symmetric monoidal category) the structure of a
tensor product

®
IS x IS ---> IB

which is a homomorphism of bicategories, and which is coherently associative,
symmetric and with identity I. If r is Cartesian, then every object X in IS comes
equipped with diagonal

L1 x :X-+X®X

and terminal

tx:X-+!

arrows which satisfy some basic laws. This leads to the first main notion of the
paper, 'Cartesian bicategory'. A locally posetal bicategory is Cartesian if it has a
symmetric tensor product, every object is a cocommutative comonoid object, every
arrow is a lax comonoid homomorphism and comultiplication and counit have
right adjoints. Alternatively, a locally posetal bicategory is Cartesian if the sub­
bicategory of arrows with right-adjoints has finite biproducts, each hom-category
has finite products and the obvious induced tensor product on arrows is functorial
(Theorem 1.6). We deal only with locally posetal bicategories even though there is
no doubt that the general notion of Cartesian bicategory may be developed to cover
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the examples of sets and spans, and categories and profunctors.
After describing the first consequences of our definition, we investigate the

second main notion of 'discrete object' in a Cartesian bicategory. Modulo a 'func­
tional completeness' axiom, bicategories of relations are characterized by Cartesian­
ness and discreteness of every object (Sections 2, 3), and these properties together
with small bicoproducts, effectiveness and generators characterize bicategories
of relations of a Grothendieck topos (Section 6). Bicategories of ordered objects
in an exact category can be characterized as follows: they are Cartesian, closed
under the Kleisli construction, and the subbicategory of discrete objects is func­
tionally complete and generates (in a suitable sense). That our notion of discrete
object is correct for recovering the surrounding notion of 'set' is further supported
by the following example. In the bicategory SL of sup-lattices considered in (10],
our notion of discrete object coincides with the notion of 'discrete space' given
there.

To finish, let us remark that our theory of relations differs from others in the
literature (for example [6,8]) in that local limits and involution are not primitive.
As a gift for this more bicategorical setting, we have a theory flexible enough not
just to cover the examples of relations and ideals, but also to give a simple and self­
dual characterization of bicategories [8 of additive relations, as follows: [8 is Car­
tesian and cocartesian, every object is discrete and codiscrete, and reflexive and
coreflexive arrows have splittings (Section 5).

1. Cartesian bicategories

In the following, [8 denotes a locally posetal bicategory. We usually denote
objects of [8 by X; Y, Z, .,. and arrows by r, s, t, .... Being locally posetal, [8 is in fact
a 2-category.

Definition 1.1. A tensor product in [8 is a homomorphism of bicategories

equipped with an identity object I and natural isomorphisms

a :X@(Y@Z)--+(X@Y)0Z

satisfying the classical coherence conditions (sufficient since [8 is locally posetal).

Definition 1.2. A Cartesian structure on a bicategory [8 consists of
(i) a tensor product in IB,

(ii) on every object X in [8, a comonoid structure. That is, arrows

L1 x :X-+X0X,
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These data are required to satisfy the following axioms:
(.6.) The arrows L1 x , tx satisfy the equations for X to be a cocommutative

comonoid object;
(U) Each arrow r:X--* Y is a lax comonoid homomorphism. That is,

L1y·r~(r0r)·L1x and ty·rr;;;,tx ;

(M) Comultiplication L1 x and counit tx have right adjoints L1{, tl-. The only
cocommutative comonoid structure on X, with structure arrows having right ad­
joints, is (X;L1 x ,tx ).

In fact we will prove in Theorem 1.6 that a bicategory IB admits at most one (up
to iso) Cartesian structure, so justifying the name Cartesian bicategory.

Remark 1.3. (i) The arrows

L1{-:X®X--*X,

which are right adjoints to L1 x and tx respectively, as stipulated in axiom (M), pro­
vide each object X with a commutative monoid structure which also satisfies axiom
(U). Just observe that if f and g have right adjoints f* and g*, then f® g has a right
adjoint f*@g* and, for any arrow r, we have f· n;,g iff r· g*r:,f*. In fact, IBop
(arrows reversed) has a Cartesian structure induced from lB.

(ii) Further consequences of axiom (M) are:

L1 x ®L1 x lx®y@lx
X0X ,X@X@X®X IX@X@X®X

LI
=X®X X0X I X®X0X®X (forgetting associativities);

e LI
I ----7 I®I=I---+ I@I,

1 t
I ----7 I =1---+ I.

To see this, notice that using the coherence conditions the left-hand arrows yield
commutative comonoid structures on X®X and I.

(iii) The following is an (obvious generalization of a) result of Fox [7]. Consider
a bicategory IE with a tensor product. Then the tensor product is the biproduct iff
every object has a cocommutative comonoid structure and every arrow is a comonoid
homomorphism. Fox shows that if IE is a symmetric monoidal bicategory, then the
bicategory HA(IB) of cocommutative comonoids in 18 (with comonoid homomor­
phisms) has biproducts, and the tensor product in 18 is the biproduct iff the forgetful
functor HA(IB) --* IB is an isomorphism. The result extends to our notion of Cartesian
bicategory. Given a bicategory IB with a symmetric tensor product, let HA(IB) be the
bicategory of cocommutative comonoids in IB and lax homomorphisms, and let
HAR(IB) be the full subbicategory of HA(IB) determined by the comonoids for
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which multiplication and counit have right adjoints. Then HAR(lB) has a Cartesian
structure. Moreover, IB has a Cartesian structure iff HAR(IB)~ IB is an isomorphism.

(iv) A tensor product on IB induces in an obvious way a tensor product on IB CD

(2-cells reversed). We call a Cartesian structure on IBCD a 'cocartesian' structure on
lB.

Example 1.4. (i) lB = Rel(0"), the bicategory of relations in a regular category It with
a choice of products.

(ii) IB=Ord(0"), the bicategory whose objects are ordered objects in a regular
category @ with a choice of products, and whose arrows are ideals.

(iii) IB = the bicategory of inf-semilattices and (left-exact) functors.
(iv) IB=Par(0"), the bicategory of partial maps in a left-exact category 0" with a

choice of products satisfying all the axioms of a Cartesian bicategory except for the
requirement for tx to have a right adjoint. A stronger property than axiom (0) is
satisfied in this case: every arrow is a strict comultiplication homomorphism.

Definition 1.5. An arrow r: X ~ Y in a bicategory lB is called a map if it has a right
adjoint r*. Denote by Map(lB) the subbicategory of IS determined by these maps.
Observe that a tensor product on IB induces a tensor product on Map(IS).

Theorem 1.6. Let IB be a locally posetal bicategory. If IB has a Cartesian structure,
then

(i) Map(lB) has finite biproducts,
(ii) IB locally has finite products and the identity arrow of1 is the local terminal

in 1B(1, I),
(iii) Biproducts and the biterminal object in Map(lB) may be chosen so that the

following formulas hold in IB:

r®s= (p*. r· p)n (p*. s· p) (p's denote the appropriate projections).

Conversely, if IB satisfies properties (i) and (ii) and the formulas of (iii) define a
(functorial!) tensor product on IB, then IB has a Cartesian structure.

Proof. Suppose IB has a Cartesian structure. To prove (i), by Remark 1.3(iii), we
need just to show that every map is a comonoid homomorphism. From Remark
1.3(i), every arrow is also a monoid homomorphism. So, if f is a map, then
f*· LI *~ LI *. (f* 0f*) and f*· t* r;;, t*. The opposite inclusion must hold for left
adjoints and therefore, by axiom (0), L1·f=(f0f)·L1 and t·f=t.

To prove (ii), first notice that LI *. (r0s)· LI r;;, r, since

LI *. (r0 s)' LI ~ LI *. (r0 t*· t)· LI =LI *. (10 t*)· (r0 1)· (10 t)· LI

=g' (r01). g-l =r,

(using the naturality of g). Now, it is straightforward to show that the formula

rns==L1 *. (r0s)' LI
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defines the local intersection. The local terminal is, of course, given by the formula

To prove (iii), it is just necessary to compute (p*·r·p)n(p*· r·p) as r®s.
Conversely, suppose IB satisfies (i) and (ii) and we define a tensor on IB by the

formulae in (iii). It is straightforward that the conditions (Ll) and (M) for IB to be
Cartesian are satisfied. It remains to prove condition (U). Observe that composing
on the left with a map, or on the right with the right adjoint of a map, preserves
local intersections and local terminals. Using this fact and the definition of the
tensor product it can be shown that LI *. (r@r) . Lt = r and condition (D) for Lt
follows from the adjunction LI -j LI *. Finally, condition (U) for t follows from the
fact that tx is the local terminal mx,I' 0

Corollary 1.7. Let IF: IB --t ID be a homomorphism, where IB, ID are Cartesian
bicategories. Then the following are equivalent:

(i) IF is a strict monoidal junctor;
(ii) IF restricts to a strict monoidal junctor Map(lB) --+ Map(ID).

Proof. That (i) implies (ii) is obvious. If (ii) holds, then IF preserves I, hence the
terminal maps, and thus projections and diagonals. Thus IF preserves local intersec­
tions and, by the previous theorem, the tensor product on arrows. 0

2. Bicategories of relations

Definition 2.1. (i) An object X in a Cartesian bicategory is discrete when the
multiplication LI{- and the comultiplication Ll x satisfy

(D) Lt· LI *= (LI *(1). (l0L1).

(We are forgetting the associativity in the middle.)
(ii) A Cartesian bicategory is called a 'bicategory oj relations' if every object is

discrete.

Remark 2.2. If X; Yare discrete, then X0 Y is also; [is always discrete. So, if IE
is a Cartesian bicategory, then the full subbicategory determined by the discrete
objects is always a 'bicategory of relations'.

Example 2.3. (i) The bicategory of relations of a regular category C is, of course,
a 'bicategory of relations'. To avoid confusion between these examples and the
abstract notion we will always use quotation marks for the latter.

(ii) If IB is Ord(&'), then an object is discrete iff it is an equivalence relation. (See
Section 6 on ordered objects.)
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Theorem 2.4. A 'bicategory of relations' admits transfer of variables; that is, it is
compact closed [11]. In particular, the involution ( )0 is the identity on objects, and
satisfies the fOllowing laws:

(r01)·L1!:;;(10rO)·L1·r and Ll*·(r®1)~r·L1*(10rO).

Proof. Define I1x and ex as follows:

(1- Ll x
11x =1---X ---X0X,

We need to prove that X --j X; that is,

Ll~ Ix
ex=X®X---X---I.

_ 1701 l@c_
X--+I®X----' X0X0X----' X® l--+X= 1x

and
_ 1017 e01_

X--+X01----' X0X0X----' I0X--+X= 1x .

The first composition can be computed as

Ll *. (10 t;· tx )' (10Lll)· CLlx(1)· (t;. tx (1)· Ll =

=L1 *. (l ®mx,x)' Ll x ' Lll· (mx,x01)· Ll = 1· 1= 1.

As for the second composition, observe that it can be deduced from the first by
means of the symmetry isomorphism y. So, IB is compact closed and, as in [11], we
can deduce that there is a natural isomorphism of ordered sets (transfer of variables)

I'
X0 Y---+Z

f
X-Z0Y

given by f=X::::;X0I~X0Y0Y~Z0Y.The inverse is defined in a
similar way by means of e. The naturality of the correspondence (*) in X and Z
means

(X)

(2)

s01 r
X'0 Y----'X0 y-Z

s f
X'----JoX-Z0 Y

I' S
X® Y-Z---+Z'
f' s01

X---+Z0 Y------'Z'0 y
I'

Moreover, by defining the opposite of an arrow X - Y as

1'0 _ 1®17 l®r®1 e®l_
Y-->X= Y--+ Y<8>I----' Y0X®X ) Y0 Y0X-----+I@X-+Y,

one can prove that ( )0 becomes an involution on lB. That is, we have the properties

1°=1, (r·s)o=so·ro, (rO)o=r and r~simpliesro~so.
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Further, we have the naturality in Y of the correspondence (*),
10s r

X®Y/~X®Y----Z

P 1 Q9so
X----Z® Y----+Z0 Y'

17

Finally, to prove the stated laws, let us compute Ll*·(r®rf and (r·Ll*f:

Ll *. (reg; r) = (Ll *. (l ®r)· (r® I)) = (Ll *. (l ® r)) . r = (1 @}"O). Ll *~ .r
and

(r' L1*f = (r® 1)· Ll*~.

Since r' L1 '" ~ Ll *. (r ® r), to prove the first law it suffices to show that Ll *~ == Ll. But

In a similar way we can prove the'second of the two laws. 0

Observe that axiom CD) does not play any role in the proof that IB is compact
closed. Axiom (D) is needed only to prove the two stated laws.

A consequence of the discreteness axiom is that the order between maps is
discrete; that is, Map(lB) is a category.

r
Lemma 2.5. In a 'bicategory of relations' an arrow X~ Y is a map iff it is a
comonoid homomorphism iff r -I r°.

Proof. We have already proved that a map is a comonoid homomorphism (Theorem
1.6). We need just to prove that if an arrow r is a comonoid homomorphism, then
rO is right adjoint to r. By using the definition of 1] and e, we can compute the com­
positions

Y0Y(8)Y
10Ll*

lY®Y
1(8)t

I Y®I:::;Y

=Y:::;I@Y
t*01

IX®Y
r(8)1

lY®Y
Ll (8)1

l

Y0Y®Y
10Ll*

IY®Y
1(8)t

lY®I':::;Y

t*01 Ll* Ll l@t
(;;;Y::::+I@Y IY0Y--+Y--+Y@Y lY@I:::;Y

=1·1=1.
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r _ t*®1 L1®1 l®r®l
rO·r=X~Y"""'I@Y >X@Y .X®X®Y----l<

X®Y®Y I®Ll* 'X®y l®t 'X®I=4.X

t*®l L1®1 1®L1*
=X=4.I®X IX®X IX@X®X---t

l(8)t _
X ® X--=----.. X ® 1-) X

1*®1 L1* Ll l®t _
;).X:::;I®X IX®X--->X------>X®X 'X@I->X

=1·1=1. 0

Observe that in the proof of r O
• r;d 1 the discreteness axiom is not used and that

the role of the hypothesis that r is a comonoid homomorphism can be split in two:
that r is a comultiplication homomorphism is used in the proof of r· r O

~ 1 (r is a
'partial map'); that r is a counit homomorphism is used in the proof of r 0 • r;d 1
(r is 'entire' or 'everwhere defined').

Corollary 2.6. In a 'bicategory of relations':
(i) iff is a map, then 1*=r: in particular Ll *= ,,1 0 and t* = to;

(ii) ifJ, g are maps and f ~ g, then f =g;
(iii) r is a partial map iff r is a comultiplication homomorphism; composing on

the right with a partial map r or on the left with r O preserves local intersections;
(iv) r is entire iff it is a cOlmit homomorphism; composing on the right with an

entire morphism r or on the left with r O preserves local terminals; if a composite
s' r is entire, then r is entire.

Proof. (i) Follows from uniqueness of the adjoints and the previous lemma.
(ii) Obvious since adjoints are opposites.

(ii) If r is a comultiplication homomorphism, then by Lemma 2.5 it follows that
r· r O

~ 1, that is, that r is a partial map; conversely, if r· r O
~ 1, then by the law of

Theorem 2.4 we have

Ll . r ;). (r· r 0 @ 1) . Ll . r = (r ® 1) . (r 0 (8)1) . ,,1 . r ;d (r ® 1) . (1 ® r) . ,,1

= (r®r)· ,,1.
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The preservation property is now immediate from the definition of local inter­
sections.

(iv) It has already been observed that if r is a counit homomorphism, then
r is entire. Conversely, suppose r is entire. Then because t is a local maxi­
mum t·r";1t·r o·r";1t. So m·r=to·t·r=to·t=m. Finally, if t·s·r==t, then
t· r";1 t· s· r = t. 0

In the presence of discreteness we can also improve Corollary 1.7 as follows:

Corollary 2.7. Let IF·!B~ [) be a homomorphism of bicategories between 'bi­
categories of relations'. Then the following are equivalent:

(i) IF is a strict monoidal homomorphism;
(ii) IF restricts to a strict monoidal functor Map(!B)~Map(IB);

(iii) IF preserves local intersections and 1. 0

The main point which we have not so far covered is that (iii) implies (i). This
reduces easily to showing, under assumption (iii), that projections are preserved (up
to isos) which follows from

Lemma 2.8. In a bicategory of relations let Px: X@ y~X and Py: X® y ~ Y be
the projections. Then

(i) py·px=mx, y, Px·Pxnpy.py=1;
(ii) if j,g are maps such that g.r = mx, y andr· fng o . g= 1, then the map

(j, g) = (f@g). Ll is an isomorphism, and hence f=px and g=py.

Proof. Properties (i) are easily proved for any Cartesian bicategory. To prove
(ii) first observe that the condition gO. gnfO . f = 1 means exactly that
(j, g)O . (j, g) = 1. Then

t· (j, g) 0= t. Ll 0, (r ® gO) = t. g. Ll a • (1 ®gO) . (r @ 1)

";1 t· Ll a • (g@ 1)· (r @ 1) = t· Ll 0 • (g. fa @ 1)

= t . Ll a • (m @ 1) = t· Ll a (t 0 • t @ 1) = t . Ll a • (t a @ 1) . (t@ 1)

:JLl a • (1 <8l t)· (t@ 1) =Ll o. (t@ t) =t.

Thus (j,g)O is entire «j,g). (j,g)o=I). So (j,g) is an isomorphism. 0

Remarks 2.9. (i) Every strict monoidal homomorphism IF between Cartesian bi­
categories preserves discrete objects as well as 11 and e. Therefore IF preserves also
the involution when restricted to the full subbicategory determined by the discrete
objects.

(ii) Every bicategory of relations satisfies Freyd's modular law [8]: s· r n t!;;;

(t. rOns), r. To see this notice that
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s· r n t = Ll 0 • (8' r 0 t)Ll = Ll 0 • (s 0 t) . (r@ 1) . Ll

~ Ll 0 . (s 0 t) . (10 r 0) . LI . r = Ll 0 . (80 t· r 0) . Ll . r

= (snt· r0) . r.

(iii) Given a muItisorted theory T formulated in the (3, A, t, = )-fragment of logic,
we can construct out of T a 'bicategory of relations' IB(T) as follows. Objects a are
finite words a:::: (al> ... , an) of basic sorts; arrows r: a -+P are (equivalence classes
of) formulae rex, y) having free variables of sorts (a, p); 2-cells are entailments.
Composition is given by s' rex, z) = gy(r(x, Y)As(y, z)) and the tensor product by the
conjunction. The comultiplication Ll is the formula

Ll(x, x', x") = «X=x')A(X=x")),

and the discreteness axiom expresses the symmetry of equality. The converse can
also be proved: given a (small and locally small) 'bicategory of relations' IB, there
exists a theory lr such that IB(T) is equivalent to lB. From this point of view, we can
think of a small and locally small Cartesian bicategory IB as a theory in which equali­
ty is not assumed symmetric.

(iv) Let SL be the bicategory of sup-lattices considered in [10]. Then SL has a ten­
sor product. Let Mon(SL) be the bicategory of commutative monoids in SL with
morphisms f: X -+ Y being the sup-lattice ones such that f(x· y) '5f(x)· fey) and
f(1)::; 1. Let IE be the full subbicategory of Mon(SL) determined by the monoids
such that the multiplication and unit have left adjoints. Then, by Remark 1.3(i), IB
is Cartesian. Observe that Mon(SL)CO is the bicategory of cocomplete, symmetric
monoidal categories and cocontinuous monoidal functors between them. A reason
to choose such morphisms in Mon(SL), besides the formal fact that with these mor­
phisms it is Cartesian, is that if px, PY are sup-lattices of 'parts', then a relation
r: X ~ Y is the same as a cocontinuous functor f: PY -+ PX, and the conditions
j(x' y) '5f(x) . f(y),j(1) '51 are satisfied by any functor since PX, PY are left exact.

The subbicategory IEdisc of the bicategory IB determined by the discrete objects is
a 'bicategory of relations' (see Remark 2.2). We will show now that Map(lBdisc)

coincides with the category of discrete spaces defined in [10J. The objects of
Map([Bdisc) are clearly locales in which the external maps X~X@X and X ~l
are cocontinuous. We need to show that our discreteness axiom is equivalent to the
openness of the pair Ll --j Ll *, that is, Ll· Ll *. (Ll *(1);2 Ll *. (l 0 Ll). But

Ll . Ll * =Ll . Ll *. (10Ll *) . (1 @Ll) = Ll . Ll *. (Ll * @1) . (l @Ll)

=Ll *. (1 @Ll)(1 @Ll)=Ll*· (101 @Ll)· (1 0Ll)

=Ll*· (1®«(10Ll)· Ll»

= (Ll *@Ll*)·(I®y®1)·(10«(1®L1)·Ll»

= (Ll *@Ll*)' (1 @y® 1)· (10 «Ll @1)· Ll»

=(Ll*@,,1*)(10y®I)· (10,1 ® 1)(1 ®Ll)
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= (LI *®LI *)(1 ®1.1 ® 1)(1 ®LI) =(LI *®LI *)(1 ® «1.1 ® l)LI»

= (LI *®LI *). (1 ® (l ®Ll)Ll) =(LI *®LI *). (1 ® 1®LI)(l ®LI)

= (LI *®LI *..1). (1 ®1.1) = (LI *® 1)(1 ®.1).

21

In the other direction, if the discreteness axiom holds, then from the laws of
Theorem 2.4 we have: L1 *(1 ®.1) ~ 1.1 . Ll *(LI ° ® 1), and because L1 *= Ll ° (Corollary
2.6) we have .1 *. (1 ®LI) l;;; LI· Ll *. (1.1 *<8> 1). Thus, since every arrow is a lax monoid
homomorphism and since 1.1 -I Ll *, we get the opposite inclusion also.

From Corollary 2.5 we have that an arrow f is a map iff the adjoint fO is a
monoid homomorphism, so that Map(!Bdisc) is the same as the category of discrete
spaces.

3. The characterization theorem

We now give a proof of the characterization theorem for bicategories of relations
of regular categories. The proof here is slightly different from the one given by
Freyd [8]. One difference is that by the systematic use of our calculus of «(8), I, LI, t)
we have been able to avoid the use of argument by contradiction.

Definition 3.1. A 'bicategory of relations' is functionally complete if for every
arrow r:X~Ithere exists a map i:Xr~X such that iO·i=l and t·io=r. The
map i is called a tabulation of r [8].

Remark 3.2. The 'bicategory of relations' 1B(lf} associated to a theory l' (see Remark
2.9(ii» is, in general, not functionally complete. To say that !B(T) is functionally
complete is to say that for each formula rex) of sort a there exists a definable func­
tion symbol ir:ar~a such that rex) is equivalent to :iIx'(i(x')=x) and such that
i(x) "" i(x") 1= x=x". Given lr we can of course add function symbols to have an ex­
tension lr' of lr (having the same models as 1') such that lr' is functionally complete.
We will see later on (Section 4) how to construct lEer) out of /B(T) in a purely
algebraic way.

Lemma 3.3. Let i be a tabulation of r: X ~ I. Then
(i) for each map f: Z ~ X such that t· fO l;;; r there exists a unique map h : Z ~X r

such that f= i· h;
(ii) if t· fa = r, then t· h ° = t; that is, h a is entire.

Proof. (i) Define h as h = i 0 • f. Then h is a partial map, being the composite of par­
tial maps. Further t· h = t· iO. f=r· f-:2 t·r· f:J t, and thus t· h = t and h is entire.
Therefore, h is a map and i· h = i . i a . f l;;; f. Hence from Corollary 2.6, i· h =f.
Uniqueness follows from the fact that i ° . i = 1.
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(ii) t· hO = t·r .i:=. r· i== t; that is, hO is entire. Observe that since h is a map hO
entire means that h· hO =::: 1. 0

Corollary 3.4. Every arrow r: X -+ Y has a tabulation, that is, a jointly monic pair
of maps f, g such that

(i) g·r =r;
(ii) if x, y is another pair of maps such that y. XO ~ r, then there exists a unique

map h such that 1- h =x and g. h =y and such that, if y . XO =r, then h° is entire.

Proof. (i) Consider the transpose f: X ® Y-+ I = e . (r ® 1) 0 f r arising from the com­
pact closedness. Let i = (f, g) be a tabulation of f. Then f, g are jointly monic. To
prove that g. fO =r, let us compute the arrow corresponding to t· i ° = f by the com­
pact closedness:

_ 10n f01_
X-+X®I ~X® Y® Y 'I® Y-+ Y=

=X~X®I 10n ~X® Y® Y j"0g0 l

.1°01 t01 _
Z®Y®Y IZ®Y II®Y-+Y

j" _ 1017 10g001
=X---+Z-+Z®I ~Z®Y®Y-~~~

B01
Z®Z®Y 'I®Y~Y

=xLz (gO). ~y=xLZ~Y.

Thus g·r =r.
(ii) We need just to prove that the condition y. XO ~ r is equivalent to t· (x, y) ° ~ f

and then apply Lemma 3.3. This follows by a calculation similar to the above using
compact closedness. 0

Theorem 3.5. Let IS be a functionally complete bicategory of relations. Then
(i) af == Map(lS) is a regular category - that is, a left exact category in which ex­

tremal epis are stable under pullback and every arrow factors as an extremal epi
followed by a mono;

(ii) the function assigning to each relation <f, g) of 8 the arrow g. fO of IS ex­
tends to a biequivalence of bicategories.

Proof. (i) From Corollary 3.4, a pullback of r, s in ~ ::::: Map(lS) is a tabulation of
SO • r; so ~ is left exact, and monos i in rff are characterized by the equation i ° . i = 1.
Nowletf: X-+ Ybean arrowin~ and consider Y~ X ~I. Lemma 3.3 provides a
factorization of f as f = i· h, with i mono and hO entire. From this it follows that a
map h is extremal epi iff h° is entire; that is, iff h· h ° =:: 1. Finally, if1- h' =h . f' is
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a pullback in g and f is an extremal epi, then t· f'0 :2 t· h'· f'0 == t· fO . h = t· h = t.
Hence f'0 is entire and f' is extremal epi. Thus & is a regular category.

(ii) Since the assignment is the identity on objects and locally an isomorphism we
need only prove the functoriality. But this is an instance of Corollary 3.4(ii). 0

Since monoidal homomorphisms between 'bicategories of relations' preserve
tabulations, we have

Corollary 3.6. Suppose 18 and []) are functionally complete 'bicategories of rela­
tions'. Then the category of monoidal homomorphisms 18---+ 18 is equivalent to the
category of left exact extremal-epi preserving functors Map(lB) ---+ Map([). 0

Remark 3.7. Using the above characterization theorem it is easy to characterize
bicategories of relations of other important classes of categories. For example,
bicategories of relations of Heyting categories (those regular categories such that for
each xL Y the inverse image functor f*: Sub( Y) ---+ Sub(X) has a right adjoint Vf)
can be characterized as the functionally complete bicategories of relations having
all right Kan extensions (and thus all right liftings, from compact closedness).
Again, bicategories of relations of geometric (coherent) categories (those regular
categories having pullback-stable (finite) unions of subobjects) can be characterized
as those functionally complete 'bicategories of relations' which are locally (finitely)
cocomplete, with local unions preserved by composition (distributive 'bicategories
of relations'). Finally, bicategories of relations of elementary toposes can be
characterized as those functionally complete 'bicategories of relations' such that
IB(X, - ) is representable in Map(IB). A good set of operations and equations to ex­
press this representability has been found by Freyd.

We will investigate bicategories of relations of Grothendieck toposes in the last
section.

4. Ordered objects and ideals

In this section we characterize the bicategory of ordered objects and ideals of an
exact category 8. An ordered object in 8 is a relation p : X ---+ X such that 1~ P and
p' p ~p; that is, it is just a monad in 18 = Rel(~). An equivalence relation in ~ is
a symmetric monad in 18; that is, a monad such that p = pO. Comonads in IB are also
important; we show now, following [81, that the bicategory of symmetric comonads
provides the free functional completion of a 'bicategory of relations'. We begin with

Lemma 4.1. In a 'bicategory of relations':
(i) the class of symmetric comonads coincides with the class of 'coreflexives' (ar­

rows a such that a ~ 1);
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(ii) if a and b are two reflexives on X, then b· a =an b.

Proof.

a= 1na=Ll o
• (10a)· Ll eLlo. (aO ® 1)· ,1. a~ 1nao=ao.

If be 1, then b· a ~ anb. But

an b =L1 0. (a®b)Ll =Ll 0. (1 ®b)· (a® 1)L1

~ ,1°(10b)(10aO)Lla=(l nb· aO). ac b· a. 0

As in any bicategory, a K1eisli object for a monad p is an object Xp and an ar­
row X --l- X p which represent the functor p-A1g(X, -). The representability implies
that the arrow e: X --l- Xp has a right adjoint e* such that e*· e = p and (in the
locally posetal case) e· e* = 1. These two equations characterize the Kleisli construc­
tion for p as a splitting of the idempotent p. Dually for a comonad a, the splitting
i*· i = 1 and i· i*=a of a as an idempotent characterizes the Kleisli construction of
the comonad a. If IS is a 'bicategory of relations', then the comonad a is symmetric
and the adjoint i* of the splitting i of the comonad a coincides with i 0. Observe that
'bicategories of relations' can admit a Kleisli construction only for symmetric
monads and comonads.

Lemma 4.2. A bicategory of relations is functionally complete iff every symmetric
comonad has a Kleisli construction; that is, iff coreflexives split.

Proof. First observe that the function 'domain',

9C
IB(X; I)-tCor(X) ={a E IB(X, X) IaC 1}

which associates to each r: X --l- I its domain f0 (r) =1n rO . r, is an isomorphism,
whose inverse is given by composition with t. For, if a is a coreflexive, then

and
f0 (t· a) =,1 0 • (l ® a O

• to. t· a)· LI =Ll ° . (l ® aO). (1 ® to. t· a)Ll

~ aO . Ll 0 • (a 0 1) . (1 0 to. t· a)L1 =aO . L1 ° . (a 0 to. t· a) . .d

=a' (an to. t· a)Ca.

Conversely, if r: X--l- I, then t· f0(r) = t· (I nro. r) ~ t· r O
• r ~ r, because t/= lJ.

Further,

t· (1 nr ° . r) ~ r· (1 nr ° . r) =r· ,1 0. (10 rD. r)L1

=r·L1°·(10rO)·(10r)·L1

~Llo. (r0 1)· (l 0r)· ,1 =L1 0
• (r0r)· ,1 =r.
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Now, suppose IB is functionally complete and let a be coreflexive. If i is a tabulation
of t'a - iO·i=1 and t·io==t·a - then t·i·io==t·a, and hence, by the previous
remark, i· i° == a. Conversely, let r: X -jo I be an arrow and suppose coreflexives
split. Leti· i° == !1J (r), i ° . i == 1be a splitting of q; (r); then t· i ° =t· i· iO = t· 9lJ (r) =r,
again by the previous remark. Thus i tabulates r. 0

A virtue of the notion of Cartesian bicategory is that it is stable under the splitting
of idempotents, whereas Freyd's notion of allegory is only stable under the splitting
of symmetric idempotents. The usual construction of the splitting of idempotents
applied to Hel(&') simply as a category gives the bicategory of ordered objects in ~
and ideals between them. The following lemma will be used in the theory of ordered
objects, as well as in discussing the free functional completion of a bicategory of
relations.

Lemma 4.3. Let IB be a Cartesian bicategory and let 1.1 be the class ofmonads (com­
onads) in lB. Then

(i) the splitting .j of the monads (comonads) in II is a Cartesian bicategory
(assuming IB to be a 'bicategory of relations' in the comonad case),

(ii) if IB is a 'bicategory of relations' and $ is the class of symmetric monads
(comonads) in IB, then i is a 'bicategory of relations'.

Proof. (i) Recall that J has as objects the monads (comonads) of IB and as arrows
r :P -jo q the arrows r of IB such that rp =r = q. r. It is easy to see that # is a
bicategory (the identity arrows are p: p -7p). The tensor product in IB induces one
in J. In the monad case define iJ p :P-7P@P by iJp==(p@p).LI and the adjoint
LI; as p' iJ*, tp simply as t and the adjoint as t*. In the comonad case define LIp as
LI·p and the adjoint LI; as p·iJo, tp as t·p and the adjoint t*·p as p·to. A
straightforward calculation shows j to be Cartesian.

(ii) We need only to prove axiom (D). First observe that if pC i, then p is a partial
map, so that LI· p= (p@p). iJ. Hence in each case LIp' iJ;:::::: (p@p)·iJ . LI 0. (p@p).
Now, in the comonad case, this last is (p@PLJO). (p@LI·p), that is (lp@LI;).
(LIp@ 1p). In the monad case, first observe that from the basic law of Theorem 2.4,
we have (p@p). LI :::::: (l @p)iJp . Then

LIp' .6;= (l @p)(1 @LlO). (p@ I)· (l @p). (LI @ I)· (p@ I)

=(I@p)·(l@iJO).(p@l@p)·(l@LI)· (p@l)

=(p@(p' Llo. (I@p»· «p@ 1)· iJ· p)@p)

= (lp@iJ;) . (Ll p @ I p ). 0

Remarks 4.4. (i) If IE is a 'bicategory of relations', then taking # to be the class of
coreflexives Cor(lB) of IB the splitting Cor(lBr is the free functional completion of
18: &' =Map(Cor(l8f) is a regular category, and there is a natural equivalence be-
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tween the category of monoidal homomorphisms IS -4 Rel(S), S a regular category,
and the category of left exact image-preserving functors &' -t S. In particular, if lB
is the 'bicategory of relations' associated to a theory 1', then &' =Map(Cor(lBf) is
the logical category &' (11") syntactically constructed in [13] or [9].

(ii) If IS = Rel(&'), define Mon(lS) (= Ord(&'» as the splitting of all monads in lB.
Clearly all monads in MonOS) have a splitting (that is a Kleisli construction) and
Mon(lS) is the free completion of !B with respect to the Kleisli construction. An easy
computation shows that a bicategory IB has the Kleisli construction for monads in
IS iff the canonical embedding IS -lo Mon(lB) is an equivalence. (For the details of a
more general result see [5].) Hence the construction MOD( -) is idempotent. By the
previous theorem Mon(lB) is Cartesian, if IS is. In fact more is true:

Lemma 4.5. If fB is a 'bicategory of relations', then Mon(lS) is compact closed, and
canonically « _)0)0 = 1, (_)O@( _)0 =(_@_)O (actual equality!).

Proof. Define (X,p)O =(X,pO) and

Y/(X,p) = t---'> (X,p)O @(x,p)= (pO@p)L1tO = (pO @p) '1],

8(X,p) =(X,p)@(X,p)°-loI= t· L1 O(p@pO)=ex' (p@pO).

A straightforward computation using the basic law of Theorem 2.4 shows that
(X,p)--l(X,p)o. 0

If fB is a 'bicategory of relations', define Eq(lB) as the splitting of symmetric
monads in IE. Then Eq(!B) is again a 'bicategory of relations'. If IB = Rel(&'), then
Eq(fB) is the bicategory of equivalence relations in &' and compatible relations be­
tween them. Recalling that a regular category is exact if every equivalence relation
in &' has a coequalizer e whose kernel is the given equivalence relation, it can easily
be seen that &' is exact just when in IB =Rel(&') every symmetric monad has a Kleisli
construction; that is, iff symmetric monads split in !B. Following Freyd, we will call
such bicategories effective. From the above discussion the following characteriza­
tion theorem clearly emerges:

Theorem 4.6. A bicategory fB is biequivalent to a bicategory Ord(&') of ordered ob­
jects (and ideals between them) in an exact category &' iff

(i) IS is Cartesian;
(ii) every monad in IB has a Kleisli construction;

(iii) for each object X in IS there exists a discrete object X o and a monad X ---'> X
whose Kleisli construction is isomorphic to X o;

(iv) if a!: Ix and X is discrete, then a splits.

Proof. If fB is such a bicategory, then define !Bo as the bicategory of discrete ob­
jects. Then fBois functionally complete. To see this we need to show that if a!: lx,
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X discrete, and if i *i -= a, i· i*= 1 is a splitting of a, then the domain X' of i: X' -'> X
is discrete. But

L1 x" L11,=L1 x" i*· iLl.'{-, = (i*@i*)· L1x- L1.'{-(i@i)

=(i*@i*)(1 @L1*)' (L1 @ 1)· (i@i)=(i*@i*L1*). (L1i® i)

=(i*@(i*@L1*. i*))· ((i@i)@Ll·i)

=(1@Ll*)· (i*@i*@i*)· (i@i@i)(Ll®1)

= (1 @Ll*)· (i*i@i*i@i*i)· (L1 @ 1) = (1 @Ll *)(Ll @ 1).

A similar argument shows that if p: X ...... X is an equivalence relation in lBo• then
the splitting X -+ X p of p stated in (ii) stilI has discrete codomain. Thus
If: =Map(lSo) is an exact category, and conditions (ii) , (iii) ensure that Ord(lf:) is
equivalent to lB: Mon(lSo) is a full subbicategory of Mon(IS); from (ii) and Remark
4.4(ii), IS is biequivalent to Mon(lB); from (iii), the resulting homomorphism
Mon(lSo) -'> IB is a biequivalence. 0

Remark 4.7. If tE is just a regular category, then Mon(Rel(tE» can be constructed
and satisfies (i)-(iv) of Theorem 4.6. However, the discrete objects in Mon(Rel(C»
can be shown to be equivalence relations in C, that is, the objects of the free exact
category over the regular category C. This explains why in the characterization
theorem we assume C exact.

5. Abelian bicategories

Additive relations - relations in abelian categories - have been studied by various
authors, but the only characterization known to the present authors is the early one
of Puppe [14] which predates the notion of exact category and is thus rather com­
plicated. The notion of 'bicategory of relations' leads to a simple and perfectly self­
dual characterization of such bicategories.

Definition 5.1. Let IB be a bicategory with tensor product. IB is an abelian bicategory
if both IS and IS CQ (2-cells reversed) are 'bicategories of relations' with respect to
the (same) given tensor product.

An abelian bicategory is functionally complete if both IS and lB CQ are functionally
complete as 'bicategories of relations'.

We will denote by Ox: I ...... X and ox: X@X -'> X the maps which provide the
Cartesian structure on lB CQ

•

Theorem 5.2. Bicategories ofrelations ojabelian categories are characterized by the
property that they are functionally complete abelian bicategories.
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Proof. To prove that [B=Rel(8), 8 an abelian category, is a functionally com­
plete abelian bicategory let us first observe that [BCD being a bicategory of re­
lations means that each object in IS is equipped with a cocommutative comonoid
structure such that the comultiplication and the counit are right adjoints and are
thus opposites of maps X® X -+ X and]-+ X. The opposite should be understood
as the involution arising from the compact closed structure on [B. These maps
are a commutative monoid structure on X. The codiagonal and the fact that the
terminal is also initial provide such a structure on each object of [B=Rel(8). Con­
dition (U) (0' (r®r)Cr·o) is easily checked. Discreteness of X in [BCD (0°'0=
(l ® 0)' (0° ® 1» follows from the fact that the square

x®X@X
o®l

IX@X

1&0]
0

],

X@X IX

is a pullback in 8 (additivity).
For [BCD to be functionally complete means that if r;2 1, then r splits. But this

follows from the well-known fact that in an abelian category tE every reflexive rela­
tion is an equivalence relation [1]. Since 8 is exact, the coequaIizer e of r gives a
splitting of r in IS = Rel(a;').

Conversely, if IS is a functionally complete abelian bicategory, then tE =Map([B)
is certainly a regular category and the structure on [BCD provides the semiadditivity
(coproducts = products) of a;' by the dual of Theorem 1.6. The discreteness of lB cD

just says that the arrows

Ox Ox
t;x =] ----')0 X ---7X ®X,

Ox 0;
ex=X®X---X---+]

give rise to a compact closed structure on lB, by the dual of Theorem 2.4. Since the
two compact closed structures are naturally equivalent by standard arguments on ad­
junctions, there exists a unique isomorphism Vx : X -+ X such that (1 ® Vx )· fix =
11x and eX" (l ® Vx ) =ex· The condition (l ® Vx)· fix = 11x qualifies Vx as the map
X -+ X which gives the group structure on each object X, since it means that

X
tx

l]

A]
l®V °

] OX

X®X ,X®X lX

is a pullback. Thus (X, 0, Ox' Vx> is an abelian group object in Map([B) and
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v2 == 1. Thus 6: == Map(lB) is additive, and it is also exact by the functional com­
pleteness of IBco . By Tierney's theorem that an exact additive category is abelian,
8 is an abelian category. 0

Remarks 5.3. (i) By the dual of Theorem 1.6, the Cartesian structure of IBco pro­
vides a local union on IB defined as r Us == 6' (r@s). 0°, for which the zero map
X !!Jsd~ Y is a minimal element. Moreover, the compact closed structure on [B

induced from the structure on IB ° yields an involution which coincides with the one
given by the Cartesian structure on lB. (Just use the very definition of the involution
and the fact that e·(l@V)==e(V@I), since to·L!(l@V)=to·V·L!(VO@I)=
to. ,1. (V@l), because V 2 = 1 implies V-I = V; but V-I::::; V. Similarly (1 @ V)1J =
(V@ 1)1].) So, by the dual of Theorem 2.4 the bicategory IB satisfies the dual of
Freyd's modular law (s' rU t d (sU t· rO). r) as well as the duals of Lemma 2.5, Cor­
ollary 2.6, 2.7, .... In particular, it follows from the dual of the modular law that
the lattice of subobjects of each object of Map(lB) is modular.

(ii) The most we can say about the interplay between composition and local unions
in an abelian bicategory is the dual of the modular law. It is always true that if f
is a map, then (rUs)· r::::; r· r Us·fo and f· (rUs) =frUfs. Logically this means
that:El commutes with U. But it is not true that (rUs)'f~rfUsfor fO. (rUs)=
fO . r Ufo. s, as well as o· fO = 0; these conditions mean that substition preserves
finite unions. Any of these conditions would imply that IB is degenerate (Adelman).

The category ;K of Hilbert spaces and continous linear maps is regular and ad­
ditive, so that IB == Rel(.1t') is an abelian bicategory where just functional complete­
ness of IB co fails.

(iii) Corollary 3.6 extends also to the abelian case. If 6: and f!1l are abelian
categories, then the category of additive exact functors 6: -+f!li is equivalent to the
category of monoidal homomorphisms of bicategories Rel(8)-+Rel(f!li).

6. Matrices

In this section we will characterize bicategories of relations of Grothendieck
toposes.

In studying bicategories of relations of regular categories we have seen that pro­
ducts in the category lift to tensor products in the bicategory of relations. But, once
the bicategory of relations can be constructed and' good' sums exist in the category,
then sums lift to the bicategory of relations: if IS is a regular category with (finite)
disjoint and pullback-stable sums, then Rel(lB) has (finite) bicoproducts and, con­
versely

Theorem 6.1. 111B is afunctionally complete 'bicategory ofrelations , having (finite)
bicoproductsJ then G" ::::; Map(lS) has (finite) disjoint and pullback-stable coproducts.
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Proof. For simplicity we give the proof for the finite case. To show that 8 =
Map(lB) has coproducts we need to prove that the initial arrow Ox: 0 ~X and the
codiagonal t5x:XEElX~X are maps (0 and EEl denote initial and sum in IB). By
using Lemma 2.5 it is enough to prove that the two arrows are comonoid homomor­
phisms: the needed equations for Ox follow because 0 is initial and 0 1 = to; the
ones for Ox follow from the fact that the injections i are now maps such that
o· i = 1. So, to prove Ll x ' Ox = (oxQ9°x)Ll xEi1x, it is enough to prove that the two
arrows are the same when composed with injections, that is, that Ll x ' Ox' i=Ll x ,
and (ox®ox)' Ll x <:11x' i= (because i is a map)=(ox' iQ9 OX' i)· Ll x =Ll. Finally,
the counit preservation follows from the fact that tX <:11x= t/<:11J" (txt£) tx) and t1<:111=
0/. Thus 8 =Map(lB) has coproducts, and with the same argument as in Theorem
1.6 we can show that the definitions

0X,y=Oy' Ox

give local unions and initials which, moreover, are stable on both sides because of
the inVOlution on lB.

Observe that the compact closedness of IB, and the fact that the involution is the
identity on objects, imply that bicoproducts in IB are also biproducts. With standard
computations based on the previous facts it can be shown that initial maps
Ox: 0 -+ X are monos (Ox' Ox= 1). Thus injections ix are also mono (ix' ix = 1)
as well as jointly epic (ix·i;Uiy·iy=l) and disjoint (iY.ix=Ox,Y)' As for the
stability of sums under pullbacks in 8 =Map(IB), first observe that X@ -, having
a right adjoint in lB, preserves all colimits which exist in lB, thus sums in IB, hence
also in ~. We just need to show that the lattice of subobjects of an object in 8 is
distributive. Since this lattice is isomorphic to the lattice of coreflexives on the ob­
ject in U3 (see Lemma 4.2) and composition of coreflexives reduces to intersections
(see Lemma 4.1), this last reduces to the stability of local unions under composi­
tion. 0

Remark 6.2. In proving Theorem 6.1, we showed that the assumption that IB has
bicoproducts and the compact closedness of lB, force IB to be 'semiadditive' - initial
o ~X and codiagonal X(£lX~X arrows are maps such that the adjoints provide
bicoproducts with a structure of biproducts. Hence 18 is a 'distributive bicategory'
(see Remark 3.7). Conversely, given such a bicategory IB we can construct the free
semiadditive bicategory Matr(lB) as follows:
- objects are families e: X --+ lIB I of objects of 18;
- arrows r: (X; e) --+ (Y, e') are matrices rex, y) : e(x) "'"7 e(y) of arrows of IB;
- composition oj arrows is matrix composition;
- 2-cells are defined pointwise.

Matr(lB) enjoys the following remarkable properties:
(a) Matr(lB) is semiadditive;
(b) if 1:# is semiadditive, then ~f -4 Matr( 1:#) and thus the construction of
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Matr( - ) is idempotent (see [5]);
(c) if IB is Cartesian, then Matr(lB) is Cartesian (define (X,e)@(Y,e') as

(Xx Y,e®e'), where (e@e')(x,y);;::e(x)®e'(y), and similarly for arrows);
(d) if IB is a 'bicategory of relations', then so also is Matr(IB).
As a consequence of property (d), if tff is a geometric category, then

Map(Matr(Rel(tff))) is the free geometric category having all small indexed disjoint
and universal sums. By applying Property (d) and Theorem 6.1, we just need to
check that if IS is functionally complete, then Matr(lB) is such. For details of this
and related results see [3].

Theorem 6.1 applies to bicategories of relations of a Grothendieck topos as
follows:

Theorem 6.3. A bicategory IB is of the form Rel(tff) with tff a Grothendieck topas iff
(i) it is a functionally complete 'bicategory of relations';

(ii) it is effective;
(iii) it has small bicoproducts;
(iv) it has a small set G of generators (r C s: X -+ Y iff for all x: U -+ X, U E G,

r· x~s· x). 0

The proof relies on the previous theory of relations and the theorem of Giraud.

Remarks 6.4. (i) Observe that, starting with Giraud's axioms for a Grothendieck
topos g, the distributivity of Rel(8) gives immediately that 8 has all coequalizers:
if j, g: X -+ Y is a parallel pair of maps, then the splitting of the free equivalence
relation r';;:: Un rn generated by r;;:: g. fa Ufo gO is the coequalizer of j, g.

(ii) Another consequence of property (b), Corollary 3.6 and the above remark is
the following: if g,87 are Grothendieck toposes, then the category Top(g, Bii) is
equivalent to the category of monoidal and local union preserving homomorphisms
Re1(&')-+ Rel(8) which is equivalent to the category of sum and tensor preserving
homomorphisms Rel(&')-+Rel(8).
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