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We propose a novel leptogenesis scenario at the reheating era. Our setup is minimal in the sense that, 
in addition to the standard model Lagrangian, we only consider an inflaton and higher dimensional 
operators. The lepton number asymmetry is produced not by the decay of a heavy particle, but by 
the scattering between the standard model particles. After the decay of an inflaton, the model is 
described within the standard model with higher dimensional operators. The Sakharov’s three conditions 
are satisfied by the following way. The violation of the lepton number is realized by the dimension-5 
operator. The complex phase comes from the dimension-6 four lepton operator. The universe is out of 
equilibrium before the reheating is completed. It is found that the successful baryogenesis is realized 
for the wide range of parameters, the inflaton mass and reheating temperature, depending on the cutoff 
scale. Since we only rely on the effective Lagrangian, our scenario can be applicable to all mechanisms to 
generate neutrino Majorana masses.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The discovered Higgs mass 125 GeV indicates that the standard 
model (SM) couplings are perturbative and the electroweak vac-
uum is (meta)stable even if the cutoff scale of the SM is around the 
Planck scale [1,2]. The Higgs flat potential around the Planck scale 
may imply the connection between physics at the electroweak 
scale and at the Planck scale [3,4]. Furthermore, the LHC does 
not find any significant deviations from the SM so far. These sug-
gest the possibility that the SM is valid up to the very high scale. 
However, we know that there exists phenomena which can not be 
explained within the SM, one of which is the baryon asymmetry 
of the universe [5]

nB

s
� (8.67 ± 0.05) × 10−11, (1)

where nB is the number density of the baryon asymmetry and s
is the entropy density of the universe. Taking into account these 
facts, it is important to consider the simple mechanism to realize 
the above value under the assumption that the SM is valid up to 
the very high scale.

There are many proposals to create the baryon asymmetry such 
as GUT baryogenesis [6], Affleck Dine baryogenesis [7], electroweak 
baryogenesis [8], baryogenesis via leptogenesis [9], string scale 
baryogenesis [10] and so on.
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Among the various possibilities, one of the most simple scenar-
ios is leptogenesis in which heavy new particles are introduced, 
and the lepton number is produced by the decay of them. Then, 
the lepton number is converted into the baryon number by the 
non-perturbative effect of the SM, namely, the sphaleron pro-
cess [11,12]. The heavy particles are created by the thermal pro-
duction [9] or decay of an inflaton [13] at the early stage of the 
universe. For example, a heavy particle is the right handed neu-
trino, triplet scalar [14] or triplet fermion [15].

In this letter, we propose a novel leptogenesis scenario. In con-
trast to the conventional scenario, we consider the case where 
the mass of a heavy particle is larger than the reheating temper-
ature T R . This situation would be reasonable because it may be 
natural that the mass of a heavy particle is around the GUT scale, 
O(1015) GeV, and it is not easy to obtain such a high reheating 
temperature. In such a situation, because the on-shell heavy par-
ticle is not produced, the lepton asymmetry can not be generated 
by the decay of the heavy particle. However, as we will see in the 
following, by assuming an existence of an inflaton which mainly 
decays to the SM particles, especially leptons, we show that the 
lepton asymmetry can be generated by the scattering between the 
SM particles at the reheating era.

Because the energy scale after the inflation is always smaller 
than the mass of a heavy particle, we can use the effective La-
grangian:
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L = LS M + 1

�1
λ1,i j H H L̄c

j Li + 1

�2
2

λ2,i jkl(L̄iγ
μL j)(L̄kγμLl)

+ 1

�2
3

λ3,i jkl(L̄iγ
μL j)(ĒkγμEl) + h.c.

� λ1,i j
v2

2�1
(ν̄cν + ν̄νc), (2)

where v � 246 GeV, H is the Higgs doublet, LSM represents the 
SM Lagrangian, L is the lepton doublet, E is the right handed lep-
ton, and ν represents the left handed neutrino.1 Although there are 
a lot of dimension-6 operators [18], we only consider one which is 
relevant for our discussion below. We can make λ1,i j real diagonal 
by the unitary transformation of Li . In general, λ2,i jkl and λ3,i jkl be-
come complex in this basis, and therefore break CP. Although the 
specific values of �1, �2 and �3 depend on ultraviolet models, �1
can be written as a function of the neutrino mass if the neutrino 
is Majorana particle:

�1 � 6.0 × 1014 GeV

(
0.1 eV

mν

)
, (4)

where we have assumed λ1,11 � λ1,22 � λ1,33 � 1 and mν :=
mν,1 � mν,2 � mν,3.

Before going into details, let us briefly summarize our scenario 
here. At the end of the inflation, the inflaton starts to oscillate and 
to decay into the SM leptons. The reheating process is completed 
when the energy density of the SM thermal plasma becomes larger 
than that of inflaton. Before the completion of reheating, there are 
two populations of leptons, one from the inflaton decay, and one 
in the thermal plasma. We consider the scattering process between 
them by the dimension-5 and 6 operators in Eq. (2). This process is 
inevitably out of equilibrium, and violates the CP and lepton num-
ber.2 In particular, due to the CP phase in dimension-6 operator, 
the interaction rate of LL → H̄ H̄ can differ from that of L̄ L̄ → H H . 
Thus, the Sakharov’s three conditions are all satisfied, and we can 
obtain the lepton asymmetry. If the reheating temperature is low 
enough, the washout process can be avoided. This asymmetry is 
converted to the baryon asymmetry through the sphaleron pro-
cess:

nB

s
� 28

79

nL

s
. (5)

In this scenario, there are two kinds of contributions to the lep-
ton asymmetry. First contribution is that, while the decay of an 
inflaton itself does not lead to any asymmetry, the scattering be-
tween the SM particles induces both of the lepton number and 
CP violation, see Fig. 2 for the diagram contributing to the lep-
ton asymmetry. Second contribution is that the CP violation is 
induced by the decay of an inflaton into the lepton pairs (see 

1 By performing the Fierz transformation, the �2 term is equivalent to

1

�2
2

λ2,i jkl(L̄iγ
μL j)(L̄kγμLl) = 2

1

�2
2

λ2,i jkl(L̄c
l L j)(L̄i Lc

k). (3)

Therefore, the action here is equivalent to that of Ref. [10] although the situ-
ation is different. The decay of the higher excited state of string theory is consid-
ered in Ref. [10]. The other study of baryogenesis by the collision can be found in 
Ref. [16] (see also Ref. [17]), where the mirror world is introduced and our scenario 
is different from their one.

2 More concretely, in our scenario, it is important that the left handed leptons 
produced by an inflaton decay are out of equilibrium. The leptons just after the in-
flaton decay are different from thermal distribution. For example, in general, the 
decay of the inflaton to leptons is flavor non-universal, and the population of lep-
tons are different from each flavor, which plays crucial role to give nonzero asym-
metry. We will see this in Eq. (9). Through the thermalization process of leptons, 
we obtain the lepton asymmetry of the universe.
Fig. 3), and the lepton number violation is occurred by the suc-
ceeding dimension-5 operator in Eq. (2).

Let us now evaluate the amount of the lepton (baryon) asym-
metry. As for the first contribution, nL is roughly given by

nL

s
∼ ninf

s

∑
i

2εiBri
�/L,i

�brems
. (6)

The meaning of each of the factors in Eq. (6) is as follows. The first 
factor is the abundance of an inflaton, which can be written as

ninf

s
� 3

4

T R

minf
(7)

by equating the energy density of the inflaton minfninf with that 
of the radiation 3sT /4 at the reheating.3 Second, εi represents the 
efficiency

εi := 2
σL̄i L̄i→H H − σLi Li→H̄ H̄

σL̄i L̄i→H H + σLi Li→H̄ H̄
, (8)

where σ represents the cross section of each process. This can be 
written by

εi �
∑

j

1

2π

12minfT R

�2
2

λ1, j jIm(λ2,i j)

λ1,ii
, (9)

where λ2,i j := λ2,i ji j . Here, note that �1 dependence is canceled 
between the numerator and denominator.

Next, Bri denotes the branching ratio of an inflaton to Li L̄i . We 
note that the baryon asymmetry vanishes if we take Br1 = Br2 =
Br3,4 and therefore we simply assume that this is not the case. 
Indeed, there is no reason to consider Br1 = Br2 = Br3. In the fol-
lowing, we take Br := Br1 �= 0, Br2 = Br3 = 0 for simplicity.5

Finally, �/L,i represents the interaction rate of the lepton viola-
tion process,

�/L,i � 11

4π3
ζ(3)

m2
i,ν

v4
T 3

R , (11)

where T 3
R comes from the number density of the thermal plasma. 

On the other hand, �brems is the interaction rate of the thermaliza-
tion process without the lepton number violation,

�brems ∼ α2
2 T R

√
T R

minf
. (12)

Here α2 is the SU (2)L structure constant. If we naively estimate 
the bremsstrahlung diagram with t-channel gauge boson exchange, 
we have α2

2 T R . However, because the emission process contin-
ues until their energy becomes comparable with thermal bath, 
the interference among the emission processes should be taken 
into account. This interference effect suppresses the thermalization 
process, which is represented by 

√
T R/minf, and called Landau–

Pomeranchuk–Migdal effect [20]. Note that �/L/�brems corresponds 
to the probability that the lepton number violating process occurs 

3 The same estimation is used, e.g., in the context of leptogenesis by the decay of 
an inflaton [13].

4 In this case, Eq. (6) is proportional to
∑
i, j

λ1,iiλ1, j j Imλ2,i j = 1

2

∑
i, j

λ1,iiλ1, j j

(
λ2,i ji j − λ∗

2,i ji j

)
. (10)

However, in Eq. (2), by including the h.c term and redefining λ2, we can show 
λ2,i ji j = λ∗

2, ji ji . Thus, we can see that the right hand side in Eq. (10) vanishes.
5 We also assume that a vanishing branching ratio of inflaton to H H for simplic-

ity. It would be interesting to investigate our scenario with general decay mode.
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during the time interval �t = 1/�brems, which is the typical time 
scale the high energy leptons lose their energy.6

As a result, we obtain

nB

s
� 8.7 × 10−11

(
4 × 10−4

α2
2

)(
minf

2 × 1013 GeV

) 1
2

×
(

T R

3 × 1011 GeV

) 7
2 ( mν

0.1 eV

)2
(

1015 GeV

�2

)2

×
(

Br × ∑
j λ1, j jIm(λ2,1 j)/λ1,11

2

)
. (14)

We can see that the observed baryon asymmetry is successfully 
generated.

Here we comment on the possible washout effect. The interac-
tion rate of the washout process is similar to Eq. (11):

�wash � 11

4π3
ζ(3)

∑
m2

ν

v4
T 3. (15)

From this, one can conclude that the strong wash out is avoided 
if T R is sufficiently small.7 We emphasize that this washout pro-
cess is collision between the particles in thermal plasma while 
Eq. (11) corresponds to the scattering between leptons in the ther-
mal plasma and ones from inflaton decay.

In order to confirm above estimation, we solve the following 
Boltzmann equations8:

H2 = 1

3M2
pl

(
ρinf + π2 g∗

30
T 4 + minf

2
nl

)
,

ρ̇R + 4HρR = (1 − Br)�inf ρinf + minf

2
nl (�brems + H) ,

ṅL + 3HnL = �/L 2ε nl − �washnL,

ṅl + 3Hnl = �inf ρinf

minf
Br − nl(�brems + H),

ρinf = �4
inf

(
a(t = tend)

a

)3

e−�inft, (17)

where dot represents the derivative respect to time t; H is the 
Hubble parameter; ρinf is the energy density of an inflaton; g∗ is 
the effective degrees of freedom in the SM; T is the temperature 

6 This statement is valid if the Hubble parameter is sufficiently smaller than 
�brems. In this case, the high energy leptons mainly lose their energy by 
bremsstrahlung process. On the other hand, if the Hubble parameter is larger than 
the �brems, the leptons mainly lose the energy by redshift, and the probability is 
given by �/L/H . The typical values of parameters presented in Eq. (14) correspond 
to the former case:

�brems/H ∼ α2
2 Mpl√
T Rminf

. (13)

7 At the time of reheating, the ratio �wash/H is

�wash/H ∼ T R Mpl

�2
1

. (16)

If we take T R = 3 × 1011 GeV as a successful example, the ratio is small enough 
to ignore the washout effect. Note that this does not mean that the lepton number 
violation process does not occur. As clarified in footnote 5, since �brems 	 H , the 
asymmetry is roughly proportional to �/L/�brems, which can be large enough to 
realize observed baryon asymmetry.

8 We include the effect of redshift as last terms in the right hand side in the 
second and fourth equations. The leptons produced by the inflaton are highly rel-
ativistic, and lose their energy by thermalization process or redshift due to the 
cosmic expansion. Although the effect of redshift is not important in practice since 
�brems > H for typical parameters, we include it for completeness.
of radiation; ρR = π2 g∗T 4/30 is the energy density of radiation; 
nl is the number density of left handed lepton with energy minf/2
produced by the decay of an inflaton; �inf is the decay rate of 
an inflaton which is related to the reheating temperature as T R ∼√

Mpl�inf; �4
inf is the energy density at the end of inflation; a is 

the scale factor; tend is the time when inflation ends. We have 
checked that the numerical results agree with Eq. (14) within one 
order of magnitude. See the left panel of Fig. 1.

Now let us move to the estimation of the second contribution 
to the lepton asymmetry. First, the asymmetry between left and 
right lepton is occurred by the decay of an inflaton due to the 
interference between tree and one-loop decay process, see Fig. 3. 
Succeedingly, the lepton number is violated by the dimension-5 
operator.9 Since the only left handed leptons feel lepton number 
violation, we have nonzero lepton asymmetry. In order to illustrate 
the idea, we assume that an inflaton mainly decays to lepton pairs 
by the dimension-5 operator10

1

M
yijφ L̄i H E j (18)

where M is some scale, yij is the coupling, and φ is the inflaton.11

By assuming that λ1,11 is larger than λ1,22 and λ1,33, the net lepton 
asymmetry is given by

nL

s
∼ ninf

s

∑
i=1,2,3

2ε1,i Br1i
�/L,1

�LF
, (19)

where Bri j is the branching ratio of an inflaton to H Li Ē j , εi, j is

εi, j := �(φ → H̄ Li Ē j) − �(φ → H L̄i E j)

�inf

� 1

8π

m2
inf

�2
3

∑
k,l

Im(y∗
i j yklλ3,iklj)

|yij|2 , (20)

and �LF is the rate of washout of the asymmetry between left and 
right leptons,

�LF ∼ α2αyl T R , (21)

see also Fig. 4. Here αyl is the structure constant of the charged 
lepton Yukawa. Then, we obtain

nB

s
� 8.7 × 10−11

(
2 × 10−2

α2

)(
8 × 10−6

αyl

)(
minf

2 × 1013 GeV

)

×
(

T R

4 × 1010 GeV

)3 ( mν

0.1 eV

)2
(

1015 GeV

�3

)2

×
(∑

i=1,2,3 Br1i

1

)(∑
Im(y∗

1i yklλ3,1kli)/|y1i|2
1

)
. (22)

9 The second contribution is different from the leptogenesis by inflaton decay [13]
with the strong washout, in which the heavy Majorana neutrinos, produced by the 
inflaton decay, present both of lepton number and CP violations. The lepton num-
ber violating SM scattering just decreases the total number of asymmetry. On the 
contrary, in our scenario, the decay of heavy particle (inflaton) only provides the CP 
violation, and the actual lepton asymmetry is produced by the scattering between 
these SM particles.
10 In the case of three body decay, the energy of the decay product is not ex-

actly minf/2, but becomes continuous spectrum. This would not change the order of 
asymmetry, but change the factor of asymmetry.
11 Another choice is considering the models where the inflaton has same charge as 

the SM Higgs field. Then, the inflaton can decay into right and left lepton pairs by 
dimension-4 operator, which can become main channel by taking appropriate value 
of the coupling. Although such a coupling often threatens the flatness of inflaton 
potential, it is known that the inflation is possible by introducing non-minimal cou-
pling between gravity and the inflaton sector [22,3]. The argument below is not 
drastically modified even in this case.



Y. Hamada, K. Kawana / Physics Letters B 763 (2016) 388–392 391
Fig. 1. Left: The contour where the first contribution (Eq. (17)) can explain the ob-
served baryon asymmetry. Here we take �inf = 1015 GeV, ∑ j λ1, j j Im(λ2,1 j) = 2
and mν = 0.1 eV. Note that the normalization of a can be chosen freely, and we 
take a(t = tend) = 1. We numerically confirmed that the asymmetry is mainly pro-
duced at the time where the reheating is just completed, t ∼ �−1

inf , and therefore 
the result is insensitive to the value of �inf as long as T R � �inf . The solid and 
dashed lines correspond to �2 = 1014 GeV and �2 = 1015 GeV, respectively. The 
red and blue lines represent Br = 1 and 0.1. In the blue region, because T R > minf , 
we need more careful study of the reheating, which is beyond scope of this paper. 
Right: Same as left figure, but considering the second contribution (Eq. (23)), taking ∑

Im(y∗
1i yklλ2,1ikl)/|y1i |2 = 1 and assuming λ2

1,11 	 λ2
1,22, λ2

1,33.

In this case, Boltzmann equations are the same as Eq. (17) ex-
cept for the third line. Instead of the third line, we have

ṅL + 3HnL = −
∑

j

2�/L, jnLj − �washnL,

ṅL1 − ṅL j + 3H(nL1 − nLj)

= �inf ρinf

minf
Br1 j 2ε1, j − (nL1 − nLj)�LF, ( j = 2,3) (23)

where nLi is the lepton number asymmetry of Li . In Fig. 1, we 
show contours which realizes the observed baryon asymmetry. In 
this figure, we simply assume that the effective field theory picture 
is valid at the time of reheating. This is valid if the mass of inflaton 
and the reheating temperature are lower than that of new particles 
which appear in ultraviolet completion. In order to check whether 
this is true or not, the model dependent analysis is needed, which 
we leave for future publication [23].

Finally we discuss the possible origin of the higher dimen-
sional operators. For example, in the case of type-I seesaw [19], 
the dimension-5 and dimension-6 operators are generated by inte-
grating out the right handed neutrino:

λ1,i j

�1
� (yνm−1

N yT
ν )i

j,

λ2,i jkl

�2
2

� (yν y†
ν)i

j(yν y†
ν)k

l
1

16π2m2
N

, (24)

where yν is the neutrino Yukawa coupling and mN is the right 
handed neutrino mass. We can see that the value of �2 is 
O(1015) GeV due to the one-loop suppression. Of course we have 
different �2 for other seesaw models. In Zee model [24], �2 =
O(1013) GeV because �1 term is one-loop suppressed while �2
term is generated at the tree level. In type-II seesaw [25] and Ma 
model [26], �2 = O(1014) GeV since �1 and �2 terms are the 
same order of magnitude. It would be interesting to examine the 
value of �2 in various neutrino models. As for the dimension-6 
operator suppressed by �3, it can be generated at the tree level, 
e.g., if the second Higgs doublet heavier than the electroweak scale 
is added in addition to the SM Higgs doublet.

Before concluding this letter, a few more remarks are given in 
order. Firstly, we emphasize that, since our analysis is only based 
on the effective Lagrangian, our scenario can be applicable to all 
mechanisms to generate neutrino Majorana masses. Secondly, al-
though we do not consider in this paper, if the right handed 
Fig. 2. The diagram contributing to the lepton asymmetry. The solid and dotted lines 
represent the lepton and Higgs doublet, respectively.

Fig. 3. The decay of an inflaton. The interference between the tree and the one-loop 
diagram induces the CP asymmetry. Here the dotted line corresponds to the infla-
ton. i, j are the flavor indexes.

Fig. 4. The washout process of lepton flavor asymmetry. E is the right handed 
charged lepton field.

neutrino is lighter than inflaton, it may be produced by the scat-
tering between the SM particles. It may be interesting to investi-
gate whether this scenario can explain the baryon asymmetry or 
not. Thirdly, our scenario goes well with the high scale inflation 
model. In the case of the quadratic chaotic inflation [21], we have 
minf � 2 × 1013 GeV. The observed baryon asymmetry is explained 
if the inflaton couples with the SM particles by the dimension-5 
operator, �inf � 1

8π

m3
inf

M2
1

100 , where M ∼ 1015–16 GeV. It is remark-
able that M is close to the string/GUT scale, and that such a simple 
high scale inflation model actually realizes successful baryogenesis. 
It is also interesting to explore if other inflation scenarios such as 
Higgs inflation are consistent with this mechanism. Furthermore, 
our scenario might be applicable not only to the decay of an infla-
ton, but also to that of more general late decaying scalar field such 
as moduli field. Another interesting direction is to examine the fla-
vor effects on our scenario. Finally, our scenario is excluded if it 
turns out that the neutrino is Dirac fermion or Majorana mass is 
very small compared to O(0.1) eV, see also Ref. [27].

In conclusion, we have proposed a novel scenario for baryo-
genesis. We have shown that, even if the reheating temperature 
and an inflaton mass are smaller than a heavy particle mass, the 
observed baryon asymmetry is successfully generated. Our argu-
ment is quite general, and can be applicable to many models. We 
believe that this work innovates the new class of baryogenesis sce-
nario.
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