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We study the multi-Sommerfeld enhancement in the case where V (r) is composed of different kinds 
of potentials. We show that there are special properties of the multi-Sommerfeld enhancement. The 
physical content of the multi-Sommerfeld mechanism is carefully demonstrated. The multi-Sommerfeld 
enhancement might play a role in dark matter annihilation.
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1. Introduction

The Sommerfeld enhancement is a fundamental effect in non-
relativistic quantum mechanics [1], which characterizes the en-
hancement of the cross section due to an attractive potential (in 
the case of the repulsive potential, the cross section is suppressed):

σ = Sσ0 (1)

where σ is the actual cross section, σ0 is the cross section without 
potential, and S is the Sommerfeld enhancement factor. This factor 
is also known as the Sommerfeld–Sakharov factor [2].

As we know, an incident plane wave traveling in the positive 
direction of the z-axis is

ψ0(r) = eikz (2)

The scattering of a central potential must produce the wave func-
tion that behaves like an incident plane wave plus an outgoing 
spherical wave for r → ∞, in the form

ψ(r, θ) → eikz + f (θ)
eikr

r
as r → ∞ (3)

and the solution of the Schrödinger equation has the form

ψ = 1

2k

∞∑
l=0

il(2l + 1)eiδl Pl(cos θ)Rkl(r) (4)

where δl is the phase shift and the Rkl(r) are radial functions sat-
isfying the equation(

− ∂2

∂r2
− 2

r

∂

∂r
+ 2mV (r) + l(l + 1)

r2

)
Rkl(r) = k2 Rkl(r) (5)

where m is the particle mass, V (r) is the central potential.
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If the interaction is point-like and takes place in the origin, the 
Sommerfeld enhancement factor due to the potential is

S = |ψ(0)|2
|ψ0(0)|2 = ∣∣ψ(0)

∣∣2
(6)

We can solve the Schrödinger equation to obtain the boost factor.
The essence of the Sommerfeld effect can be easily understood: 

the wave function of the particle is strongly distorted by the ap-
pearance of a non-relativistic potential, the plane wave cannot be 
a good approximation of the incident state, thus the real cross sec-
tion could be much different from the one which is not affected 
by the potential.

The Sommerfeld enhancement is very important for us to un-
derstand the phenomenon of positron fraction excess in cosmic 
rays. This mechanism itself and its applications in dark matter an-
nihilation were extensively studied [3–13].

However, in this paper, we will study the Sommerfeld effect 
in a different case where V (r) is composed of different kinds of 
potentials. This situation is frequently encountered in practice. In 
contrast to other simple potential cases, we will refer to this kind 
of effect as the multi-Sommerfeld enhancement.

2. Multi-Sommerfeld enhancement

The multi-Sommerfeld enhancement could happen in low-
energy scattering processes, if there are at least two kinds of the 
interactions among the matter fields.

Consider a potential, which is composed of a Coulomb potential 
and a Yukawa potential

V (r) = V C + V Y = −α

r
− αY

r
e−μr (7)

where V C (r) is the Coulomb potential, α is its coupling constant, 
and V Y (r) is the Yukawa potential, αY is the coupling constant, 
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Fig. 1. Multi-Sommerfeld factor for 2α/v = 2 and 2αY /v = 20, where η = mv/μ. 
We can see that the resonance enhancement appears in this case.

μ is the screening constant. This kind of potential can be produced 
by the Lagrangian

Lint = −λψ̄γ μψ Aμ − gψ̄ψφ (8)

It is well known that the resonance behavior is a significant fea-
ture of the Sommerfeld enhancement (see, e.g. [8]), it corresponds 
to the zero-energy resonance scattering. In the beginning, let us 
study the resonance behavior of the multi-Sommerfeld enhance-
ment.

For the potential

2mV (r) = − b

4r2
(9)

We know that if b > 1 (in atomic units), there is an infinity of 
bound states produced by the potential, and if b < 1, the number 
of the bound states of the potential is finite. It is easy to find that 
the potential (7) has an infinity of bound states, because at large 
distances the potential decreases slower than the “critical poten-
tial” 2mV (r) = −1/4r2. An infinite number of bound states indi-
cates that the bound states near zero-energy are quasi-continue in 
quasi-infinite space, thus there is no resonance in the scattering 
and the resonance behavior would absent in the Sommerfeld en-
hancement, as in the case of the Coulomb potential scattering. The 
naive argument indicates that the resonance behavior would also 
absent in the multi-Sommerfeld enhancement for the potential (7). 
However, the numerical simulations of this kind of potential show 
that the resonance behavior could appear in the multi-Sommerfeld 
enhancement, see Fig. 1.

To explain this resonance behavior of the multi-Sommerfeld en-
hancement, we need to study the special relation between the 
potential (7) and bound states.

Notice that the Yukawa potential decreases exponentially and 
the Coulomb potential vanishes as r−1, thus at large distances

V (r) → −α

r
(10)

However, the situation becomes complicated at small distances.
If αY > α, near the origin, the Yukawa force is stronger than the 

Coulomb force. However, V Y (r) decreases much faster than V C (r), 
the Coulomb field would win out at large distances. To get the 
“critical point”, we use the condition

α = αY
e−μr0 (11)
r0 r0
Fig. 2. Multi-Sommerfeld factor (red) for 2α/v = 15, 2αY /v = 15, and the Sommer-
feld factor (blue) for the Yukawa potential, where η = mv/μ. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

and find

r0 = 1

μ
ln

αY

α
(12)

It shows that there are two distinct regions of the potential (7). 
In the region r < r0, the Yukawa part dominates, and in the re-
gion r > r0, the Coulomb part dominates. We may say that the 
potential (7) decreases like the Yukawa potential at small distances 
but decreases like the Coulomb potential at large distances. Intu-
itively, if the Yukawa part of V (r) is able to develop bound states, 
V (r) could form shallow bound states in finite space. That explains 
why the resonance behavior could appear in the multi-Sommerfeld 
enhancement.

The situation changes if αY < α. The potential (7) is dominated 
by the Coulomb part, and it decreases like the Coulomb potential 
at any distances. In this case, no matter the Yukawa part could or 
could not develop bound states, the potential (7) is difficult to form 
shallow bound states in finite space, thus there is no resonance 
behavior in the multi-Sommerfeld enhancement, see Fig. 2.

As explained above, it is already shown that if αY > α, the 
bound states created by the Yukawa part could “exist” in the po-
tential (7). However, the bound states of the potential (7) would 
not be exactly the same as the ones of the Yukawa part. To order to 
show its implication for the multi-Sommerfeld enhancement, we 
can define an effective Yukawa potential in the region r ≤ r0

V eff (r) = −α′

r
e−μ′r (13)

where α′ = α + αY , and μ′ is the effective screening constant. At 
the point r = r0, it requires

αY

r0
e−μr0 + α

r0
= α′

r0
e−μ′r0 (14)

and we can get

μ′ = μ ln
2αY

α + αY
(15)

It is well known that the ability of the Yukawa potential to 
develop bound states is proportional to the value of mα/μ, and 
exact value for existing a bound state of Yukawa potential is 
2mα/μ = 1.68 [14]. A simple calculation shows

α′
′ >

αY (16)

u μ



190 Z. Zhang / Physics Letters B 734 (2014) 188–192
Fig. 3. Multi-Sommerfeld factor (red) for 2α/v = 3, 2αY /v = 15, and the Som-
merfeld factor (blue) for the Yukawa part, where η = mv/μ. We can see that the 
resonance positions do shift to the left as expected. The resonance enhancement is 
also alleviated by the Coulomb part. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

This result indicates that comparing with the single Yukawa po-
tential case, the resonance positions of the multi-Sommerfeld en-
hancement for the potential (7) would shift to the left side of η
(the side of smaller mass). This shift behavior of resonance posi-
tions is observed, see Fig. 3. The resonance enhancement would 
not be 1/v2-dependence as a consequence of the appearance of 
the long-range potential.

As we know, in the case of the Sommerfeld enhancement for a 
Yukawa potential, the Sommerfeld factor is the same as the one of 
the Coulomb potential, if mv/μ � 1 (see, e.g. [7]). We notice that 
this Coulomb approximation behavior still appears in the case of 
the multi-Sommerfeld enhancement, see Figs. 1–3.

So far we have ignored an interesting part of the multi-
Sommerfeld mechanism: there is another stable region of the 
multi-Sommerfeld factor, where η � v/2α (i.e. 2mα/μ � 1). Al-
though we could reasonably infer that the enhancement comes 
from the Coulomb part of the potential (7), it would be more 
meaningful to us if we can show the formal aspect of this be-
havior.

Define the scattering operator

T f i = 〈 f |V C + V Y
∣∣ψ(+)

〉
(17)

where 〈 f | is the final plane wave state, and |ψ(+)〉 is defined by 
the Lippmann–Schwinger equation

∣∣ψ(+)
〉 = |i〉 + 1

E − H0 + iε
(V C + V Y )

∣∣ψ(+)
〉

(18)

where |i〉 is the initial plane wave state.
Recall that in the formal theory of the scattering, the Gell-Mann 

and Goldberger’s transformation [15] for the potential U + V is

A f i = 〈 f |V + U
∣∣ψ(+)

〉
= 〈

f (−)
∣∣V

∣∣i(+)
〉 + 〈 f |U ∣∣i(+)

〉
(19)

where |i(+)〉 is defined by

∣∣i(+)
〉 = |i〉 + 1

E − H0 + iε
U

∣∣i(+)
〉

(20)

and | f (−)〉 is defined by

∣∣ f (−)
〉 = | f 〉 + 1

U
∣∣ f (−)

〉
(21)
E − H0 − iε
We could introduce the incoming (outgoing) scattering state 
|i(+)

c 〉 (| f (−)
c 〉) for the non-perturbative Coulomb field. In order 

to simplify our discussion, the original Gell-Mann and Goldberg-
er’s transformation (19) need be specially considered at the level 
of elementary particles: generally, the final states in the inelas-
tic scattering would be extremely relativistic, | f (−)

c 〉 can be simply 
replaced by | f 〉. We therefore could separate the scattering opera-
tor (17) as

T f i ≡ 〈
f
∣∣V C

∣∣i(+)
c

〉 + 〈 f (−)
c |V Y

∣∣i(+)
c

〉
= 〈 f |V C

∣∣i(+)
c

〉 + 〈 f |V Y
∣∣i(+)

c
〉

(22)

The first term in the right of Eq. (22) would vanish if there are 
two massive scalar bosons in the final state, and the second term 
would vanish if there are two massless gauge bosons in the final 
state.

We know that |i(+)
c 〉 behaves like [16]

ψ(+)(r) = 〈
r
∣∣i(+)

c
〉 = B〈r|i〉

= eπα/2vΓ

(
1 − iα

v

)
F

(
iα

v
,1,

ivr − iv · r

α

)
eik·r (23)

where F is the confluent hypergeometric function, defined by

F(α,γ , z) = 1 + α

γ

z

1! + α(α + 1)

γ (γ + 1)

z2

2! + · · · (24)

and

B = eπα/2vΓ

(
1 − iα

v

)
F

(
iα

v
,1,

ivr − iv · r

α

)
(25)

If the interaction is point-like, the factor B could be treated as 
a relevant constant of the scattering process, and we can formally 
redefine

T f i = B〈 f |V C |i〉 + B〈 f |V Y |i〉 (26)

In our treatment, Br=0 is the factor of the “perturbation scat-
tering amplitude” for the interaction, and we obtain

S = |ψ(0)|2
|ψ0|2 = |B|2r=0 = 2πα/v

1 − e−2πα/v
(27)

We can see that this boost factor is exactly the multi-Sommerfeld 
factor in the region η � v/2α.

Next let us consider another typical potential composed by the 
Yukawa potentials:

V (r) = V 1 + V 2 = −α1

r
e−μ1r − α2

r
e−μ2r (28)

where αi are the coupling constants, and μi are the screening con-
stants, i = 1, 2. This kind of potential would appear in an abelian 
gauge theory, if the abelian gauge boson gets mass from the BEH 
mechanism.

For the potential (28), the s-wave radical Schrödinger equation 
is

ϕ′′(y) +
(

1 + 1

yε1
e
− y

η1 + 1

yε2
e
− y

η2

)
ϕ(y) = 0 (29)

where εi = v/2αi and ηi = mv/μi .
For different Yukawa potentials, the resonant Sommerfeld en-

hancements would have different resonance positions. We have 
already shown that the non-perturbative effects of the single po-
tentials could be gradually turned on, it naturally suggests that 
there would be the multiple resonance behavior in the multi-
Sommerfeld enhancement. For instance, we adopt ε1 = 10−1 =
ε2/5, η = η1 = 104η2, and plot the boost factor, see Fig. 4.
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Fig. 4. Multiple resonance behavior in the multi-Sommerfeld enhancement for ε1 =
v/2α1 = 0.1, ε2 = v/2α2 = 0.02 and μ1/μ2 = 0.0001, where η = η1 = mv/μ1.

If V (r) is composed of a series of Yukawa potentials, we find 
that it is simple to generalize a conclusion of the single Yukawa 
potential case: for the multi-Sommerfeld enhancement, all the 
Yukawa potentials could be treated as the Coulomb potentials in 
the region mv/μmax � 1, where μmax = max{μ1, μ2, . . . , μn}.

3. Phenomenology

Recent years, the phenomenon of positron fraction excess in 
cosmic rays at high energy was observed by HEAT [17], PAMELA 
[18], Fermi-LAT [19] and AMS-02 [20]. This anomaly could be ex-
plained by dark matter annihilation in WIMPs scenario, but if we 
want to keep “WIMP miracle” surviving, large boost factors are 
needed. An attractive way of getting a large boost factor is to in-
voke the Sommerfeld enhancement [3].

It was discussed in many models that dark matter could 
interact with itself via different kinds of gauge bosons (see, 
e.g. [21–23]). For TeV-scale dark matter, it was suggested that there 
is a new GeV-scale force carrier φ in dark sector [7]. This light 
force carrier would produce the significant Sommerfeld enhance-
ment factor and make the dark matter annihilates dominantly into 
leptons.

However, if there is an unbroken U (1) symmetry in dark sec-
tor, besides the light force carrier, the dark photon appears.1 Now 
TeV-scale dark matter could interact through a pure attractive po-
tential:

V (r) = −αφ

r
e−mφr − αD

r
(30)

where mφ is the mass of the light force carrier, αφ is its coupling 
constant, and αD is the dark Coulomb coupling constant. Large 
dark Coulomb coupling constants are not favored by generally as-
trophysical observations (at least for simple models). Typically, we 
assume αD < αφ ∼ 10−2.

In order to show the implication of the multi-Sommerfeld en-
hancement for potential (30), let us consider the boost in sub-
structure. The importance of the substructure boost was studied in 
literature [7,25–28]. The subhalos have velocity dispersions much 
smaller than the 150 km/s of the smooth halo, it could be as-
sumed that the Sommerfeld enhancement in subhalos saturates 
at ∼ mαφ/mφ . However, if dark photon also appears, the dark 
Coulomb part of the multi-Sommerfeld enhancement would not 

1 Existing an unbroken U (1) symmetry in dark sector is not a new idea, see. 
e.g. [23] or a comprehensive work [24] and its references.
saturate at any velocities. We know that dwarf galaxies have the 
velocity dispersions of ∼ 10−5 [29]. Thus the dark Coulomb in-
teraction would dominate the multi-Sommerfeld enhancement in 
dwarf galaxies, if the dark Coulomb coupling constant satisfies

105παD � mαφ

mφ

(31)

In order to give a quantitative result, we adopt mφ = 0.5 GeV, 
αφ = 0.01, m = 1 TeV. Using Eq. (31), we can see that the boost in 
dwarf galaxies mainly comes from the dark Coulomb interaction, 
if αD � 10−4. It shows that although the dark Coulomb coupling 
is much weaker than the coupling of the GeV-scale boson, the 
dark Coulomb interaction could dominate the multi-Sommerfeld 
enhancement in substructure. Generally, such small value of αD

(∼ 10−4) is potentially safe in current astrophysics, and appropri-
ate value of αφ could produce the correct relic abundance.

4. Summary

Instead of investigating the comprehensive implication of the 
multi-Sommerfeld enhancement for TeV-scale dark matter, in 
this work, we concentrate on the physical content of the multi-
Sommerfeld mechanism.

In the case where V (r) is composed of a Coulomb potential 
and a Yukawa potential, we find that if the coulomb coupling 
constant is larger than the Yukawa coupling constant, V (r) can-
not form shallow bound states in finite space. Thus there is no 
resonance behavior in the multi-Sommerfeld enhancement. If the 
coulomb coupling constant is smaller than the Yukawa coupling 
constant, there would be resonance behavior in the enhancement. 
Comparing with the Yukawa case, detail calculations show that the 
resonance positions would shift to smaller values of m. By means 
of a formal method, we prove that the enhancement in the range 
2mα/μ � 1 is produced by the Coulomb part of the potential.

In the case where V (r) is composed of a series of Yukawa po-
tentials, the multiple resonance behavior of the multi-Sommerfeld 
enhancement is found. In the parameter space mv/μmax � 1, 
the Yukawa parts in the potential could be approximated as the 
Coulomb potentials, and the Coulomb approximation behavior of 
the multi-Sommerfeld enhancement appears.

Although we focus on the multi-Sommerfeld mechanism it-
self, its potential influence on dark sector is briefly discussed. We 
show that for an unbroken U D(1) symmetry in dark matter, even 
the dark Coulomb coupling constant is two orders of magnitude 
smaller than the coupling constant of the GeV-scale force carrier, 
attributing to the small velocities of dark matter subhalos and the 
saturation behavior of the short-range potential, the dark Coulomb 
interaction could dominate the boost in dwarf galaxies.

Appendix A. Sommerfeld enhancement for different parameter 
spaces

In this appendix, we show how to get different parameter 
spaces of the (multi-)Sommerfeld enhancement.

The s-wave radical Schrödinger equation for the Yukawa poten-
tial is

1

2m

d2φ(r)

dr2
+ αY

r
e−μrφ(r) = −mv2

2
φ(r) (A.1)

where φ(r) = rRl=0(r).
To obtain the Sommerfeld factor, we need solve it numerically 

with boundary conditions:

φ(0) = 0 and φ(r) → 2 sin(kr + δ) as r → ∞ (A.2)
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It is convenient to introduce scaled variable x = 2αY mr, and we 
can rewrite Eq. (A.1) as

φ′′(x) +
(
ε2

Y + 1

x
e−εμx

)
φ(x) = 0 (A.3)

where εY = v/2αY , εμ = μ/2αY m. The Sommerfeld enhancement 
depends on εY and εμ .

As we know, in the case of the Coulomb scattering, we can re-
define variables to get the standard Kummer’s equation from the 
Whittaker equation, and it does not alter the physically observable 
quantities. Similarly, we can redefine y = vx/2αY = kr and ϕ = kφ

[11], Eq. (A.3) becomes

ϕ′′(y) +
(

1 + 1

yεY
e− y

η

)
ϕ(y) = 0 (A.4)

where η = mv/μ. Now, the Sommerfeld enhancement depends on 
η and εY .

For the potential (7), we get

ϕ′′(y) +
(

1 + 1

yρ
+ 1

yεY
e− y

η

)
ϕ(y) = 0 (A.5)

where ρ = v/2α, and the multi-Sommerfeld enhancement de-
pends on η, εY and ρ .
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