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Abstract

Some constrained optimization approaches have been recently proposed for the system of nonlinear equations (SNE). Filter
approach with line search technique is employed to attack the system of nonlinear equations in this paper. The system of nonlinear
equations is transformed into a constrained nonlinear programming problem at each step, which is then solved by line search
strategy. Furthermore, at each step, some equations are treated as constraints while the others act as objective functions, and filter
strategy is then utilized. In essence, constrained optimization methods combined with filter technique are utilized to cope with the
system of nonlinear equations.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Optimization; Nonlinear programming; Equality constraints; The system of nonlinear equations

1. Introduction

The system of nonlinear equations (SNE) plays crucial roles in economics, in engineering field and in the
optimization community [1,2], and is formally stated as follows

ci (x) = 0 i = 1, 2, . . . , m, (1.1)

where x ∈ Rn and ci : Rn
−→ R for i = 1, 2, . . . , m.

When (1.1) is tackled by iterative methods, xk , for k = 1, 2, . . ., is utilized to denote the successive iterates. There
mainly exist three ways to tackle (1.1).

The apparent technique is based on successive linearization, in which iterating direction dk is obtained on iteration
k by handling the system of linear equations

c(k)
i + (a(k)

i )T d = 0 i = 1, 2, . . . , m, (1.2)
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where ck
i = ci (xk), ak

i = {5ci (xk)} for i = 1, 2, . . . , m. We can employ Newton’s method to attack it. If m = n, (1.2)
has local and second-order convergence near a regular solution. It is also possible that (1.2) is inconsistent.

The second approach is to pose (1.1) as a minimization problem

minimize h(x) = c(x)T c(x).

This problem can also be handled by successive linearization. This idea helps to improve the global properties of
Newton’s method [3,4]. On the other hand, there still exist some potential difficulties. Powell [4] gives an example that
the iterates based on the above minimization problem converge to a non-stationary point of h(x), which is obviously
unsatisfactory.

The third strategy is recently proposed in [5]. In [5], Nie divides the set {1, 2, . . . , m} into two subsets S1 and S2
at each step, where S2 denotes the complement {1, 2, . . . , m}/S1. S1 and S2 can be defined according to the case and
the constrained optimization algorithms are utilized. The problem thus becomes the following optimization problem
with equality constraints

minimize
∑
i∈S1

c2
i (x)

subject to c j (x) = 0, j ∈ S2.

(1.3)

The choice of two sets S1 and S2 will be given below the algorithm in Section 2 in this paper. We aim to solve (1.3)
with optimization approaches. Some other ways are also proposed to handle (1.3) [6–8].

When (1.1) is infeasible, a local minimization of h(x) > 0 is found or a point is located at which the linearized
system (1.2) is infeasible, which is regarded as local infeasibility. For convenience, we give a definition of the solution
about (1.1) based on (1.3), which will help us to understand the algorithm.

Definition 1. If x? is a local minimization of (1.3) but not a solution to (1.1), we call x? a local infeasibility point of
(1.1).

Just like the global minimization of h(x), it is very difficult to describe global infeasibility. We consequently
discuss local infeasibility point in this paper. Moreover, there exist rare papers devoted to the utilization of constrained
optimization strategies to solve the system of nonlinear equations. In this paper, we try to employ constrained
optimization methods to attack (1.1). Furthermore, line search technique is employed in this paper, which is different
from that in [5]. There are other techniques for the system of nonlinear equations (NSE), such as exclusion region
algorithms [9] and differential-free algorithms[10].

Filter approaches, in which constraints and objective function are efficiently balanced, are recently proposed by
Fletcher and Leyffer [11]. Filter strategies are focused on because of promising numerical results [12–22]. In [17], the
local properties of filter methods are researched. Filter approach is also extended to handle the system of nonlinear
equations(SNE) in [6].

The paper is organized as follows: In Section 2, a new algorithm based on filter line search technique similar to that
in [20,21] is put forward for the system of nonlinear equations(SNE). The algorithm is analyzed in Section 3. Some
numerical results and remarks are given in Section 4.

2. A line search filter algorithm for the system of nonlinear equations

To deal with (1.3) based on (1.1), we consider the KKT conditions to (1.3), which is given as follows:

g(x) + AS2(x)λ = 0

cS2(x) = 0,
(2.4)

where g(x) = ∇
∑

i∈S1
c2

i (x) and AS2 = 5cS2(x)T , with the Lagrangian multipliers λ. Its KKT conditions are
linearized at the beginning of the kth iteration xk and the following formula is obtained:[

Bk Ak
S2

(Ak
S2

)T 0

] [
sk

λ+

k

]
= −

[
gk

ck
S2

]
, (2.5)
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where Bk is the Hessian or approximate Hessian matrix to L(x, λ) :=
∑

i∈S1
c2

i (x)+cS2(x)T λ, ck
S2

= cS2(xk), (gk)i =

∂
∑

i∈S1
c2

i (xk )

∂(xk )i
and Ak

S2
= 5cS2(xk). Actually, (2.5) may be inconsistent. In [7], Celis–Dennis–Tapia subproblem (CDT)

approach is employed to avoid insistence. In this paper, the subproblem is based on (2.5). In each step, line search is
also utilized to obtain the step size. Further, we need just the approximate solution to (2.5).

After a direction sk has been obtained, a step size αk ∈ (0, 1] is determined to obtain the new iterate

xk(αksk) := xk + αksk,

where sk is obtained from (2.5) and αk is the step size following from some type of line search strategy. When a new
point is obtained, the sets S1 and S2 are all updated by some strategy.

To handle (1.1), we solve (1.3) by employing line search techniques. The search direction is obtained by attacking
(2.5). When (2.5) has no solution, restoration algorithm is employed to find a new iterate so that (2.5) is consistent at
the new point. The restoration algorithm aims to find a feasible point and the following subproblem is solved:

min
rk

θk(xk + rk) = ‖cS2(xk) + ∇cT
S2

rk‖
2,

where 2-norm is always employed.
To determine whether to accept or deny the trial point, some criterion is employed. The merit function is thus

utilized.

mk(x) =

∑
i∈S1

ci (x)2,

and

θk(xk) = ‖cS2(x)‖2
2.

The filter criterion is defined as follows

mk(xk(αksk)) ≤ mk(xi ) + γmθk(xk(αksk))

orθk(xk(αksk)) ≤ γθθk(xi ), i ∈ Fk,
(2.6)

where 0 ≤ γm, γθ < 1 are two constants. If xk(αksk) satisfies (2.6), xk(αksk) is accepted and xk+1 := xk(αksk).
Similar to the method in [20], to avoid obtaining a feasible point while not an optimal solution, the following switching
condition is employed:

uk(αk,l) < 0, −uk(αk,l)αk,l > δθ(xk), (2.7)

where the constant δ > 0, uk(α) := αgT
k sk and the following formulation is met

mk(xk)(αk,l) ≤ mk(xk) + τ3uk(αk,l) (2.8)

with a fixed constant τ3 ∈ (0, 1
2 ). For some constant η f > 0, we also define the following actual reduction as follows:

Ared(αk,lsk) = −(mk(xk + αk,lsk) − mk(xk)) ≥ η f uk(αk,l). (2.9)

We note that a trial point which satisfied (2.7)–(2.9) is a f-type point. In this way, xk+1 := xk(αk,lsk) but the filter
set is not augmented. For convenience, we assume that the solution sk to (2.5) is denoted Zkvk where Zk satisfies
Z T

k Ak
S2

= 0 and Z T
k Zk = I . The algorithm is formally given as follows, in which some line search technique is

employed:

Algorithm 1. (A Line Search Filter Algorithm for the System of Nonlinear Equations)

Step 0. Choose x0, S0
1 , S0

2 and ε, compute g0, ci (x0), Ak for i ∈ S0
2 and Z0. Set k := 0 and F0 = {0}.

Step 1. If ‖c(xk)‖ ≤ ε then stop. Give αmin
k :=

{
min{γθ ,

γmθk (xk )

−gT
k sk

}, gT
k sk < 0

γθ Otherwise.

Step 2. Compute (2.5) to obtain sk . If there exists no solution to (2.5), goto Step 6.

Step 3. If ‖sk‖ ≤ ε then stop. Otherwise, goto step 4.
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Step 4. If (2.7)–(2.9) is satisfied for some αk,l ≥ αmin
k , xk+1 := xk + αk,lsk and goto Step 5. If αk,l < αmin

k , goto
Step 6. If (2.6) is violated, goto Step 6. Otherwise, xk+1 := xk + αksk and update Fk+1 := Fk

⋃
{(θ, m) ∈ R2

: θ ≥

(1 − γθ )θk(xk), m ≥ mk(xk) − γmθk(xk)}.

Step 5. Compute gk+1, Bk+1, Ak+1, Sk+1
1 , Sk+1

2 , Zk+1. Let k := k + 1, and goto Step 1.

Step 6. (Restoration Stage) Find xr
k := xk + αr

ksr
k such that xr

k is accepted by the filter and the infeasibility measure θ

is reduced. Goto step 1.

We now discuss the sets S1 and S2. In this work, for some positive constant n0 > 0, we define

c2
i1
(xk) ≥ c2

i2
(xk) ≥ · · · ≥ c2

in
(xk)

S1 = {ik |k ≤ n0}, (2.10)

S2 = {ik |k ≥ n0 + 1}. (2.11)

The results in Section 3 are all based on (2.10) and (2.11).
There are some advantages of optimization techniques with constraints to attack the system of nonlinear equations.

Firstly, it provides another way to attack the system of nonlinear equations. Secondly, when a point lies near a
local infeasibility point, it may be very slow to find a local infeasibility point for other approaches. The local
infeasibility point can be immediately found with Algorithm 1 because some second-order information (or second-
order derivatives) of the equation is facilitated to the full. Finally, Algorithm 1 will help in balancing the differences
in all equations.

3. Convergent properties of the algorithm

As we know, line search approach has globally convergent property with exact line search. We hope that there
are also global convergence results for Algorithm 1. To give the global convergence, we make some assumptions as
follows, which are called standard assumptions in general.

Assumption 1. (1) The set {xk} ∈ X is nonempty and bounded;
(2) ci (x), i = 1, 2, . . . , m are all twice continuously differentiable on an open set containing X ;
(3) The matrix sequence {Bk} is bounded.

Assume that ‖Bk‖ ≤ M1 and ‖ 5
2 ci (x)‖ ≤ M2 for all k, where M1 and M2 are all positive constants independent

of k. We then analyze the properties of Algorithm 1 based on the above assumption. When the algorithm terminates
finitely, an ε solution of (1.1) or a local infeasibility point is obtained. It is apparent that the following result holds:

Theorem 1. If Algorithm 1 terminates at Step 1, then an ε approximate solution to (1.1) is achieved. If the Algorithm
terminates at Step 3, then a local infeasibility point is obtained.

Proof. The first part is obvious by virtue of the terminating conditions in Step 1. When Algorithm 1 terminates at Step
3, it is not a solution to (1.1) because it does not satisfy the condition of Step 1, while it satisfies the KKT conditions
to (1.3). It is hence a local minimization of (1.3). It is therefore a local infeasibility point. �

When the algorithm terminates infinitely, we investigate the iterate sequence. We then have the following results

Lemma 1. If there are only finite or infinite number of iterates entering the filter, we then have

lim
k→∞

θk = 0. (3.12)

Proof. Similar to that in [19] or Theorem 1 in [20], the result is immediately obtained. The detail proof is omitted.
�

Further, we always assume that the solutions to (2.5) satisfy certain descent conditions.

Assumption 2. (1) (Ak
S2

)T has full column rank and Zk is bounded for any k.
(2) ‖sk‖ ≤ γs for all kwith a positive constant γs .
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We therefore have the following result, which explain that Algorithm 1 has the advantage of the least square strategy
and the residual is reduced at each step.

Lemma 2. Under Assumption 1, there exists the solution to (2.5) with exact (or inexact) line search which satisfies
the following descent condition,

|θk(xk + αsk) − (1 − 2α)θk(xk)| ≤ τ1α
2
‖sk‖

2

|mk(xk + αsk) − mk(xk) − uk(α)| ≥ τ2α
2
‖sk‖

2,
(3.13)

where α ∈ (0, 1), τ1 and τ2 are all positive constants independent of k.

Proof. These inequalities directly follow from second-order Taylor expansion of ci (x) for i = 1, 2, . . . , n and (2.4).
According to Taylor expansion of

∑
i∈S1

c2
i ((xk) + αsk) with i ∈ S1, we then have∣∣∣∣∣∑

i∈S1

c2
i (xk + αsk) −

∑
i∈S1

c2
i (xk) − αgT

k sk

∣∣∣∣∣ =

∣∣∣∣∣1
2
α2(sk)

T
5

2
∑
i∈S1

c2
i (xk + %αsk)sk

∣∣∣∣∣
≤ τ2α

2
‖sk‖

2,

where the last inequality follows the Assumption 1 and % ∈ [0, 1]. The second inequality in (3.13) therefore holds.
On the other hand, by virtue of the Taylor expansion of c2

i (xk + αsk) with i ∈ S2, we obtain

|c2
i (xk + αsk) − c2

i (xk) − 2αci (xk) 5 ci (xk)
T sk |

= |α2sT
k [ci (xk) 5

2 ci (xk + ζαsk) + 5ci (xk + ζαsk) 5 ci (xk + ζαsk)
T
]sk |

≤
1
n
τ1α

2
‖sk‖

2,

where the last inequality follows the Assumption 1 and ζ ∈ [0, 1]. Furthermore, from (2.4) we immediately obtain
−2αc2

i (xk) − 2αci (xk) 5 ci (xk)
T sk = 0. The first inequality in (3.13) consequently holds. The result holds and the

proof is completed. �

We now show that a KKT point is obtained by the above algorithm. The following lemma is given to help prove
the main result.

Lemma 3. Under Assumptions 1 and 2, if uk(α) ≤ −αε0 for a positive constant ε0 independent of k and for all
α ∈ (0, 1] and α ≥ αmin

k,l with (θk(xk), mk(xk)) 6∈ Fk , then there exist γ1, γ2 > 0 so that xk + αsk 6∈ Fk for all k and
α ≤ min{γ1, γ2θk(xk)}.

Proof. If uk(α) ≤ −αε0 for a positive constant ε0 independent of k and for all α ∈ (0, 1], the first part of (2.7)
accordingly holds. The second part of (2.7) follows the definition of αmin

k,l . Let (θk(xk), mk(xk)) 6∈ Fk .

We further point a fact according to the definition of filter. If (θ̄ , m̄) 6∈ Fk and θ ≤ θ̄ , m ≤ m̄, we obtain
(θ, m) 6∈ Fk .

Define γ1 := min{1, (ε0 +
θk (xk )

α
)/(γ 2

s τ2)} and γ2 := 1/(2γ 2
s τ1), where θk (xk )

α
> 0 is upper bounded because of

α ≥ αmin
k,l and the definition of αmin

k,l or directly follows (2.7). For α ≤ γ1, we correspondingly have α2
≤

αε0+θk (xk )

γ 2
s τ2

≤

−uk (α)+θk (xk )

τ2‖sk‖
2 . Namely, we obtain

uk(α) + τ2α
2
‖sk‖

2
− θk(xk) ≤ 0. (3.14)

Combining (3.13) and (3.14), we have

mk(xk + αsk) ≤ mk(xk) − θk(xk). (3.15)

Similarly, for α ≤ γ2θk(xk) ≤
θk (xk )

2τ1‖sk‖
2 , we have −2αθk(xk) + τ1α

2
‖sk‖

2
≤ 0. Combining (3.13), we also have

θk(xk + αsk) ≤ θk(xk). (3.16)
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On the other hand, from the update of S1 and S2, we have

θk+1(xk + αsk) ≤ θk(xk + αsk) ≤ θk(xk).

By combining (3.15) and (3.16) and the updating policy of S1, S2, we therefore have

mk+1(xk + αsk) ≤ mk(xk).

When (θk(xk), mk(xk)) 6∈ Fk , then there exist γ1, γ2 > 0 so that (θk+1(xk + αsk), mk+1(xk + αsk)) 6∈ Fk for all k
and α ≤ min{γ1, γ2θ(xk)}. The result consequently holds and the proof is complete. �

Remarks. It is reasonable that there exist (θ(xk), m(xk)) 6∈ Fk if uk(α) ≤ −αε0 for a positive constant ε0 independent
of k and for all α ∈ (0, 1]. We can show it by contradiction and the detailed proof is omitted. The convergence result
is now given as follows.

Theorem 2. Under Assumptions 1 and 2, for the sequence generated by Algorithm 1, we have

lim
k→∞

inf[‖ck
Sk

2
‖ + ‖Z T

k gk‖2] = 0. (3.17)

Namely, it has an accumulation which is the ε solution to (1.1) or a local infeasibility point. If the gradients of ci (xk)

are linear independent for all k and i = 1, 2, . . . , m, then, the solution to SNE is obtained.

Proof. We now show that

lim
k→∞

inf[‖ck
Sk

2
‖ + ‖sk‖2] = 0. (3.18)

If (3.18) holds, (3.17) is also true, see [23]. We show (3.18) by contradiction. If the result were false there should have
been a constant ε1 > 0 such that

‖ck
Sk

2
‖ + ‖sk‖2 > ε1 (3.19)

for all k. Moreover, there exist the following results for sufficiently large k.
It is apparent that ‖ck

Sk
2
‖ ≤

1
2ε1 hold accordingly for large enough k to the Algorithm 1. It is reasonable that we

have ‖sk‖2 ≥
1
2ε1 from (3.19).

Because ‖sk‖2 ≥
1
2ε1 for all k, let τ := min{

γ1
2 , γ2θk0(xk0)} for (θk0(xk0), mk0(xk0)) 6∈ Fk0 . We further assume that

θk0(xk0) < 1
32τ2τ

2ε2
1 . (This assumption is rational because of Lemma 1.) If 1

2τ < αk0+ j < τ , for j > 0 and k > k0,
we then have

θk(xk) ≤ θk0(xk0)

mk(xk) − mk(xk + αksk) ≥ τ2α
2
k ‖sk‖

2
≥

1
4
τ2α

2
k ε2

1 ≥
1
8
τ2τ

2ε2
1 ,

and

mk(xk) + θk(xk) − mk+1(xk + αksk) − θk+1(xk + αksk) ≥ τ2α
2
k ‖sk‖

2
− 2θk0(xk0)

≥
1
4
τ2α

2
k ε2

12θk0(xk0) ≥
1
8
τ2τ

2ε2
1 −

1
16

τ2τ
2ε2

1 =
1

16
τ2τ

2ε2
1 .

These inequalities are immediately obtained with the similar techniques in Lemma 3. We therefore obtain

∞ >

∞∑
k=k0

(mk(xk) + θk(xk) − mk(xk+1) − θk+1(xk+1)) ≥

∞∑
k=k0

1
16

τ2τ
2ε2

1 , (3.20)

where τ2 is a constant in (3.13). Thus, (3.19) does not hold and the result holds.
If the gradients of ci (xk) are linear independent for all k and i = 1, 2, . . . , m, the solution to SNE is obtained by

virtue of the result in [14]. The proof is complete. �

The global convergence to Algorithm 1 has been obtained and (3.13) holds. Actually, (3.13) is also satisfied for many
inexact line searches. Therefore, the results in this paper can be easily extended.
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Table 1
Numerical results for Example 1

Initial point Iterate number Number of functions Number of gradients

(3, 1) 6 8 7
(6, 2) 8 11 10
(24, 8) 13 16 15

Table 2
Numerical results for Example 3

N Iterate number Number of functions Number of gradients

10 12 14 15
20 17 21 22
40 26 32 33

4. Concluding remarks and numerical results

Employing (2.10) and (2.11) as the update rule about S1 and S2, some interesting results are obtained in Section 3.
As for Bk , we can utilize one-side reduced Hessian update or two-side reduced Hessian update, which is also an
important issue. Algorithm 1 is extremely flexible because we just assume that Assumptions 1 and 2 are satisfied.

We now give examples to illustrate Algorithm 1. The first example comes from [4], which converges to a non-
stationary point if least square approach is employed. The second example comes from [24], which converges to a
non-stationary point. We compute them in MATLAB 6.5 with exact line search. The tolerance is 10−5.

Example 1. Consider the problem of finding a solution of nonlinear system with two variables

F(x, y) =

(
x

10x/(x + 0.1) + 2y2

)
=

(
0
0

)
.

The unique solution is (x?, y?) = (0, 0). It has been proved in [4] that, starting from (x0, y0) = (3, 1), the iterates
converge to the point z = (1.8016, 0.0000), which is not a stationary point. Utilizing the algorithm in this paper, we
obtain a sequence of points converging to (x?, y?). The toleration ε in this paper is always 1.0e–6. The iterate number
is 43. The detail numerical result is given as follows (Table 1).

Example 2. Consider the following problem of finding a solution of nonlinear system

x2
i + xi+1 = 0, 1 ≤ i ≤ n − 1

x2
n + x1 = 0.

The root is x?
= 0.

The detail numerical result is given as follows (Table 2) with the initial point x0
N−2 = 0, x0

i = 0, i 6= N − 2.

Example 3 ([24]). Consider the problem of finding a solution of nonlinear system with two variables

F(x, y) =

(
x + 3y2

(x − 1.0)y

)
=

(
0
0

)
.

The result is obtained with the number of functions 15 and the number of gradients 12, while Newton iterates fail to
find the solution.

Constrained optimization approaches attacking the system of nonlinear equations are exceedingly interesting and
are further developed in this paper. Moreover, the local property of the algorithm is another further topic.
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