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Abstract

We obtain the rate of growth of long strange segments and the rate of decay of infinite horizon ruin
probabilities for a class of infinite moving average processes with exponentially light tails. The rates are
computed explicitly. We show that the rates are very similar to those of an i.i.d. process as long as the
moving average coefficients decay fast enough. If they do not, then the rates are significantly different.
This demonstrates the change in the length of memory in a moving average process associated with certain
changes in the rate of decay of the coefficients.
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1. Introduction

How does the length of memory in a stationary stochastic process affect the behavior of
important characteristics of the process such as the rate of increase of the long strange segments
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and the rate of decay of the ruin probabilities? From a different point of view one can use such
important characteristics of a stationary process to tell whether or not the process has long
memory. In this paper such questions are discussed for a class of Rd -valued infinite moving
average processes with exponentially light tails. These are processes of the form

Xn =
−
i∈Z

φi Zn−i , n ∈ Z, (1.1)

where (Zi , i ∈ Z) are i.i.d., centered, random vectors taking values in Rd . We assume the
existence of some exponential moments, i.e.

there exists ϵ > 0 such that Λ(t) := log E

et Z0


<∞ for all t ∈ Rd with |t | < ϵ.

Such a process, also known as a linear process (see [5]), is well defined if the coefficients are
square summable:

∞−
i=−∞

φ2
i <∞. (1.2)

If the stronger condition of absolute summability of the coefficients holds, namely−
i∈Z
|φi | <∞, (1.3)

then it is often said that the process has short memory. This is mainly because the covariances
of the process are summable in this case, and a process with absolutely summable covariances
is often considered to have short memory; see e.g. [21]. What about other characteristics of a
process, that are often more informative than covariances?

In a recent article, Ghosh and Samorodnitsky [10] gave a complete picture of functional large,
moderate and huge deviations for the moving average process and discussed the effect of memory
on them. In this paper we follow up by obtaining the rate of growth of long strange segments and
the rate of decay of the ruin probabilities for the moving average processes. We consider two
cases: one where the coefficients of the process are absolutely summable, i.e. (1.3) holds, and
the other when (1.3) fails and the coefficients are balanced regularly varying. We show that the
rates are significantly different in these two cases. We view these results as showing the effect
of memory as well as indicating that the processes with absolutely summable coefficients can
be legitimately called short memory processes, while the alternative family of processes can be
legitimately viewed as a family of long memory processes.

We now define precisely the characteristics of a process that we will study in this paper.
Suppose that (Xn, n ∈ Z) is a zero mean Rd -valued, stationary and ergodic stochastic process.
Given any measurable set A ⊂ Rd , the lengths of the long strange segments are random variables,
defined as

Rn(A) := sup


j − i : 0 ≤ i < j ≤ n,
S j − Si

j − i
∈ A


,

where Sk = X1 + · · · + Xk are the partial sums. That is, Rn(A) is the maximum length of a
segment from the first n observations whose average is in A. To understand the justification for
the name long strange segments, consider any set A bounded away from the origin (that is 0 ∉ Ā,
where Ā is the closure of A.) Since the process is ergodic, we would not expect the average value
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of the process over a long time segment to be in A, and it is strange if that happens. If we use
the process to model a system, then the long strange segments are the time intervals where the
system runs at a different “rate” than anticipated, and it is of obvious interest to know how long
such strange intervals could be.

The easiest way to see the connection between the long strange segments and large deviations
is by defining

Tn(A) := inf


l : there exists k, 0 ≤ k ≤ l − n,
Sl − Sk

l − k
∈ A


;

Tn(A) is the minimum number of observations required to have a segment of length at least n,
whose average is in set A. It is elementary to check that there is a duality relation between the
rate of growth of Tn and the rate of growth of Rn . Furthermore, for any sequence (Xn) of random
vectors,

− lim sup
n→∞

1
n

log P [Sn/n ∈ A] ≤ lim inf
n→∞

1
n

log Tn(A), P-a.s. (1.4)

and, if (Xn) are i.i.d., then also

− lim inf
n→∞

1
n

log P [Sn/n ∈ A] ≥ lim sup
n→∞

1
n

log Tn(A), P-a.s.; (1.5)

see e.g. Theorem 3.2.1 in [6]. In Section 2 we exploit the connection between a general version
of long strange segments and large deviations to establish the rate of growth of the long strange
segments for the two classes of moving average processes we are considering. We will observe
a marked change (or a phase transition) in the rate of growth when switching from one family of
moving averages to the other.

The relations of the form (1.4) and (1.5) are referred to as the Erdös–Rényi law; Erdös and
Rényi [7] proved asymptotics for longest head runs in i.i.d. coin tosses. See [11,1,15,8,22] and
the references therein for versions on this result under various Markov chain settings.

We mention at this point that a different case of this problem was considered in [14,19],
where the assumption of certain finite exponential moments was replaced by the assumption of
balanced regularly varying tails with exponent−β < −1. These papers consider linear processes
as in (1.1) in dimension d = 1. In particular, Mansfield et al. [14] showed that if (1.3) holds, then
for any y > 0 and x > 0

P


a−1
n Rn((y,∞)) ≤ x


→ exp(−Cs y−βx−β) (1.6)

where (an) is a sequence that does not depend on the moving average coefficients, and it is
regularly varying at infinity with index β−1 (see [20] or [4] for details on regular variation). On
the other hand, Cs > 0 is a constant, which may depend on the moving average coefficients.
This rate of growth an of the long strange segments is the same as in the i.i.d. case, that results
when choosing φ0 = 1 and φi = 0 for all i ≠ 0. In the subsequent paper Rachev and
Samorodnitsky [19] considered the case when (1.3) fails to hold, but the coefficients (φi ) are

balanced regularly varying at infinity with exponent −α, satisfying max


1
β
, 1

2


< α ≤ 1. This

means that there is a nonnegative function ψ with

ψ ∈ RV−α, such that
φn

ψ(n)
→ p,

φ−n

ψ(n)
→ 1− p, as n→∞ (1.7)
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for some 0 ≤ p ≤ 1. Under this assumption, for any y > 0 and x > 0,

P


b−1
n Rn((y,∞)) ≤ x


→ exp(Cl y−βx−βα), (1.8)

for some sequence (bn) ∈ RV(αβ)−1 . Therefore, the long strange segments now grow at the
higher rate (bn). This phase transition can be taken as the evidence of long range dependence
in the moving average process under the regular variation (1.7) of the coefficients. A similar
phenomenon can be observed in Section 2 of the present paper.

The second topic that we consider in this article is that of the ruin probabilities. If (Yn) is an
Rd -valued stochastic process, and A a measurable set in Rd , an infinite horizon ruin probability
is a probability of the type

ρ(u; A) = ρ(u) = P [Yn ∈ u A, for some n ≥ 1] . (1.9)

The name “ruin probability” derives from the one-dimensional case with A = (1,∞): if we
interpret Yn as the total losses incurred by a company until time n, and u is the initial capital of the
firm, then the event in (1.9) is the event that the company eventually goes bankrupt. Probabilities
of the type are of interest in queuing theory as well; see e.g. [2].

In the context of moving average processes, we will define

Yn =

n−
i=1

X i − anµ, (1.10)

for some µ ∈ Rd , a sequence (an) increasing to ∞, with (Xn) the infinite moving average
process (1.1). The classical Cramér–Lundberg Theory (see e.g. Section XIII.5 in [2]) says that,
in dimension d = 1, if (Xn) are i.i.d., and (an) is a linear sequence then (under an additional
condition) there exist positive constants c and θ such that

ρ(u) ∼ ce−θu as u →∞. (1.11)

This result was later extended by Gerber [9] to the situation where (Xn) an ARMA(p, q) process
satisfying certain assumptions, including that of bounded innovations, and Promislow [18] has a
further extension to certain infinite moving average processes while removing the assumption of
the boundedness of the innovations. In all these cases (1.3), which we regard as a short memory
case is assumed to hold (in fact, much stronger assumptions are needed).

A weaker version of the estimate (1.11) is the logarithmic scale estimate

lim
u→∞

1
u

log ρ(u) = −θ. (1.12)

Such results were derived in [16,17] in a fairly great generality in the one-dimensional case.
When specified to the moving average case, in order to give a non-trivial limit, these results
require, once again, absolute summability of the coefficients.

There have been other recent studies of ruin probabilities for certain stationary increment
processes with long memory. Hüsler and Piterbarg [12,13] analyzed the (continuous time) ruin
probability where the increment process was a version of the fractional Gaussian noise. Further,
Barbe and McCormick [3] also obtained a logarithmic form of ruin probability asymptotics, as
in (1.12), under the assumption that the increment process is the classical Fractional ARIMA
process or belongs to a class of related processes.
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In this paper we solve the logarithmic scale ruin problem (1.12) when the increment process
(Xn) in (1.10) is the infinite moving average process. We present a fairly complete picture.
Namely, we prove the results both in the short memory case (when (1.3) holds), and in the
long memory case, under the assumption of balanced regularly varying coefficients. We allow a
very broad class of drift sequences (an). Ruin probabilities are also related to large deviations,
but not as directly as the long strange segments. We use a combination of multiple techniques,
but the large deviation principle for the moving average process proved in [10] still plays an
important role. The techniques we use here can be modified for other, and more general, classes
of stationary processes but we do not make any such attempt in this paper. We present the results
and their proofs in Section 3 and in the process we clearly demonstrate the effect of memory in
the process (Xn) on the rate of the decay of the ruin probability ρ(u). The Appendix contains a
multivariate extension of the estimates in [16] that are not restricted to moving average processes.

2. Long strange segments

Let (Xn, n ∈ Z) be an Rd -valued, centered stationary infinite moving average process (1.1)
defined on a probability space (Ω ,F , P), and let (Sn) be its partial sum process. In this section
we discuss the rate of growth of a general version of the length of the long strange segments,
which we define as follows. For a sequence a = (an) increasing to infinity and a measurable set
A ⊂ Rd , we define

Rm(A; a) := sup


n :
Sl − Sl−n

an
∈ A for some l = n, . . . ,m


(2.1)

and the “dual characteristic”

Tr (A; a) := inf


l : there exists k, 0 ≤ k ≤ l − r,
Sl − Sk

al−k
∈ A


. (2.2)

Notice that {Rm(A; a) ≥ r} if and only if {Tr (A; a) ≤ m}. We will often refer to Rm(A; a) as Rm
and to Tr (A; a) as Tr , as long as set A and the sequence (an) under consideration are obvious.

The assumptions and results below use the following notion of balanced regular variation on
Rd .

A function f : Rd
→ R is said to be balanced regularly varying with exponent β > 0, if

there exists a nonnegative bounded function ζ f defined on the unit sphere on Rd and a function
τ f : (0,∞)→ (0,∞) satisfying

lim
t→∞

τ f (t x)

τ f (t)
= xβ (2.3)

for all x > 0 (i.e. τ f is regularly varying with exponent β) and such that for any (λt ) ⊂ Rd with
|λt | = 1 for all t , converging to λ,

lim
t→∞

f (tλt )

τ f (t)
= ζ f (λ). (2.4)

The subscript f will typically be omitted if doing so is unlikely to cause confusion.
Next, we state the specific assumptions on the moving average process, the normalizing

sequence (an) in (2.1) and (2.2), the resulting large deviation rate sequence (bn), and the noise
variables. We will consider two different situations, corresponding to what we view as a short
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memory moving average, when the coefficients in (1.1) decay fast, and a long memory moving
average, when the coefficients in (1.1) decay slowly. Assumptions 2.1 and 2.2 correspond,
roughly, to Assumptions 2.1 and 2.3 in [10], respectively.

We start with the assumptions describing the short memory case. Throughout this paper we
use Λ(·) to denote the log-moment generating function of the i.i.d. innovations (Zi ):

Λ(t) := log E

et Z0


,

and by FΛ ⊂ Rd we denote the set where Λ(·) is finite:

FΛ = {t : Λ(t) <∞}.

Furthermore, for any set A, A◦ and Ā denote the interior and closure of A, respectively.

Assumption 2.1. All the scenarios below assume that−
i∈Z
|φi | <∞ and

−
i∈Z

φi = 1. (2.5)

S1. an = n, 0 ∈ F◦Λ and bn = n.
S2. an = n,FΛ = Rd and bn = n.
S3. an/


n log n→∞, an/n→ 0, 0 ∈ F◦Λ and (bn) an increasing positive sequence such that

bn ∼ a2
n/n as n→∞.

S4. an/n→∞,Λ(·) is balanced regularly varying with exponent β > 1 and (bn) an increasing
positive sequence such that bn ∼ nτ(cn), where

cn = sup{x : τ(x)/x ≤ an/n}. (2.6)

The next assumption describes the long memory case.

Assumption 2.2. All the scenarios assume that the coefficients (φi ) are balanced regularly
varying with exponent −α, 1/2 < α ≤ 1 and

∑
∞

i=−∞ |φi | = ∞. Specifically, we assume that
(1.7) holds for α in this range. Let Ψn :=

∑
1≤i≤n ψ(i), where once again, ψ(·) is as in (1.7).

R1. an = nΨn, 0 ∈ F◦Λ and bn = n.
R2. an = nΨn,FΛ = Rd and bn = n.

R3. an/


n log nΨn


→ ∞, an/(nΨn) → 0, 0 ∈ F◦Λ and (bn) is an increasing positive

sequence such that bn ∼ a2
n/(nΨ2

n ) as n→∞.
R4. an/(nΨn) → ∞,Λ(·) is balanced regularly varying with exponent β > 1 and (bn) is an

increasing positive sequence such that bn ∼ nτ(Ψncn), where

cn = sup{x : τ(Ψn x)/x ≤ an/n}. (2.7)

Let µn(·) ≡ µn(·; a) denote the law of a−1
n Sn . We quote the “marginal version” of the

functional results in [10]; in certain cases these have been known even earlier. The sequence
(µn) satisfies the large deviation principle on Rd :

− inf
x∈A◦

Il(x) ≤ lim inf
n→∞

1
bn

logµn(A; a) ≤ lim sup
n→∞

1
bn

logµn(A; a) ≤ − inf
x∈ Ā

Iu(x) (2.8)
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with a good lower function Il and a good upper function Iu given by

Il = Λ∗, Iu = Λ♯ under assumption S1

Il = Iu = Λ∗ under assumption S2

Il = Iu = (GΣ )
∗ under assumption S3

Il = Iu =


Λh
∗

under assumption S4

Il = (Λα)∗ , Iu = Λ♯α under assumption R1

Il = Iu = (Λα)∗ under assumption R2

Il = Iu = ((GΣ )α)
∗ under assumption R3

Il = Iu =


(Λh)α

∗
under assumption R4.

(2.9)

Here, for a convex function f : Rd
→ (−∞,∞], we denote by f ∗ its Legendre trans-

form f ∗(x) = supλ∈Rd {λ · x − f (λ)} , x ∈ Rd . Further, under assumption S1, Λ♯(x) =
supλ∈Π {λ · x − Λ(λ)}, with

Π =


λ ∈ Rd

: for some Nλ, sup
n≥Nλ,i∈Z

Λ(λφi,n) <∞


, (2.10)

where φi,n = φi+1 + · · · + φi+n , is a partial sum of the moving average coefficients. Further,
under assumptions S3 and R3, GΣ is the log-moment generating function of a zero mean Gaus-
sian random vector in Rd with the same variance–covariance matrix as that of Z0. Next, under
assumptions S4 and R4, Λh(λ) = ζΛ(λ/‖λ‖)‖λ‖

β . Under assumptions R1–R4, for a nonnegative
measurable function f on Rd we define

fα(λ) =
∫
∞

−∞

f


λ(1− α)

∫ x+1

x
|y|−α (p1(y ≥ 0)+ q1(y < 0)) dy


dx (2.11)

if 1/2 < α < 1 and f1 = f . Finally, under assumption R1, we define Λ♯α(x) = supλ∈Πα

{λ · x − Λα(λ)}, with Πα given by

Πα :=


λ : (p ∧ q)λ ∈ F◦Λ, and for some Nλ, sup

n≥Nλ,i∈Z
Λ

λφi,n

Ψn


<∞


(2.12)

for 1/2 < α < 1, while for α = 1, we define

Π1 :=


λ : λ ∈ F◦Λ, and for some Nλ, sup

n≥Nλ,i∈Z
Λ

λφi,n

Ψn


<∞


. (2.13)

We are now ready to state the main result of this section. The following theorem considers the
various cases in Assumptions 2.1 and 2.2 and gives us the rate of growth of the lengths of the
long strange segments in each of the cases. For set A in Rd and η > 0 we denote

A(η) :=


x : d(x, Ac) > η

, (2.14)

where d(x, Ac) is the distance from the point x to the complement Ac.
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Theorem 2.3. If any one of S1–S4 or R1–R4 hold, then for any Borel set A ⊂ Rd ,

I∗ ≤ lim inf
r→∞

log Tr (A; a)

br
≤ lim sup

r→∞

log Tr (A; a)

br
≤ I ∗ (2.15)

and

1
I ∗
≤ lim inf

m→∞

bRm

log m
≤ lim sup

m→∞

bRm

log m
≤

1
I∗

(2.16)

with probability 1, where, under assumptions S2, S3, S4, R2, R3 and R4,

I∗ = inf
x∈ Ā

Iu(x) and I ∗ = inf
x∈A◦

Il(x),

with Il and Iu as in (2.9). Under assumption S1, I∗ is defined in the same way, while I ∗ is defined
now as follows. Let λ∗ = sup{λ : λ ∈ Π } > 0. Then

I ∗ = inf
η∈Θ

inf
x∈A(η)

Il(x),

where Θ = {η > 0 : η > (λ∗)−1 infx∈A(η) Il(x)}. Finally, under assumption R1, I∗ is
defined in the same way, and with λ∗α = sup{λ : λ ∈ Πα} > 0, and Θα = {η > 0 : η >
(λ∗α)

−1 infx∈A(η) Il(x)}, one sets

I ∗ = inf
η∈Θα

inf
x∈A(η)

Il(x).

Remark 2.4. In certain cases it turns out that I∗ = I ∗ in Theorem 2.3, and then its conclusions
may be strengthened. For example, under assumptions S2, S3, S4, R2, R3 or R4, suppose that
for some Borel set A,

inf
x∈A◦

Il(x) = inf
x∈ Ā

Iu(x) = I (say).

Then, with probability 1,

lim
r→∞

log Tr

br
= I (2.17)

and

lim
m→∞

bRm

log m
=

1
I
. (2.18)

Because of the large deviation principle for the sequence (µn), the sequence (bn) is the “right”
normalization to use in Theorem 2.3. In particular, if, for instance, set A is bounded away from
the origin (which we recall to be the mean of the moving average process), then the quantity I∗
is strictly positive. Under further additional assumptions on set A the quantity I ∗ will be finite,
and then (2.15) and (2.16) give us precise information on the order of magnitude of long strange
segments.

Notice that under the “usual” normalization an = n, Theorem 2.3 says that Rm grows like
log m in the short memory case (i.e. under assumption S1); see also Theorem 3.2.1 in [6]. On the
other hand, in the long memory case, it is easy to see that the case an = n falls into assumption
R3, and then the length Rm of the long strange segments grows at the rate Θ(log m), where
Θ is regularly varying at infinity with exponent 1/(2α − 1). Therefore, long strange segments
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Table 1
The effect of memory on the rate of growth of long strange segments of a moving average process.

Range of ω Assumptions Short memory Long memory

1
2 ≤ ω ≤

3
2 − α S3 θ = 1

2ω−1 θ = ∞

3
2 − α ≤ ω ≤ 1 S1, S2, S3, R3 θ = 1

2ω−1 θ = 1
2ω+2α−3

1 ≤ ω ≤ 2− α S4, R1, R2, R3 θ =
β−1
βω−1 θ = 1

2ω+2α−3

ω ≥ 2− α S4, R4 θ =
β−1
βω−1 θ =

β−1
β(ω+α−1)−1

are much longer in the long memory case than in the short memory case. In fact, to get long
strange segments with length of order log m in the long memory case one needs to use a stronger
normalization an = nΨn (assumptions R1 and R2). This phase transition property is directly
inherited from the similar phenomenon for large deviations; see [10].

The behavior of long strange segments in the short memory case when an =


n log n remains
unknown. A similar comment applies in the long memory case, and for the ruin probabilities in
the next section.

To emphasize more generally the difference between the length of the long strange segments
in the two cases we summarize in Table 1 the corresponding statements of Theorem 2.3 for
(an) being a regularly varying sequence with exponent ω ≥ 1/2. We will implicitly assume
that the appropriate assumptions of the theorem hold in each case, and that the limits I∗ and
I ∗ are positive and finite. The general statement is that, with probability 1, Rm is of the order
Θ(log m), where Θ is regularly varying at infinity with some exponent θ . We describe θ as a
function of ω in all cases. The value θ = ∞ corresponds to Rm growing faster than any power
of log m. In all cases the long strange segments are much longer in the long memory case than
in the short memory case. Recall that −α is the exponent of regular variation of the coefficients
in Assumption 2.2, and β is the exponent of regular variation of Λ in assumptions S4 and R4.
Notice that the long range dependent case in the first row of the table does not correspond to any
assumption we have made. The fact that θ = ∞ in this case follows as one of the extreme cases
of the second row in the table.

Proof of Theorem 2.3. The duality relation {Rm(A; a) ≥ r} = {Tr (A; a) ≤ m} and
monotonicity of the sequence (bn) imply that statements (2.15) and (2.16) are equivalent. We
will, therefore, concentrate on proving (2.15). The proof of the lower bound is standard, and
does not rely on the fact that the underlying process is a moving average; see Theorem 3.2.1
in [6]. We include an argument for completeness. Note that for every r,m ≥ 1

P

Tr (A; a) ≤ m


≤ m

∞−
n=r

µn(A; a).

If I∗ = 0, there is nothing to prove. Suppose that 0 < I∗ < ∞. Choose 0 < ε < I∗. By the
definition of I∗ and the large deviation principle (2.8), we know that there is c = cε ∈ (0,∞)
such that µn(A; a) ≤ ce−bn(I∗−ε/2) for all n ≥ 1. Choosing m = ⌊ebr (I∗−ε)⌋ gives us

∞−
r=1

P(Tr ≤ ebr (I∗−ε)) ≤

∞−
r=1

ebr (I∗−ε)
∞−

n=r
ce−bn(I∗−ε/2)

≤ c′
∞−

r=1

e−br ε/2 <∞
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for some positive constant c′ (depending on ε). Using the first Borel–Cantelli lemma and letting
ε ↓ 0 established the lower bound in (2.15). When I∗ = ∞, we take any ε > 0 and observe that
by the definition of I∗ there is c = cε ∈ (0,∞) such that µn(A; a) ≤ ce−2bn/ε for all n ≥ 1.
Choose now m = ⌊ebr /ε⌋ and proceed as above to conclude that

∞−
r=1

P(Tr ≤ ebr /ε) <∞,

after which one uses, once again, the first Borel–Cantelli lemma and lets ε ↓ 0 to obtain the
lower bound in (2.15).

For the upper bound in (2.15), we only need to consider the case I ∗ < ∞. In that case set A
has nonempty interior. Define two new probability measures by

µ′n(·) := P

 1
an

−
|i |≤n2

φi,n Zi ∈ ·

 and µ′′n(·) := P

 1
an

−
|i |>n2

φi,n Zi ∈ ·

 ,
where, as before, φi,n = φi+1 + · · · + φi+n .

For any sequence (kn) of integers, with kn/n → ∞, and any λ > 0 under assumptions S2,
S3, S4, R2, R3 and R4, any λ ∈ Π under assumption S1, or any λ ∈ Πα under assumption R1,

lim
n→∞

1
bn

kn−
i=−kn

Λ


bn

an
λφi,n


= lim

n→∞

1
bn

∞−
i=−∞

Λ


bn

an
λφi,n


; (2.19)

see Remark 3.7 in [10]. This means that the sequence (µ′n) satisfies the LDP with speed bn and
same upper rate functions Iu given in (2.9) as the sequence (µn). The fact that the same is true
for the lower rate functions in (2.9) follows from the argument in Theorems 2.2 and 2.4 in [10].

For fixed integers r, q, and l = 1, . . . , ⌊q/(2r2
+ 1)⌋, define

Bl :=
1
ar

r+(l−1)(2r2
+1)−

i=1+(l−1)(2r2+1)

X i ,

and

B ′l :=
1
ar

r2−
j=−r2

φ j,r Z− j+(l−1)(2r2+1).

Since the B ′l are independent, for any r and q we have,

P [Tr > q] ≤ P

[
Bl ∉ A, l = 1, . . . ,


q

2r2 + 1

]

≤ P

[
B ′l ∉ A(η), l = 1, . . . ,


q

2r2 + 1

]
+

⌊q/(2r2
+1)⌋−

l=1

P

|Bl − B ′l | > η


=

1− µ′r (A(η))

⌊q/(2r2
+1)⌋
+

⌊q/(2r2
+1)⌋−

l=1

P

|Bl − B ′l | > η


≤ exp


−

q

2r2 + 1
µ′r (A(η))


+

q

2r2 + 1
µ′′r ({x : |x | > η}) .
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By the definition of I ∗ and the large deviation principle (2.8), for any ε > 0 there is c = cε ∈
(0,∞) such that for all η > 0 small enough, µ′n(A(η)) ≥ ce−bn(I ∗+ε/2) for all n larger than
some nε. Therefore, fixing ε > 0 and using the bound above with q = ebr (I ∗+ε), we see that for
some C = Cε ∈ (0,∞), for all η > 0 small enough,

∞−
r=1

exp


−

ebr (I ∗+ϵ)

2r2 + 1
µ′r (A(η))


≤ C

∞−
r=1

exp


−c

ebr (I ∗+ϵ)

2r2 + 1
e−br (I ∗+ϵ/2)



= C
∞−

r=1

exp


−c

ebr (ϵ/2)

2r2 + 1


<∞. (2.20)

Suppose first that we are under assumptions S2, S3, S4, R2, R3 or R4. Fixing ε > 0 and choosing
η > 0 small enough for the above to hold, we see that

lim sup
n→∞

1
bn

logµ′′n ({x : |x | > η})

≤ lim sup
n→∞

1
bn

log

e−bnληE

exp

λbn

an

−
|i |>n2

φi,n Zi




= −λη + lim sup
n→∞

1
bn

−
|i |>n2

Λ


bn

an
λφi,n


= −λη,

with the last equality following from (2.19). Choosing now λ > (I ∗ + ϵ)/η (which is possible
under the current assumptions no matter how small η > 0 is), we obtain

∞−
r=1

ebr (I ∗+ϵ)

2r2 + 1
µ′′r ({x : |x | > η}) <∞. (2.21)

Combining (2.20) and (2.21) we have
∑
∞

r=1 P

Tr > ebr (I ∗+ϵ)


< ∞, so that using the first

Borel–Cantelli lemma and letting ε ↓ 0 proves the upper bound in (2.15). The cases of
assumptions S1 and R1 are the same, except now λ cannot be taken to be arbitrarily large, which
restricts the feasible values of η > 0. This completes the proof. �

3. Ruin probabilities

This section discusses the rate of decay of the ruin probability for a moving average process
(Xn, n ∈ Z) in (1.1). We study the probability of ruin in infinite time, defined as

ρ(u; A; a;µ) = ρ(u) = P [Yn ∈ u A for some n ≥ 1] (3.1)

where (Yn) is given by (1.10) for some µ ∈ Rd and a sequence a = (an) increasing to∞, and
A ⊂ Rd is a Borel set. A related notion is the time of ruin defined by

T (u) = inf {n : Yn ∈ u A} .

Clearly, ρ(u) = P[T (u) <∞]. We will study the asymptotic behavior of ρ(u) as u increases to
infinity.

Our main results are in the following theorems, roughly corresponding to Assumptions 2.1
and 2.2 of the previous section. We start with the short memory regimes.



S. Ghosh, G. Samorodnitsky / Stochastic Processes and their Applications 120 (2010) 2302–2330 2313

Theorem 3.1. If S1 holds, then

− inf
t∈F

r(t) [t∇Λ(t)− Λ(t)] ≤ lim inf
u→∞

1
u

log ρ(u)

≤ lim sup
u→∞

1
u

log ρ(u) ≤ − sup
t∈D

inf
γ∈A

tγ,

where

D =


t ∈ Rd
: inf
γ∈A

tγ > 0, sup
n≥1

−
i∈Z

Λ

tφi,n


− ntµ


<∞


,

F =

t ∈ Π ◦ : r (∇Λ(t)− µ) ∈ A◦ for some ρ > 0


,

and r(t) = inf{r > 0 : r (∇Λ(t)− µ) ∈ A◦}.

Remark 3.2. In certain cases Theorem 3.1 provides a precise and explicit statement. Suppose
for simplicity that Λ(t) <∞ for all t , and that the random variable µZ is unbounded. Then there
exists a unique w > 0 such that

Λ(wµ) = w‖µ‖2.

Assume that r (∇Λ(wµ)− µ) ∈ A◦ for some r > 0, and let

γ∗ = r(wµ) (∇Λ(wµ)− µ) ∈ (A◦).

Then the lower bound in Theorem 3.1 gives us

lim inf
u→∞

1
u

log ρ(u) ≥ −wγ∗µ.

If we assume, additionally, that infγ∈A µγ > 0, then it follows that aµ ∈ D for any 0 < a < w,
and a further assumption γ∗ ∈ argmin {µγ : γ ∈ A} will allow us to conclude from the upper
bound in Theorem 3.1 that

lim sup
u→∞

1
u

log ρ(u) ≤ −wγ∗µ.

Therefore,

lim
u→∞

1
u

log ρ(u) = −wγ∗µ. (3.2)

All the assumptions are easily seen to be satisfied in the one-dimensional case with µ > 0 and
A = (1,∞).

For the next two theorems we introduce the following condition on set A.

Condition 3.3. We say that a set A ∈ Rd satisfies Condition A if

• there is t ∈ Rd such that tµ > 0 and infγ∈A tγ > 0;
• for any x ∈ A and ρ > 0, x + ρµ ∈ A and (1+ ρ)x ∈ A.

Theorem 3.4. Suppose that set A satisfies Condition A (Condition 3.3). If S3 holds, and
(an) ∈ RVω for some 1/2 < ω ≤ 1, then

− inf
c>0

[
c−(2w−1)/w inf

γ∈A◦


1
2
(µ+ cγ )′Σ−1(µ+ cγ )

]
≤ lim inf

u→∞

1
ba←(u)

log ρ(u)
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≤ lim sup
u→∞

1
ba←(u)

log ρ(u) ≤ − inf
c>0

[
c−(2w−1)/w inf

γ∈A


1
2
(µ+ cγ )′Σ−1(µ+ cγ )

]
,

where the inverse of (an) is defined by a←(u) = inf{n ≥ 1 : an ≥ u}, u > 0.

Remark 3.5. Again, in certain cases the statement of Theorem 3.4 takes a very explicit form.
Suppose, for example, that

there is γ0 ∈ (A◦) such that

γ ′ Σ−1γ ≥ γ ′0 Σ−1γ0 and µ′ Σ−1 (γ − γ0) ≥ 0 for all γ ∈ A. (3.3)

This would be, for instance, the situation in the one-dimensional case with µ > 0 and A =
(1,∞). Under this assumption, for every c > 0,

inf
γ∈A


(µ+ cγ )′Σ−1(µ+ cγ )


= inf

γ∈A◦


(µ+ cγ )′Σ−1(µ+ cγ )


=


(µ+ cγ0)

′Σ−1(µ+ cγ0)

,

and so optimizing over c > 0 we obtain

lim
u→∞

1
ba←(u)

log ρ(u) = −
1
2

c−(2w−1)/w
0


(µ+ c0γ0)

′Σ−1(µ+ c0γ0)

, (3.4)

where

c0 =


(2w − 1)


µ′ Σ−1µ

 
γ ′0 Σ−1γ0


−

µ′ Σ−1γ0

2
+ w2


µ′ Σ−1γ0

2
γ ′0 Σ−1γ0


− (1− w)


µ′ Σ−1γ0


γ ′0 Σ−1γ0

 .
Theorem 3.6. Suppose that set A satisfies Condition A (Condition 3.3). If S4 holds, and
(an) ∈ RVω for some ω ≥ 1, then

− inf
c>0

[
c−ν/w inf

γ∈A◦


Λh
∗
(µ+ cγ )

]
≤ lim inf

u→∞

1
ba←(u)

log ρ(u)

≤ lim sup
u→∞

1
ba←(u)

log ρ(u) ≤ inf
c>0


c−ν/w inf

γ∈ Ā


Λh
∗
(µ+ cγ )


,

where

ν = 1+ (ω − 1)
β

β − 1
.

Remark 3.7. Once again, in certain cases the statement of Theorem 3.6 takes a very explicit
form. Let us suppose, for example, that

there is γ0 ∈ (A◦) such that

‖γ ‖ ≥ ‖γ0‖ and µ′ (γ − γ0) ≥ 0 for all γ ∈ A. (3.5)
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Suppose, further, that for some a > 0 the function Λ satisfies

ζΛ(λ) = a for any unit vector λ such that

λµ > 0 or λγ > 0 for some γ ∈ A. (3.6)

Again, this would be the situation in the one-dimensional case with µ > 0 and A = (1,∞).
Under assumption (3.5),

Λh
∗
(µ+ cγ ) = Kβ‖µ+ cγ ‖β/(β−1)

for any c > 0 and γ ∈ A, with

Kβ = (β − 1)

aββ

1/(1−β)
.

This, together with assumption (3.4), implies that, for any c > 0,

inf
γ∈A◦


Λh
∗
(µ+ cγ ) = inf

γ∈ Ā


Λh
∗
(µ+ cγ ) = Kβ‖µ+ cγ0‖

β/(β−1).

Optimizing over c > 0 we obtain

lim
u→∞

1
ba←(u)

log ρ(u) = −Kβc−ν/w0 ‖µ+ c0γ0‖
β/(β−1), (3.7)

where

c0 =


4(βw − 1)


‖µ‖2‖γ0‖

2 − (µγ0)2

+ β2w2(µγ0)2 + (βw − 2)µγ0

2‖γ0‖
2 .

We now turn to the asymptotic behavior of the ruin probabilities in the long memory regimes.
In all 3 theorems we assume that set A satisfies Condition A. Note that in the following theorem
bn = n and therefore ba←(u) reduces to a←(u).

Theorem 3.8. Suppose that set A satisfies Condition A (Condition 3.3). If R2 holds, then

− inf
c>0

c
1
α−2 inf

γ∈A◦
(Λα)∗ (µ+ cγ ) ≤ lim inf

u→∞

1
a←(u)

log ρ(u)

≤ lim sup
u→∞

1
a←(u)

log ρ(u)

≤


inf
t∈G

sup
u>0


−uα−1 inf

γ∈A
tγ + u (Λα(t)− tµ)


if α < 1

− inf
c>0

c−1 inf
γ∈ Ā

Λ∗ (µ+ cγ ) if α = 1

where

G =


t ∈ Rd

: tµ > 0, inf
γ∈A

tγ > 0 and Λα(t)− µt < 0

,

and Λα(·) is defined in (2.11).

Observe that set G in the above theorem is not empty because of Condition A and the fact
that |Λα(t)| ≤ c|t |2 for t in a neighborhood of the origin.
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To state the next two theorems we introduce the notation

Cα,β =

(1− α)β
∫
∞

−∞

∫ x+1

x
|y|−α


pI[y≥0] + q I[y<0]


dy

β
dx if α < 1

1 if α = 1

(3.8)

for 1/2 < α ≤ 1 and β > 1.

Theorem 3.9. Suppose that set A satisfies Condition A (Condition 3.3). If R3 holds, and
(an) ∈ RVω for some 3/2− α < ω ≤ 2− α, then

−
1

Cα,2
inf
c>0

[
c−2+(3−2α)/w inf

γ∈A◦


1
2
(µ+ cγ )′Σ−1(µ+ cγ )

]
≤ lim inf

u→∞

1
ba←(u)

log ρ(u)

≤ lim sup
u→∞

1
ba←(u)

log ρ(u)

≤


−Kα,ω sup

t∈G


tµ−

1
2

Cα,2 t ′Σ t

−1+(3−2α)/ω 
inf
γ∈A

tγ

2−(3−2α)/ω


if α < 1

−
1

Cα,2
inf
c>0

[
c−2+(3−2α)/w inf

γ∈A


1
2
(µ+ cγ )′Σ−1(µ+ cγ )

]
if α = 1

,

where

G =


t ∈ Rd

: tµ > 0, inf
γ∈A

tγ > 0 and
1
2

Cα,2 t ′Σ t − µt < 0

,

and

Kα,ω =
w (3− 2α − ω)1−(3−2α)/ω

(2(α + ω)− 3)2−(3−2α)/ω
.

Remark 3.10. It is easy to check that in the one-dimensional case with µ > 0, A = (1,∞) and
Σ = σ 2, the statement of the theorem gives the explicit limit

lim
u→∞

1
ba←(u)

log ρ(u) = −
(2(ω + α)− 3)

3−2(ω+α)
ω

(3− 2α)
3−2α
ω

2

σ 2Cα,2
ω2µ

3−2α
ω .

One can check that under certain assumptions similar explicit expressions can be obtained in the
multivariate case as well.

Theorem 3.11. Suppose that set A satisfies Condition A (Condition 3.3). If R4 holds, and
(an) ∈ RVω for some ω ≥ 2− α, ω ≠ β(1− α)+ 1, then

− inf
c>0

c−(β(ω+α−1)−1)/ω(β−1)
inf
γ∈A◦


Λh
∗
(µ+ cγ )

Cα,β
1/(β−1)


≤ lim inf

u→∞

1
ba←(u)

log ρ(u) ≤ lim sup
u→∞

1
ba←(u)

log ρ(u)



S. Ghosh, G. Samorodnitsky / Stochastic Processes and their Applications 120 (2010) 2302–2330 2317

≤



−K (1)
α,β,ω sup

t∈G(1)



tµ− Cα,β Λh(t)

(β(1−α)+1−ω)/ω(β−1)
inf
γ∈A

tγ

(1−β(ω+α−1))/ω(β−1)

 if ω < β(1− α)+ 1

− sup
t∈G(2)


inf
γ∈A

tγ − K (2)
α,β,ω


Cα,β Λh(t)

ω/(ω−1−β(1−α))

(tµ)(1+β(1−α))/(ω−1−β(1−α))


if ω > β(1− α)+ 1

if α < 1, and

≤ − inf
c>0


c−(βω−1)/ω(β−1) inf

γ∈ Ā


Λh
∗
(µ+ cγ )


if α = 1. Here

G(1)
= {t ∈ Rd

: tµ > 0, inf
γ∈A

tγ > 0 and Cα,β Λh(t)− µt < 0},

G(2)
=


t ∈ Rd

: tµ > 0, inf
γ∈A

tγ > K (2)
α,β,ω


Cα,β Λh(t)

ω/(ω−1−β(1−α))

(tµ)(1+β(1−α))/(ω−1−β(1−α))


,

and

K (1)
α,β,ω =

ω(β − 1) (β(1− α)+ 1− ω)−(β(1−α)+1−ω)/ω(β−1)

(β(ω + α − 1)− 1)(β(ω+α−1)−1)/ω(β−1)
,

K (2)
α,β,ω =

(ω − 1− β(1− α)) (1+ β(1− α))(1+β(1−α))/(ω−1−β(1−α))

ωω/(ω−1−β(1−α))
.

Remark 3.12. Once again, sets G(1) and G(2) in the theorem are not empty. In the one-dimen-
sional case with µ > 0, A = (1,∞) and Λh(t) = ξ+tβ for t > 0, the statement of the theorem
gives the explicit limit

lim
u→∞

1
ba←(u)

log ρ(u)

= −
(β(ω + α − 1)− 1)

1−β(ω+α−1)
ω(β−1)

(1+ β(1− α))
1+β(1−α)
ω(β−1)

(β − 1)


ωβ

ξ+Cα,β

 1
β−1

µ
1+β(1−α)
ω(β−1) .

Remark 3.13. As in the previous section, we clearly see how long range dependent variables
(Xn) (the “claim sizes”) influence the behavior of the ruin probability. Assume that the relevant
upper bounds are finite and the relevant lower bounds are positive. In the classical case of a linear
sequence (an), in the short memory case (i.e. under assumption S1), we have

log ρ(u) ≈ −cSu as u →∞

for cS > 0, as in Cramér’s theorem. On the other hand, in the long memory case the linear
sequence falls into assumption R3, and then we have, instead,

log ρ(u) ≈ −cL
u

Ψ2
u

as u →∞

for cL > 0, and the right-hand side above is in RV2α−1, yielding a much larger ruin probability.
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Table 2
The effect of memory on the rate of decay of the ruin probability when the claims process is a moving average.

Range of ω Short range dependent Long range dependent

1
2 ≤ ω ≤

3
2 − α θ = 2ω−1

ω θ = 0
3
2 − α ≤ ω ≤ 1 θ = 2ω−1

ω θ = 2ω+2α−3
ω

1 < ω < 2− α θ =
βω−1
ω(β−1) θ = 2ω+2α−3

ω

ω ≥ 2− α θ =
βω−1
ω(β−1) θ =

β(ω+α−1)−1
ω(β−1)

To further illustrate the effect of memory of a moving average process on ruin probabilities
we present Table 2, that presents the order of magnitude of− log ρ(u) for large u which we view
in the form− log ρ(u) ≈ −cuθ for c > 0. The table presents dependence of θ on the exponent ω
of regular variation of the sequence (an) in both short and long memory cases. The value θ = 0
corresponds to the case when− log ρ(u) grows slower than any positive power of u. Notice that,
for the same value of ω, the value of θ is always smaller in the long memory case than in the
short memory case, so that the ruin probability is much larger in the former case than in the latter
case.

Proof of Theorem 3.1. Notice that for the moving average process

log E exp (t (Sn − nµ)) =
−
i∈Z

Λ

tφi,n


− ntµ.

The upper bound follows immediately from part (i) of Theorem A.1.
For the lower bound we apply part (ii) of Theorem A.1. By Lemma 3.5(i) in [10], Π ◦ ⊆ E ,

and for every t ∈ Π ◦, g(t) = Λ(t) − tµ. The lower bound of part (i) of the present theorem
follows. �

Proof of Theorem 3.4. We start with the (easier) lower bound. We use the assumption of regular
variation of (an) as follows. First of all, bn = a2

n/n is regularly varying with exponent 2ω − 1.
Next, for any c > 0,

a←(can)

nc1/ω = c−1/ω a←(an)

n

a←(can)

a←(an)
→ 1

as n→∞; see e.g. Theorem 1.5.12 in [4]. Therefore, by the regular variation of (an) and (bn),

lim inf
u→∞

1
ba←(u)

log ρ(u) = lim inf
n→∞

1
ba←(can)

log P [T (can) <∞]

≥ lim inf
n→∞

bn

bnc1/ω

1
bn

log P

[
Sn

an
∈ µ+ cA

]
≥ −c−(2ω−1)/ω inf

γ∈A◦


1
2
(µ+ cγ )′Σ−1(µ+ cγ )


(3.9)

by the large deviation principle; see (2.9). Now the lower bound follows by optimizing over
c > 0.

Next we concentrate on the upper bound. We start with showing that

lim
M→∞

lim sup
n→∞

1
bn

log P [nM < T (an) <∞] = −∞. (3.10)
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To see this choose t ∈ Rd as in Condition A and ϵ > 0 such that J (t) − tµ + ϵ < 0, where
J (t) = 1

2 t · Σ t . For all n,

P [nM < T (an) <∞] =
∞−

k=nM+1

P [T (an) = k]

≤

∞−
k=nM+1

P [Sk − akµ ∈ an A]

≤

∞−
k=nM+1

P

[
t Sk − ak tµ > an inf

γ∈A
tγ

]
.

Using Lemma 3.5(ii) in [10] we know that for all n large enough,

1
bn

log E

[
exp


t
bn

an
Sn

]
≤ J (t)+ ϵ.

Therefore, applying an exponential Markov inequality we see that for all M large enough,

P [nM < T (an) <∞] ≤
∞−

k=nM+1

exp

−

anbk

ak
inf
γ∈A

tγ + bk (J (t)− µt + ϵ)



≤

∞−
k=nM+1

exp {bk (J (t)− µt + ϵ)} .

The assumption of regular variation of the sequence (an) implies that the sequence (bn) ∈ RVν
with ν = 2ω − 1. Therefore, by Theorem 4.12.10 in [4]

log
∞−

k=nM+1

exp {bk (J (t)− µt + ϵ)} ∼ bnM (J (t)− µt + ϵ)

as n→∞, and so

lim sup
n→∞

1
bn

log P [nM < T (an) <∞] ≤ Mν (J (t)− µt + ϵ) .

Now (3.10) follows by letting M →∞. A similar argument also shows that for any N ≥ 1,

lim
n→∞

1
bn

log P [T (an) ≤ N ] = −∞,

and so in order to prove the upper bound of the theorem, it suffices to show that

lim sup
M→∞

lim sup
N→∞

lim sup
n→∞

1
bn

log P [N < T (an) ≤ nM]

≤ − inf
c>0

[
c−(2w−1)/w inf

γ∈A


1
2
(µ+ cγ )′Σ−1(µ+ cγ )

]
. (3.11)

Note that

P [N < T (an) ≤ nM] = P [Sk − akµ ∈ an A for some N < k ≤ nM]

= P

[
S[nMt] ∈ anMtµ+ an A for some

N

nM
< t ≤ 1

]
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= P

[
YnM (t) ∈

anMt

anM
µ+

an

anM
A for some

N

nM
< t ≤ 1

]
.

Let 0 < δ < 1. By the Potter bounds, for all N ≥ 1 large enough we have

ax

ay
> (1− δ)


x

y

ω+δ
for all N < x ≤ y.

For such N and any n > N we have by the second part of Condition A,

P [N < T (an) ≤ nM]

≤ P

[
YnM (t) ∈ (1− δ)


tω+δµ+ M−(ω+δ)A


for some

N

nM
< t ≤ 1

]
≤ P


YnM (t) ∈ (1− δ)


tω+δµ+ M−(ω+δ)A


for some 0 ≤ t ≤ 1


= P [YnM ∈ B] ,

where

B =


f ∈ B V : f (t) ∈ (1− δ)


tω+δµ+ M−(ω+δ)A


for some 0 ≤ t ≤ 1

,

and B V is the space of measurable functions of bounded variation. Applying the functional large
deviation principle in Theorem 2.2 in [10] we obtain

lim sup
n→∞

1
bnM

P [N < T (an) ≤ nM] ≤ − inf
f ∈B̄

I ( f ),

where the closure of B is taken in the uniform topology, and

I ( f ) =


∫ 1

0
Il


f ′(t)


dt if f ∈ AC, f (0) = 0

∞ otherwise.

Clearly,

B̄ =


f ∈ B V : f (t) ∈ (1− δ)


tω+δµ+ M−(ω+δ) Ā


for some 0 ≤ t ≤ 1

,

and so

lim sup
n→∞

1
bnM

P [N < T (an) ≤ nM] ≤ − inf
y∈ Ā

inf
0≤t0≤1

inf
f ∈G y,t0

∫ 1

0
Il


f ′(t)


dt, (3.12)

where

G y,t0 =


f ∈ AC : f (t0) = (1− δ)


tω+δ0 µ+ M−(ω+δ)y


.

Next, we notice that for every f ∈ G y,t0 we have by the definition of the rate function Il in
(2.8) and convexity,∫ 1

0
Il


f ′(t)


dt =
∫ 1

0

1
2

f ′(t)′Σ−1 f ′(t) dt

≥

∫ t0

0

1
2

f ′(t)′Σ−1 f ′(t) dt

≥
1

2t0

∫ t0

0
f ′(t) dt

′
Σ−1

∫ t0

0
f ′(t) dt
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=
1

2t0
f (t0)Σ−1 f (t0)

=
1

2t0
(1− δ)2

[
tω+δ0 µ+ M−(ω+δ)y

′
Σ−1


tω+δ0 µ+ M−(ω+δ)y

]
.

Introducing the variable c = (t0 M)−(ω+δ), we obtain

lim sup
n→∞

1
bnM

P [N < T (an) ≤ nM] ≤ − inf
c≥M−(ω+δ)

inf
y∈ Ā

M1−2(ω+δ)c1/(ω+δ)−2 (1− δ)2

×
1
2
(µ+ cy)′Σ−1(µ+ cy),

and so for every 0 < δ < 1,

lim sup
n→∞

1
bn

P [N < T (an) ≤ nM] ≤ −M−2δ (1− δ)2 inf
c≥M−(ω+δ)

c1/(ω+δ)−2 inf
y∈ Ā

×
1
2
(µ+ cy)′Σ−1(µ+ cy).

Letting δ → 0, and noticing that the closure of A plays no role in the right-hand side above, we
obtain (3.11) and, hence, conclude the proof. �

Proof of Theorem 3.6. The proof of this theorem is very similar to that of Theorem 3.4. Note
that now (bn) is a regularly varying sequence with exponent ν. We establish the lower bound of
this part of the theorem in the same way as in Theorem 3.4, except that we are using a different
rate in the large deviation principle, as given in (2.9).

For the upper bound, we also proceed as in the proof of the upper bound in Theorem 3.4, but
now we use Lemma 3.5(iii) and the appropriate part of Theorem 2.2 in [10]. This gives us (3.12),
but this time the rate function Il scales according to

Il(ax) = aβ/(β−1) Il(x), a > 0, x ∈ Rd .

Therefore, for every f ∈ G y,t0∫ 1

0
Il


f ′(t)


dt =
∫ 1

0


Λh
∗ 

f ′(t)


dt

≥
1

t1/(β−1)
0


Λh
∗
( f (t0))

=
1

t1/(β−1)
0

(1− δ)β/(β−1)

Λh
∗ 

tω+δ0 µ+ M−(ω+δ)y

.

Therefore,

lim sup
n→∞

1
bnM

P [N < T (an) ≤ nM] ≤ − inf
c≥M−(ω+δ)

inf
y∈ Ā

M (1−β(ω+δ))/(β−1)

× c(1/(ω+δ)−β)/(β−1)(1− δ)β/(β−1)

Λh
∗
(µ+ cy),

and so for every 0 < δ < 1,

lim sup
n→∞

1
bn

P [N < T (an) ≤ nM]
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≤ −M−βδ/(β−1) (1− δ)β/(β−1) inf
c≥M−(ω+δ)

c(1/(ω+δ)−β)/(β−1) inf
y∈ Ā


Λh
∗
(µ+ cy).

Now we let δ→ 0 and complete the proof. �

Proof of Theorem 3.8. The lower bound is obtained as in (3.9), with bn = n and ω = 2 − α,
using the appropriate part of the large deviation principle in (2.8) and (2.9).

The proof of the upper bound for α = 1 proceeds, once again, similarly to that of Theorem 3.4.
Let J (t) = Λ(t). By the assumption of zero mean we know that, for some c > 0, J (t) ≤ c‖t‖2

for all t in a neighborhood of the origin. Therefore, we can still select t ∈ Rd as in Condition A
and ϵ > 0 such that J (t) − tµ + ϵ < 0, and we conclude that (3.10) still holds. Furthermore,
using part (ii) of Theorem 2.4 in [10], we conclude that (3.12) holds as well. Note that for every
f ∈ G y,t0 by the convexity of the function Λ∗,∫ 1

0
Il


f ′(t)


dt =
∫ 1

0
Λ∗


f ′(t)


dt

≥ t0Λ∗


t−1
0 f (t0)


= t0Λ∗


t−1
0 (1− δ)(t1+δ

0 µ+ M−(1+δ)y)

. (3.13)

The same argument as in the proof of the upper bound in Theorem 3.4 shows that for any fixed
0 < θ < 1,

inf
y∈ Ā

inf
θ≤t0≤1

inf
f ∈G y,t0

∫ 1

0
Il


f ′(t)


dt ≥ M−1 inf
c>0

c−1 inf
γ∈ Ā

Λ∗ (µ+ cγ ) .

On the other hand, under the assumptions of the theorem, Λ∗ grows super-linearly fast as the
norm of its argument increases. Therefore, it follows from (3.13) that

lim
θ→0

inf
y∈ Ā

inf
0<t0<θ

inf
f ∈G y,t0

∫ 1

0
Il


f ′(t)


dt = ∞.

This proves the upper bound in the case α = 1.
Next we consider the case α < 1. Fix t ∈ G, and choose 0 < ϵ < tµ− Λα(t). We start with

recalling that, by Lemma 3.6(i) in [10],

1
k

log E

et Sk/Ψk


≤ Λα(t)+ ϵ

for all k large enough, say, k ≥ N . In particular, supk≥1 E

et Sk/Ψk−ktµ


< ∞. Let δ > 0. Note

that

lim sup
n→∞

1
n

log P [T (an) ≤ nδ] ≤ lim sup
n→∞

1
n

log
[nδ]−
k=1

P

[
t Sk − ak tµ > an inf

γ∈A
tγ

]

≤ lim sup
n→∞

1
n

log
[nδ]−
k=1

e
−nΨn/Ψk inf

γ∈A
tγ

E

et Sk/Ψk−ktµ


≤ − inf

γ∈A
tγ lim sup

n→∞

Ψn

Ψ[nδ]
= −δα−1 inf

γ∈A
tγ. (3.14)

Next, for n ≥ N/δ, the same argument gives us

P [nδ < T (an) <∞] ≤
∞−

k=[nδ]+1

P

[
t Sk

Ψk
> ktµ+

nΨn

Ψk
inf
γ∈A

tγ

]
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≤

∞−
k=[nδ]+1

exp

−

nΨn

Ψk
inf
γ∈A

tγ + k (Λα(t)− tµ+ ϵ)


.

We break up the sum into pieces. By the monotonicity of the sequence (Ψn) and the choice of ϵ
we have for i ≥ 1,

(i+1)[nδ]−
k=i[nδ]+1

exp

−

nΨn

Ψk
inf
γ∈A

tγ + k (Λα(t)− tµ+ ϵ)


≤ nδ exp


−

nΨn

Ψ(i+1)[nδ]
inf
γ∈A

tγ + (i[nδ] + 1) (Λα(t)− tµ+ ϵ)


.

Let 0 < η < 1 − α. By the Potter bounds (see Proposition 0.8 in [20]) there exists N1 ≥ 1
such that for every n ≥ N1 we have both

Ψn

Ψ(i+1)[nδ]
≥ xi,δ(η) := (1− η)min


((i + 1)δ)α−1−η , ((i + 1)δ)α−1+η


and (i[nδ] + 1)/n ≥ iδ(1− η). We conclude that for n > max {N/δ, N1} and i ≥ 1,

(i+1)[nδ]−
k=i[nδ]+1

exp

−

nΨn

Ψk
inf
γ∈A

tγ + k (Λα(t)− µt + ϵ)


≤ nδ exp


−n


xi,δ(η) inf

γ∈A
tγ − iδ(1− η) (Λα(t)− µt + ϵ)


.

Denoting yi = xi,δ(η) infγ∈A tγ − iδ(1− η) (Λα(t)− µt + ϵ) and y∗ = mini≥1 yi , we see that
y∗ > 0 and that y∗ = yi∗ for some i∗ ≥ 1. Therefore, for every n > max {N/δ, N1} we have

P [nδ < T (an) <∞] ≤ nδ exp

−ny∗

 ∞−
i=1

exp

−n(yi − y∗)


and, therefore,

lim sup
n→∞

1
n

log P [nδ < T (an) <∞] ≤ −y∗. (3.15)

Combining (3.14) and (3.15) we obtain

lim sup
u→∞

1
a←(u)

log ρ(u) = lim sup
n→∞

1
n

log P [T (an) <∞] ≤ max

−t∗δα−1,−y∗


.

Letting ϵ and η decrease to 0, we conclude that

lim sup
u→∞

1
a←(u)

log ρ(u) ≤ −min
i≥1


((i + 1)δ)α−1 inf

γ∈A
tγ − iδ (Λα(t)− µt)


≤ − inf

u>0


uα−1 inf

γ∈A
tγ − u (Λα(t)− tµ)


+ δ (Λα(t)− tµ) .

Letting, finally, δ→ 0 and optimizing over t ∈ G completes the proof. �

Proof of Theorem 3.9. The lower bound in the theorem is established in the same way as the
lower bound in Theorem 3.4, using the fact that in the present theorem, the sequence (bn) is
regularly varying with exponent ν = 2(ω + α) − 3, the large deviation principle (2.9), and the
fact that (GΣ )α = Cα,2GΣ .
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For the upper bound, we consider, once again, the cases α < 1 and α = 1 separately. In the
case α < 1 we notice that the sequence (an/bn) is regularly varying with the exponent

ω − ν = 3− 2α − ω ≥ 1− α > 0.

Therefore, the argument used in the proof of the upper bound in the case α < 1 in Theorem 3.8
applies in this case as well, resulting in

lim sup
u→∞

1
ba←(u)

log ρ(u) ≤ − sup
t∈G

inf
u>0


u−(ω−ν) inf

γ∈A
tγ − uν


1
2

Cα,2 t ′Σ t − tµ


.

The infimum over u is achieved at

u =

 ν

ω − ν

tµ− 1
2 Cα,2 t ′Σ t

inf
γ∈A

tγ

−1/ω

,

and the upper bound in the case α < 1 is obtained by substitution.
The argument in the case α = 1 is the same as the argument of the corresponding case in

Theorem 3.8. �

Proof of Theorem 3.11. The lower bound in the theorem is, once again, established in the same
way as the lower bound in Theorem 3.4, using the fact that in the present theorem, the sequence
(bn) is regularly varying with exponent ν = (β(w + α − 1)− 1) /(β − 1), the large deviation
principle (2.9), and the fact that (Λh)α = Cα,βΛh .

We prove now the upper bound. Suppose first that α < 1 and ω < β(1 − α). In this case
ω − ν > 0 and we use, once again, the argument of the proof of the upper bound in the case
α < 1 in Theorem 3.8. This gives us this time

lim sup
u→∞

1
ba←(u)

log ρ(u) ≤ − sup
t∈G(1)

inf
u>0


u−(ω−ν) inf

γ∈A
tγ − uν


Cα,β Λh(t)− tµ


.

The infimum over u is achieved at

u =

 ν

ω − ν

tµ− Cα,β Λh(t)

inf
γ∈A

tγ

−1/ω

,

and the required upper bound follows by substitution.
Next, we suppose that α < 1 and ω > β(1−α). The proof is similar to that of the proof of the

upper bound in the case α < 1 in Theorem 3.8, but relies on Lemma 3.14 in addition to Lemma
3.6 in [10].

For t ∈ Rd and u > 0 let Ju(t) = u1+(1−α)βCα,βΛh(t). Let 0 < δ < 1, and note that by
Lemma 3.14, for any t ∈ Rd as in Condition 3.3,

lim sup
n→∞

1
bn

log P [T (an) ≤ nδ] ≤ lim sup
n→∞

1
bn

log
[nδ]−
k=1

P

[
t Sk > an inf

γ∈A
tγ

]

≤ lim sup
n→∞

1
bn

log
[nδ]−
k=1

e
−bn inf

γ∈A
tγ

E

[
exp


bn

an
t Sk

]

≤ − inf
γ∈A

tγ + lim sup
n→∞

1
bn

log


nδ sup

k≤nδ
E

[
exp


bn

an
t Sk

]
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= − inf
γ∈A

tγ + Jδ(t).

Since Jδ(t)→ 0 as δ→ 0 for every t , we see that

lim
δ→0

lim sup
n→∞

1
bn

log P [T (an) ≤ nδ] ≤ − inf
γ∈A

tγ.

Since we may replace t by ct for any c > 0 without violating the restrictions imposed by
Condition 3.3, we let c→∞ to conclude that

lim
δ→0

lim sup
n→∞

1
bn

log P [T (an) ≤ nδ] = −∞. (3.16)

Further, using Lemma 3.6 in [10] the argument used to prove (3.10) applies, and gives us

lim
δ→0

lim sup
n→∞

1
bn

log P

nδ−1

≤ T (an) <∞

= −∞. (3.17)

Next, fix t ∈ G(2). This means that we can choose 0 < ϵ < 1 so small that Ju(t) − uωtµ −
infγ∈A tγ + ϵ < 0 for all u > 0. For 0 < δ < 1 we have, as before,

lim sup
n→∞

1
bn

log P

nδ < T (an) < nδ−1


≤ lim sup

n→∞

1
bn

log
[nδ−1

]−
k=[nδ]+1

P

[
t Sk − ak tµ > an inf

γ∈A
tγ

]

≤ lim sup
n→∞

1
bn

log
[nδ−1

]−
k=[nδ]+1

exp

−bn


inf
γ∈A

tγ +
ak

an
tµ


E

[
exp


bn

an
t Sk

]
.

Let 0 < η < 1. By the Potter bounds there exists N1 ≥ 1 such that for k, l ≥ N1

ak

al
≥ ak,l(η) := (1− η)min


k

l

ω−η
,


k

l

ω+η
and for every n ≥ N1, [nδ]/n ≥ (1− η)δ. For every n > N1/δ and i ≥ 1,

(i+1)[nδ]−
k=i[nδ]+1

exp

−bn


inf
γ∈A

tγ +
ak

an
tµ


E

[
exp


bn

an
t Sk

]

≤

(i+1)[nδ]−
k=i[nδ]+1

exp

−bn


inf
γ∈A

tγ + ak,n(η)tµ


E

[
exp


bn

an
t Sk

]

≤ nδ exp


−bn


inf
γ∈A

tγ + ai[nδ],n(η)tµ


+ sup

k≤(i+1)[nδ]
log E

[
exp


bn

an
t Sk

]
.

By the choice of n, we know that for every i ≥ 1, a ([inδ], n) (η) ≥ (1−η)ω+η+1a(iδ, 1)(η).
Furthermore, by Lemma 3.14, we can choose N2 so large that for all n ≥ N2, all i =
1, 2, . . . , δ−2

+ 1,

sup
k≤(i+1)[nδ]

log E

[
exp


bn

an
t Sk

]
≤ bn


J(i+1)δ(t)+ ϵ


.
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Therefore, for all n ≥ max(N1/δ, N2) and i as above,

(i+1)[nδ]−
k=i[nδ]+1

exp

−bn


inf
γ∈A

tγ +
ak

an
tµ


E

[
exp


bn

an
t Sk

]
≤ nδ exp


−bn


inf
γ∈A

tγ + (1− η)ω+η+1a(iδ, 1)(η)tµ

+ bn


J(i+1)δ(t)+ ϵ


.

We proceed as in the proof of the upper bound in the case α < 1 in Theorem 3.8. Setting

yi = + inf
γ∈A

tγ + (1− η)ω+η+1a(iδ, 1)(η)tµ− J(i+1)δ(t)− ϵ

and y∗ = mini yi≥1, we proceed as in the above proof and conclude that

lim sup
n→∞

1
bn

log P [nδ < T (an) <∞] ≤ −y∗. (3.18)

Combining (3.18), (3.16) and (3.17), and letting first δ → 0, and then η → 0 and ϵ → 0, we
obtain

lim sup
u→∞

1
ba←(u)

log ρ(u) ≤ sup
u>0


− inf
γ∈A

tγ − uωtµ+ u1+β(1−α)Cα,βΛh(t)


.

The supremum is attained at

u =


1+ (1− α)β

ωtµ
Cα,βΛh(t)

 1
ω−(1+(1−α)β)

,

and the required upper bound is obtained by substitution and optimizing over t .
Finally, in the case α = 1 the upper bound of the present theorem can be obtained in the same

way as in Theorem 3.4. �

This section is concluded by a lemma needed for the proof of Theorem 3.11.

Lemma 3.14. Under assumption R4 with α < 1, for any θ > 0 and t ∈ Rd

lim
n→∞

1
bn

sup
k≤θn

log E

[
exp


bn

an
t Sk

]
≤ u1+(1−α)βCα,βΛh(t),

where Cα,β is given by (3.8).

Proof. Observe that since the coefficients satisfy (1.7), there is N ≥ 1 such that φi,n > 0 for
all i ∈ Z and n ≥ N . Using the fact that Λ(t) is increasing along each ray emanating from the
origin, we see that, if n ≥ N/θ ,

sup
N≤k≤θn

log E

[
exp


bn

an
t Sk

]
= sup

N≤k≤θn

−
i∈Z

Λ


t
bn

an
φi,k


≤ sup

N≤k≤θn

−
i∈Z

Λ


t
bn

an
|φ|i,k


=

−
i∈Z

Λ


t
bn

an
|φ|i,[θn]


,
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where |φ|i,n = |φi+1| + · · · + |φi+n|. Clearly, the sequence (|φi |) is also balanced regularly
varying and satisfies

|φn|

ψ(n)
→ p and

|φ−n|

ψ(n)
→ q as n→∞,

where ψ(·) is as in (1.7). With a minor modification of the proof of Lemma 3.6 in [10] we obtain,
for any t ∈ Rd and θ > 0,

lim
n→∞

1
bn

−
i∈Z

Λ


t
bn

an
|φ|i,[un]


= u1+(1−α)βCα,βΛh(t).

Since it is also easy to see that

lim
n→∞

1
bn

sup
k≤N

log E

[
exp


bn

an
t Sk

]
= 0,

the proof is complete. �

Acknowledgement

We thank the anonymous referees for their helpful comments.

Appendix

In this section we state certain straightforward multivariate analogs of the ruin probability
estimates of Nyrhinen [16]. For completeness we provide the argument.

Let (Yn, n ≥ 1) be an Rd -valued stochastic process. For n = 1, 2, . . . and t ∈ Rd define
gn(t) = n−1 log EetYn and

g(t) = lim sup
n→∞

gn(t), t ∈ Rd (A.1)

(these functions may take the value +∞). Let A ⊂ Rd be a Borel set, and define

C =


t ∈ Rd
: inf
γ∈A

tγ > 0

, D =


t ∈ C : sup

n≥1
EetYn <∞


, (A.2)

and

E = {t ∈ Rd
: g is finite in a neighborhood of t, exists as a limit at t,

and is differentiable at t}, F =

t ∈ E : ρ ∇g(t) ∈ A◦ for some ρ > 0


. (A.3)

Theorem A.1. (i) Suppose that there is t0 ∈ C such that g(t0) < 0. Then

lim sup
u→∞

1
u

log P (Yn ∈ u A for some n = 1, 2, . . .) ≤ − sup
t∈D

inf
γ∈A

tγ.

(ii) For t ∈ F , let η(t) = inf{η > 0 : η∇g(t) ∈ A◦}. Then

lim inf
u→∞

1
u

log P (Yn ∈ u A for some n = 1, 2, . . .) ≥ sup
t∈F

η(t) [g(t)− t ∇g(t)] .

Proof. (i) For n = 1, 2, . . . let t ∈ Rd be such that gn(t) <∞. Let Zn be an Rd -valued random
vector such that
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P(Zn ∈ B) = e−ngn(t)E

etYn 1 (Yn ∈ nB)


, B ⊆ Rd a Borel set.

Then

P(Yn ∈ u A) = engn(t)E

e−nt Zn 1


Zn ∈ un−1 A


≤ exp


ngn(t)− u inf

γ∈A
tγ


. (A.4)

Fix M = 1, 2, . . . . Using (A.4) for n ≤ Mu and t ∈ D gives us−
n≤Mu

P(Yn ∈ u A) ≤ (Mu) sup
n≥1

E tYn exp

−u inf

γ∈A
tγ


.

Taking a limit and optimizing over t ∈ D we obtain

lim sup
u→∞

u−1 log

 −
n≤Mu

P(Yn ∈ u A)


≤ − sup

t∈D
inf
γ∈A

tγ. (A.5)

Next, using (A.4) for n > Mu and t0 in the statement of the theorem (which is possible for u
large enough) gives us for large u−

n>Mu

P(Yn ∈ u A) ≤
−

n>Mu

e−αn
≤ Ce−αMu,

where α ∈ (g(t0), 0) and C > 0 a constant. Therefore,

lim sup
u→∞

u−1 log

 −
n>Mu

P(Yn ∈ u A)


≤ −αM. (A.6)

Combining (A.5) with (A.6) and letting M → ∞ we obtain the statement of part (i) of the
theorem.

For part (ii), let t ∈ F , and let η > 0 be such that η∇g(t) ∈ A◦. Choose ε > 0 so that the
open ball B(η∇g(t), ε) lies completely within A. Then for u large enough,

P(Y[uη] ∈ u A) ≥ P

Y[uη] ∈ u B (η∇g(t), ε)


≥ P


Y[uη]
[uη]

∈ B (∇g(t), ε/(2η))

.

On the other hand, for any t ∈ E and ε > 0, for all n large enough so that gn(t) <∞, we have

P (Yn ∈ nB (∇g(t), ε)) = engn(t)E

e−nt Zn 1 (Zn ∈ B (∇g(t), ε))


≥ exp {ngn(t)− nt∇g(t)− nε‖t‖} P (Zn ∈ B (∇g(t), ε)) ,

so that

lim inf
n→∞

n−1 log P (Yn ∈ nB (∇g(t), ε))

≥ g(t)− t∇g(t)− ε‖t‖ + lim inf
n→∞

n−1 log P (Zn ∈ B (∇g(t), ε))

= g(t)− t∇g(t)− ε‖t‖,

since, as is shown below, the last lower limit is equal to zero. Therefore, for any t ∈ F , η > 0 as
above and ε > 0 small enough,

lim inf
u→∞

1
u

log P (Yn ∈ u A for some n = 1, 2, . . .) ≥ lim inf
u→∞

1
u

log P(Y[uη] ∈ u A)

≥ η [g(t)− t∇g(t)− ε‖t‖] .
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Letting ε → 0, η → η(t), and optimizing over t ∈ F , we obtain the claim of part (ii) of the
theorem.

The proof of the theorem will be finished once we show that for every t ∈ E and ε >
0, P (Zn ∈ B (∇g(t), ε))→ 1 as n→∞. To this end, let ei be the i th coordinate unit vector in
Rd , i = 1, . . . , d. Then

P (Zn ∉ B (∇g(t), ε)) ≤
d−

i=1

P


Znei ≥

∂g

∂yi
(t)+

ε

d


+

d−
i=1

P


Znei ≤

∂g

∂yi
(t)−

ε

d


.

Fix i = 1, . . . , d, and choose r > 0 so small that g(t + rei ) <∞. Then gn(t + rei ) <∞ for all
n large enough, and for such n we have

P


Znei ≥

∂g

∂yi
(t)+

ε

d


= e−ngn(t)E

[
1


Ynei ≥ n
∂g

∂yi
(t)+ n

ε

d


etYn

]
≤ exp {−ngn(t)− rnei∇g(t)− rnε/d} E

[
1


Ynei ≥ n
∂g

∂yi
(t)+ n

ε

d


e(t+rei )Yn

]
≤ exp {n (gn(t + rei )− gn(t)− rei∇g(t)− rε/d)} .

Therefore,

lim sup
n→∞

1
n

log P


Znei ≥

∂g

∂yi
(t)+

ε

d


≤ g(t + rei )− g(t)− rei∇g(t)− rε/d.

Since

g(t + rei )− g(t)− rei∇g(t) = o(r) as r ↓ 0,

this expression is negative for r small enough, and so

P


Znei ≥

∂g

∂yi
(t)+

ε

d


→ 0

as n→∞ for every i = 1, . . . , d . A similar argument gives us

P


Znei ≤

∂g

∂yi
(t)−

ε

d


→ 0

as n→∞ for every i = 1, . . . , d and the proof of the theorem is complete. �

References

[1] R. Arratia, L. Gordon, M.S. Waterman, The Erdos–Rényi law in distribution, for coin tossing and sequence
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