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We use the equivariant cohomology of hyperplane complements and their toral
counterparts to give formulae for the Poincare polynomials of the varieties of´
regular semisimple elements of a reductive complex Lie group or Lie algebra. As a
result, we obtain vanishing theorems for certain of the Betti numbers. Similar
methods, using l-adic cohomology, may be used to compute numbers of rational
points of the varieties over the finite field F . In the classical cases, one obtains,q
both for the Poincare polynomials and for the numbers of rational points, polyno-´
mials which exhibit certain regularity conditions as the dimension increases. This
regularity may be interpreted in terms of functional equations satisfied by certain
power series, or in terms of the representation theory of the Weyl group. Q 1998

Academic Press

In this paper we give formulae for the Poincare and weight polynomials´
of the variety of regular semisimple elements of a complex reductive
algebraic group and its Lie algebra. The results use the equivariant
cohomology of hyperplane complements and their toral counterparts. One

Ž Ž . .of the applications of our results is a vanishing theorem see 3.4 below
for the top cohomology in the Lie algebra case. Our general formulae are
applied to give explicit polynomials in the case of classical complex Lie
algebras of type A, B, C, or D. These are quite manageable and easily

Ž Ž . Ž . Ž . .yield the relevant Betti numbers see 5.8 , 7.6 , and 7.11 below .
As a special case, we give an explicit formula for the Poincare polyno-´

mial of the variety of n = n matrices with distinct eigenvalues. In this case
w xwe prove a stability result, which asserts that the first nr2 q 1 Betti

numbers of this variety are ‘‘independent of n’’ in the sense that there is a
w xsingle universal power series whose first nr2 q 1 coefficients are the first

w xnr2 q 1 Betti numbers of the regular semisimple variety of gl for alln
n. The same thing applies in the case of algebras of type B or C.
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THE REGULAR SEMISIMPLE VARIETY 667

Our method may also be used to compute numbers of rational points
over finite fields, which we do in Section 8 below. In this case a similar
analysis to that which applies to the Poincare polynomials shows that the´
proportion of regular semisimple matrices over a finite field F is aq
polynomial in qy1, whose initial sequence of coefficients stabilizes as the
size of the matrices increases. Regularity statements such as these have
interpretations both in terms of functional equations for certain power
series and in terms of the representation theory of the Weyl groups. We
discuss both below, although we leave open many questions.

Ž w x.The author thanks Allan Steel who used Magma, cf. CP and Burkhard
Hofling for computer calculations involved in the tables and examples.¨

1. INTRODUCTION AND NOTATION

Let G be a complex connected reductive algebraic group. We fix a
Ž .maximal torus T and Borel subgroup B = T of G and write W s N T rTG

for the Weyl group. Then B s TU, where U is the unipotent radical of B.
We write G , B , T , U for the Lie algebras of G, B, T , and U, respectively.

Ž w x w x. Ž .An element x g G is regular cf. K , St if its centralizer C x hasG
Ž .minimal dimension which is equal to r s rank G s dim T . Similarly,

Ž . Ž � < Ž . 4.X g G is regular if C X s g g G Ad g X s X has minimal di-G
Ž .mension r here Ad denotes the adjoint action of G on G .

Ž . Ž . Ž .1.1 DEFINITION. i G resp. G is the set of regular semisimpler s r s
Ž .elements of G resp. G .

Ž . Ž . Ž .ii T resp. T is the set of elements of T resp. T which arer s r s
Ž .regular in G resp. G .

Ž . Ž .It is known that G resp. G is open dense in G resp. G . Moreoverr s r s
we have, recalling that W acts on T as a finite reflection group, the
following well known characterization of regular semisimple elements.

Ž . Ž .1.2 LEMMA. Let x g T resp. j g T . The following are equï alent.

Ž . Ž .i x resp. j is regular.
Ž . Ž .ii The centralizer of x resp. j in W is trï ial.
Ž . Žiii x is not annihilated by any root of G with respect to T resp. j is

.not on any reflecting hyperplane for the action of W on T .

Our results will be formulated in terms of certain polynomials which are
defined as follows. Let X be a complex algebraic variety and suppose a
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iŽ .finite group G acts on X as a group of automorphisms. Denote by H X
Ž . iŽ .the complex singular or de Rham cohomology of X and by H X thec

complex cohomology with compact supports, both regarded as G-modules.
w x iŽ .As in DL, Sect. 1 each cohomology space H X has a G-invariantc

weight filtration

0 ; W H j X ; W H j X ; ??? ; W H j X s H j X . 1.3Ž . Ž . Ž . Ž . Ž .0 c 1 c 2 dim X c c

If we denote the graded quotients by

Gr H j X s W H j X rW H j XŽ . Ž . Ž .m c m c my1 c

then we may form the weight m equivariant Euler characteristic.

jG jE X s y1 Gr H X 1.4Ž . Ž . Ž . Ž .Ým , c m c
j

Ž .This is to be thought of as an element of R G , the Grothendieck ring
of G.

Ž .1.5 DEFINITION. Let S be a complex algebraic variety with a G-
GŽ . G Ž .action, where G is a finite group. Define elements P t and Q t ofX X , c

Ž .w xR G t by

P G t s H j X t jŽ . Ž .ÝX
j

QG t s EG X t m .Ž . Ž .ÝX , c m , c
m

G Ž . Ž wThe reason for considering Q t is its ‘‘Boolean additivity’’ cf. DL,X , c
x.Section 2 which asserts that if Y and Z are complementary G-invariant

G Ž .subvarieties of X which are respectively open and closed, then Q t sX , c
G Ž . G Ž .Q t q Q t .Y , c Z, c
Ž .1.6 . We write, for g g G,

P G g , t s trace g , H j X t jŽ . Ž .Ž .ÝX
j

and

QG g , t s trace g , EG X t m .Ž . Ž .Ž .ÝX , c m , c
m

� 4If G s e , we drop the superscript and replace all modules by their
dimension. Our purpose here is to compute these polynomials when
X s G or G .r s r s
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2. AN UNRAMIFIED COVERING

We recall in this section that the part of the ‘‘Grothendieck]Springer
Ž .resolution’’ which lies over G resp. G is unramified and show that thisr s r s

Žfact reduces our problem to W-equivariant problems concerning T resp.r s
.T and GrT.r s

˜ ˜Ž .2.1 DEFINITION. Define varieties G and G byr s r s

˜ y1G s g , xT g G = GrT ¬ x gx g TŽ .� 4r s r s

˜ y1G s j , xT g G = GrT ¬ Ad x j g T .Ž .� 4r s r s

˜Ž . Ž w x. Ž .2.2 PROPOSITION cf. Sh . i The first projection G ª G is anr s r s
˜unramified co¨ering with co¨ering group W and similarly for G ª G .r s r s

Ž .ii We ha¨e W-equï ariant isomorphisms

G̃ ª T = GrT˜r s r s

G̃ ª T = GrT ,˜r s r s

where w g W acts on GrT ¨ia xT ¬ xwT , on T and T by conjugationr s r s
˜ Ž . Ž .and Ad, respectï ely, on G by g, xT ? w s g, xwT , and similarly onr s

G̃ .r s

Ž .Proof. The statement i follows easily from the facts that if two
Ž .elements of T resp. T are in the same G-orbit, they are in the same

Ž w x. Ž . ŽW-orbit see L2, 2.6 and that if t g T then C t s T together withr s G
.the corresponding statement for T . This shows that the fibers of the map

˜ ˜�Ž . 4G ª G are of the form g, xwT ¬ w g W , which is a W-orbit on G .r s r s r s
˜Ž . Ž .ii Consider the map f : G ª T = GrT defined by f g, xT sr s r s

Ž y1 . Ž . Ž y1 .x gx, xT . This clearly has inverse t, xT ¬ xtx , xT ; moreover for
Ž . Ž y1 y1 . Ž .w g W, f g, xwT s w x gxw, xwT s f g, xT ? w, whence f is W-

equivariant.

We may now write down the following general formulae.

Ž . Ž .2.3 THEOREM. Let P and Q be the polynomials defined in 1.5 . Then
with the abo¨e notation, we ha¨e

P t s PW t , PW tŽ . Ž . Ž .Ž .G T G r Tr s r s W

and

P t s PW t , PW t ,Ž . Ž . Ž .Ž .G T G r Tr s r s W



G. I. LEHRER670

Ž . w x Ž .w xwhere y, y denotes the inner product L2, Sect. 1 , in the ring R W t ,W
Ž . Ž .and similarly for Q t and Q t .G , c G , cr s r s

˜Ž .Ž .Proof. From 2.2 ii , G is an unramified quotient of G by W. Hencer s r s
j j ˜ W WŽ . Ž . Žby the transfer theorem for cohomology, H G s H G where Mr s r s

. jŽ .denotes the W-invariants in a module M , i.e., dim H G sr s
j ˜Ž Ž . . Ž .Ž .H G , 1 . But using 2.2 ii , we obtain from the Kunneth theorem¨r s W

that

PW t s PW t PW t . 2.3.1Ž . Ž . Ž . Ž .G̃ T G r Tr s r s

It follows that

P t s P t , 1Ž . Ž .Ž .˜G Gr s r s W

s PW t PW t , 1Ž . Ž .Ž .T G r Tr s W

s PW t , PW tŽ . Ž .Ž .T G r Tr s W

since all representations of W are self-dual.
The proofs of the other statements are similar, although for the formula

Ž . w Ž .xcorresponding to 2.3.1 for the weight polynomials Q, we use DL, 6.1 .

´3. SOME EQUIVARIANT POINCARE AND
WEIGHT POLYNOMIALS

Ž .From 2.3 it is apparent that in order to compute the Poincare and´
weight polynomials for G and G one requires the correspondingr s r s

Ž Ž .w x.W-equivariant polynomials i.e., elements of R W t for GrT, T , andr s
T . All of these have been studied elsewhere; we collect together ther s
results in this section. In order to state them we need the following
notation.

Ž . Ž .It has been remarked above that W acts on T s Lie T as a real
w xfinite reflection group. Let S s C T be the ring of polynomial functions

on T and write J for the ideal of S generated by the W-invariants of
positive degree. Then SrJ is a graded version of the regular representa-
tion of W. Moreover if we write 2 N for the number of roots of G with

Ž . Žrespect to T so that N s dim U then the following facts are known see,
w x.e.g., B .
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Ž . Ž . Ž3.1 . If SrJ denotes the ith graded component of SrJ as a W-i
.module , then

Ž . Ž .i SrJ s 0 for i ) Ni

Ž . Ž .ii SrJ s 10 W

Ž . Ž . Ž . Ž .iii SrJ ( « m SrJ for i s 0, . . . , N where « is the alter-Ny i i
nating representation of W.

To express our results, we shall use the following notation. If A s
Ž .[ A is a graded G module G being any finite group , writeig Z iG 0

G i w xP t s A t g R G t .Ž . Ž .ÝA i
i

Recall that a variety X is said to be pure if for each j, there is an integer
jŽ . jŽ . jŽ .m such that Gr H X s H X , i.e., H X is a pure Hodge structurej m j

Ž w x.of weight m cf. DL, Sect. 3 .j

Ž .3.2 PROPOSITION. Let G be a connected reductï e group o¨er C, T a
maximal torus of G, and SrJ the corresponding coin¨ariant algebra regarded
as a graded W-module, where W is the Weyl group of G with respect to T.
Then

Ž . jŽ . Ž .i H GrT is pure of weight j j s 0, 1, . . . .
Ž . jŽ .ii We ha¨e H GrT s 0 unless j is e¨en. Moreo¨er we ha¨e

N
W 2 i W 2P t s SrJ t s P t .Ž . Ž . Ž .Ý iG r T Sr J

is0

Ž . Ž .iii In the notation of 1.5 , we ha¨e

N
W 2 iq2 N 4 N W y2Q t s SrJ t s t P t .Ž . Ž . Ž .Ý Ny iG r T , c Sr J

is0

Ž .Proof. i We have a locally trivial vibration GrT ª GrB with fiber
N jŽ .U ( A . But GrB is non-singular and complete, whence H GrB s

jŽ . Ž w Ž .x.H GrB is pure of weight j. The result follows e.g., from DL, 6.1 .c

Ž . Ž w x w xii This is a standard result, essentially due to Borel see Hi , Sr ,
w x.Sp .

Ž . Ž . Ž . w Ž .xiii This follows from i and ii using DL, 1.6 , since GrT is
smooth and connected.

We now turn our attention to the varieties T and T .r s r s
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Ž . Ž .3.3 PROPOSITION. Let notation be as in 3.2 abo¨e.

Ž .i Let M be the complexified hyperplane complement correspondingW
W Ž . Ž . Ž w Ž .x.to W. Then T ( M and P t s P t in the notation of L2, 4.6 .r s W T Mr s W

Ž . Ž .ii The ¨arieties T and T are minimally pure mp in the sense ofr s r s
w Ž .x jŽ .DL, 3.1 ; i.e., H X is pure of weight 2 j y 2 dim X for X s T or T .c r s r s

Ž .iii We ha¨e
Ž . W Ž . 2 r Ž y2 .a Q t s t P ytT , c Mr s W

Ž . W Ž . 2 r W Ž y2 .b Q t s t P yt .T , c Tr s r s

Ž . Ž .Ž .Proof. i It follows from 1.2 iii that T is the complement in T ofr s
the union of the hyperplanes which are the kernels of the roots of G with
respect to T. Thus T ( M and the result follows.r s W

Ž .ii The minimal purity of the hyperplane complements is proved in
w xL3 ; moreover T is the complement in T of a ‘‘toral arrangement,’’ i.e.,r s
the union of a finite set of codimension 1 subtori of T. This is shown in
w Ž .x Ž w Ž .x.DL, 4.2 to be mp see also Looijenga La, 2.4.3 .

Ž . Ž .iii Let X s T or T . Then X is smooth of dimension r s rank G .r s r s
Ž . jŽ .It follows from ii and Poincare duality that H X is pure of weight 2 j,´

W 2 r W y2Ž . Ž . Ž . Ž .so that Q t s t P yt . The statements a and b follow.X , c X

As an immediate application we obtain

Ž . Ž3.4 THEOREM. Let G be as abo¨e i.e., a connected reductï e algebraic
. Ž .group o¨er C . If s is the semisimple rank of G i.e., the rank of G9 and N is

Ž . iŽ .the number of positï e roots of G with respect to T then H G s 0 forr s
i ) 2 N q s y 2 s dim G9 y 2, where G9 is the derï ed group of G.

Ž . Ž .Ž . Ž .Ž .Proof. It follows from Theorem 2.3 , together with 3.2 ii and 3.3 i
that

P t s PW t 2 , P t . 3.4.1Ž . Ž . Ž . Ž .Ž .G Sr J Mr s W W

Ž . W Ž 2 .Now P t is a polynomial of degree s, while P t has degree 2 N.M Sr JW W Ž 2 . 2 NMoreover the term of highest degree of P t is « t , where « isSr J W W
w Ž .x Žthe alternating character of W. But from L2, Theorem 4.8 see also

w x.L7 we have

« , P t s 0. 3.4.2Ž . Ž .Ž .W MW W

Ž .It follows that the highest possible power of t occurring in P t isG r s2 Ny2qst .
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4. EXPLICIT FORMULAE

Ž .4.1 LEMMA. With notation as in Section 3, we ha¨e
r

y1W d jP w , t s 1 y t det 1 y wt ,Ž . Ž . Ž .ŁSr J
js1

where w g W, det is the determinant of the action of W on T , and d , . . . , d1 r
are the basic degrees of W.

Ž w x.Proof. cf. L2, Sect. 1 . It is well known that by Chevalley’s theorem,
W Ž WS ( SrJ m S as graded W-modules where S is the set of W-invariants

.in S , so that
PW t , w s PW t , w P W t .Ž . Ž . Ž .S Sr J S

Ž w x. W Ž . Ž .y1It is also well known that cf. L2 P t, w s det 1 y wt ; the result isS
now clear.

This enables us to write explicit formulae for the required polynomials,
which reduce their computation to that of the corresponding polynomials
for T and T .r s r s

Ž . Ž4.2 THEOREM. Let G, T , W, T , T , etc. be as abo¨e so that G isr s r s
the ¨ariety of regular semisimple elements in the Lie algebra G of the complex

. Ž .connected reductï e algebraic group G . Then with notation as in 1.5 we
ha¨e

r P w , tŽ .My1 W2 d j< <i P t s W 1 y t ,Ž . Ž . Ž .Ł ÝG 2r s det 1 y wtŽ .js1 wgW

Ž .where P t is the Poincare polynomial of W acting on the cohomology of its´MW

complex hyperplane complement.
r y2P w , ytŽ .My1 W2 rq2 N 2 d j< <ii Q t s W t t y 1 .Ž . Ž . Ž .Ł ÝG , c 2r s det t y wŽ .js1 wgW

Ž . Ž .4.3 THEOREM. With notation as in 4.2 , we ha¨e
r P w , tŽ .Ty1 r s2 d j< <i P t s W 1 y tŽ . Ž . Ž .Ł ÝG 2r r det 1 y wtŽ .js1 wgW

r y2P w , ytŽ .Ty1 r s2 rq2 N 2 d j< <ii Q t s W t t y 1 .Ž . Ž . Ž .Ł ÝG , c 2r s det t y wŽ .js1 wgW

Ž . Ž . Ž . Ž . Ž .Proof. Both Theorems 4.2 and 4.3 follow from 2.3 , 3.2 , 3.3 , and
Ž .4.1 after a little calculation.

Ž . Ž wNow the polynomials P t have all been computed see L1, L4, FJ,MWx. Ž . Ž .B1 and general formulae exist for P w, t for many but not all w g WMW
Ž w x. Ž .see L3, L6 . Thus Theorem 4.2 does give an explicit solution to the
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problem of computing the polynomials P and Q . For the groupG G , cr s r sW Ž . w xcase, P t has only hitherto been computed for G of type A L5 .Tr s

5. THE CASE OF GLn

In this section we give closed formulae for the four polynomials P and
Ž . w xQ in the case G s GL C , using the results of L1, L5 .n

Ž . Ž . Ž .5.1 DEFINITION. i For any natural number i s 1, 2, . . . define the
polynomials

i iydp t s m ytŽ . Ž .Ýi ž /d<d i

1
q t s p tŽ . Ž .i iii ytŽ .

Ž Ž . .where m j is the arithmetical Mobius function .¨
Ž .ii For rational integers i G 1 and m G 0 define the polynomial

i iŽm.P t s p t p t y i yt p t y 2 i yt ???Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .i i i i

=
ip t y m y 1 i ytŽ . Ž . Ž .Ž .i

mi q tŽ .is i yt m! ,Ž .Ž . ž /m

where for any non-negative integer m, we write

a a y 1 ??? a y m q 1Ž . Ž .a s . 5.1.1Ž .ž /m m!

When G s GL , W is the symmetric group S . The conjugacy class ofn n
w g S is described by a partition l of n, which we write in the formn

Ž m i.l s i ,Ý im s n. The integer m is called the multiplicity of the part ii i i
in l. With this notation we have

Ž . w Ž .x5.2 PROPOSITION L1, 5.5 . Suppose W s S and that w g S is ofn n
Ž . Ž m i. Ž .type i.e., belongs to the conjugacy class of type l s i . Then P w, t sMWŽm i.Ž . Žm.Ž . Ž .Ž .Ł P t where P t is as defined in 5.1 ii .i i i

Ž . Ž m i.Now the number n l of elements w g S of type l s i is given byn

n!
n l s . 5.3Ž . Ž .m iŁ m !ii i
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Ž Ž m i..Moreover the eigenvalues of w ; i acting on T form a complete set
of ith roots of unity, each occurring with multiplicity m . It is thereforei
apparent that

m iidet 1 y wt s 1 y t . 5.4Ž . Ž . Ž .Ł
i

Ž .5.5 THEOREM. Let G be the ¨ariety of n = n matrices o¨er C withr s
Ž Ž ..distinct eigen¨alues. The Poincare and weight polynomials see 1.5 of G´ r s

are gï en by
m iin ytŽ .q tŽ .i2 ji P t s 1 y tŽ . Ž . Ž .Ł Ý ŁG 2 ir s mž / ž /1 y timjs1 iŽ .ls i i

l&n

m iy2 in 2 t2 q ytŽ .n qn 2 j iii Q t st t y1 ,Ž . Ž . Ž .Ł Ý ŁG , c 2 ir s ž /ž /m t y1imjs1 iŽ .ls i i
l&n

Ž m i.where the sums are o¨er all partitions l s i such that Ý im s n and thei i
Ž . Ž .polynomials q t are defined in 5.1 .i

Ž . Ž . Ž .Proof. We substitute the expressions 5.2 and 5.3 into 4.2 , taking
� 4 � 4into account that d , . . . , d s 1, . . . , n here and after some rearrange-1 n

ment, obtain the stated formulae.

We turn now to the group case.

Ž . w x5.6 PROPOSITION L5 . Let G s GL and suppose w g W s S is ofn n
Ž m i. W Ž . Žm1q1 .Ž . Žm i.Ž .type l s i . Then we ha¨e P w, t s P t Ł P t , whereT 1 i)1 ir sŽm.Ž .P t is as abo¨e.i

Ž . Ž .Given 5.6 , the next result follows in analogous fashion to 5.5 .

Ž . Ž .5.7 THEOREM. Let G be the regular semisimple ¨ariety in GL C . Ther s n
Poincare and weight polynomials of G are gï en by´ r s

n Žm q1. Žm .1 iP t P tŽ . Ž .1 i2 ji P t s 1 y tŽ . Ž . Ž .Ł Ý Łm mG 1 ir s 2 m 2 iimjs1 i)1m ! 1 y t m !i 1 y tŽ . Ž .Ž .ls i i 1 i
l&n

n Žm q1. y21P ytŽ .2 1n qn 2 jii Q t s t t y 1Ž . Ž . Ž .Ł ÝG , c 2r s m ! t y 1Ž .mjs1 1Ž .ls i i
l&n

P Žm i. yty2Ž .i
= ,Ł m im 2 iii)1 m !i t y 1Ž .i

Žm.Ž . Ž .where the polynomials P t are defined in 5.1 .i
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Ž . Ž . Ž .5.8 EXAMPLE. If we write P t for P t , we list here the first fewn Ž g l .n r s

values

Ž .n P tn

2 1 q t
3 4 5 6 3 5Ž .Ž .3 1 q t q t q t q t q t s 1 q t 1 q t q t
3 4 5 6 7 8 9 10 11 12 134 1 q t q t q 2 t q 3t q 3t q 2 t q 3t q 3t q 2 t q t q t q t

The Betti numbers of G are thus easily obtainable from this formula.r s

Ž . Ž . iŽ .5.9 PROPOSITION. Let G be as in 5.5 . Then H G s 0 forr s r s
2 n2y3 Ž .i ) n y 3 while dim H G s 1.r s

Ž . 2Proof. The first statement follows from 3.4 since 2 N q s y 2 s n y 3
W Ž 2 .here. Next, observe that the term of degree 2 N y 2 in P t isSr J

« r t 2 Ny2, where r is the reflection character of W. But a simpleW W W
w Ž .xcalculation using Frobenius reciprocity, together with L1, 5.5 shows that

in this case

« r , H ny1 M s 1. 5.9.1Ž . Ž .Ž .W W W W

Ž . Ž .Ž . Ž .Ž . n2y3 Ž .This, together with 2.3 , 3.2 ii , and 3.3 i shows that H G hasr s
dimension one, as required.

6. A STABILITY RESULT FOR THE REGULAR
SEMISIMPLE VARIETY OF GL n

In this section we shall prove

Ž . Ž . Ž .6.1 THEOREM. let G be the Lie algebra of GL C . If b n sn i
iŽ .dim H G , C is the ith Betti number of its ¨ariety of regular semisimpler s

Ž . Ž .elements, then b n s b 2 i for all n G 2 i.i i

Ž .The proof will involve the explicit formula of 5.5 . Notice that the
Ž . Žtheorem implies that the Betti numbers of gl stabilize with respect ton r s

. Ž .n and that we may therefore speak of unï ersal Betti numbers of gl ,n r s
or Betti numbers of gl .`r s

Ž .In the proof of 6.1 we shall use

Ž . Ž .6.2 LEMMA ‘‘Cyclotomic Identity’’ . For any indeterminates x and t
Ž .o¨er say C, we ha¨e the identity

xŽ .q tii1 y x s 1 qŽ .Ł tiG1
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ww y1 xx ww y1 xx Ž .kin the ring C x, t , where for elements h, k of C x, t , 1 q h denotes
k rŽ .Ý h .r G 0 r

Although this is well known, we give here the following short proof.
Ž .kNote that in the definition of 1 q h above, h and k must be such that

ww y1 xxthe definition makes sense, e.g., h g xC x, t suffices, for then the
coefficient of x i t j involves only finitely many terms in the sum.

Ž y1 .Proof. For any prime power q, it is well known that q yq is thei
number of irreducible polynomials of the form t i q a t iy1 q ??? qa with1 i
a g F . Consider the set SS of all polynomials over F of the above form,j q n q

Ž .with i s n. Since each such polynomial has a unique up to order
factorization as a product of irreducible polynomials of the same form, the

n Ž i.yq iŽyqy1 .cardinality of SS is clearly the coefficient of x in Ł 1 y x .n iG1
Using the fact that this number is q n, we obtain that for any prime power

Ž i.yq iŽyqy1 . j j Ž .y1q, Ł 1 y x s Ý q x s 1 y qx . The result is nowiG1 nG 0
clear.

Ž . Ž . Ž . iProof of 6.1 . For any integer n G 1, write P t s Ý b n t gn iG 0 i
w x Ž .C t ; also P t s 1. The stated result is clearly equivalent to0

w nq1r2x w xFor n G 2, t divides P t y P t in C t . 6.1.1Ž . Ž . Ž .n ny1

Ž . Ž . Ž . Ž . Ž .To prove 6.1.1 we write P t s f t g t , where for n G 1, f t sn n n n
n 2 j q t i 2 i mŽ . iiŽ . Ž . Ž .ŽŽ . Ž ..mŁ 1 y t and g t s Ý Ł yt r 1 y t . Alsomjs1 n lsŽ i i.r l& n i i

Ž . Ž . Ž . w x Ž . w xwrite f t s g t s 1. Note that f t g C t , while g t g C t , the0 0 n n M
w xlocalization of C t at M, where M is the multiplicative set of polynomials

w xin C t , all of whose roots are roots of unity.
Now

P t y P t s f t g t y g t q g t f t y f t .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n ny1 n n ny1 ny1 n ny1

6.1.2Ž .

Ž . Ž . Ž . Ž 2 n.Moreover f t y f t s f t ? yt , so that the second summandn ny1 ny1
Ž . 2 n w xin 6.1.2 lies in t C t .

Ž .Ž Ž . Ž .. Ž .Now consider the first summand f t g t y g t . Define G z, t gn n ny1
w x ww xx Ž . Ž . nC t z by G z, t s Ý g t z . A simple calculation then shows thatM nG 0 n

Ž .q tiiytzŽ .
G z , t s 1 qŽ . Ł 2 iž /1 y tiG1

Ž .q t Ž .yq tii i2 i 2 is 1 y t q ytz 1 y t . 6.1.3Ž . Ž . Ž .Ž .Ł Ł
iG1 iG1
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Ž . yi w x Ž .qiŽ t .Note that although q t g t C t , each term of the sums 1 q hi
Ž . w x ww xxoccurring in 6.1.3 lies in C t zM

Ž . Ž 2 i.qiŽ t .But by 6.2 , Ł 1 y t s 1 q t, whenceiG1

Ž .q tiy1 i2 iG z , t s 1 q t 1 y t q ytz . 6.1.4Ž . Ž . Ž . Ž .Ž .Ł
iG1

Ž . Ž . Ž . Ž Ž . Ž .. nIf we write g t s 0 then 1 y z G z, t s Ý g t y g t z .y1 nG 0 n ny1
Ž .Moreover applying 6.2 again, we have

Ž .q tii1 y z s 1 y yzt . 6.1.5Ž . Ž .Ž .Ł
iG1

Ž . Ž .Combining 6.1.4 and 6.1.5 we obtain

Ž .q tiiy1 2 i 2 i 31 y z G z , t s 1 q t 1 y zt y t q yt z . 6.1.6Ž . Ž . Ž . Ž . Ž . Ž .Ł ž /
iG1

Ž .Ž Ž . Ž .. w x Ž .Now f t g t y g t , which we know to be in C t , is f t timesn n ny1 n
n Ž .the coefficient of z in the right hand side of 6.1.6 . We show that this

wŽnq1.r2x w xcoefficient is divisible by t in C t , from which it will follow thatM
Ž .Ž Ž . Ž .. wŽnq1.r2x w xf t g t y g t is divisible by t in C t .n n ny1
Now

Ž .q tii2 i 2 i 31 y zt y t q yt zŽ . Ž .ž /
kiq tŽ .k 2 i 2 i 3is y1 zt q t y yt zŽ . Ž . Ž .Ý ž /ž /kkG0

kiq tŽ .k ik 2 i i i 2is y1 t z t q t y yt z . 6.1.7Ž . Ž . Ž .Ý ž /ž /kkG0

q t ikŽ .iŽ . w x Ž .Recalling that t g C t , it is clear from 6.1.7 that in the expan-k

Ž . n Ž w x .sion of the right side of 6.1.6 , the coefficient of z is divisible in C t M
by t m, where m is an integer satisfying m G nr2. This completes the proof

Ž .of 6.1 .

We remark that there is strong empirical evidence that the statement
Ž .6.1 is not the best possible. In fact we have

Ž . Ž . Ž . Ž .6.3 CONJECTURE. In the notation of 6.1 , we ha¨e b n s b i fori i
Ž . Ž .all n G i. Moreo¨er b i y 1 s b i y 1 for all i G 1.i i

Ž . Ž .6.4 EXAMPLE. Let b be the ith Betti number of gl for alli n r s
Ž .sufficiently large n; by 6.1 , n G 2 i suffices. We give a list of the first 15
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values of b in the table below.i

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
b : 1 1 0 1 2 4 6 9 17 30 47 75 131 221 358i

Ž . Ž .Žn.6.5 COROLLARY. Let SrJ and M respectï ely be the coin¨ariantn
algebra and complex hyperplane complement associated with the symmetric
group S of degree n. Then for any i G 0 the inner product of charactersn

Ž .n kSrJ , H MŽ . Ž .jÝ ž /n Sn
2 jqksi

is independent of n for n G 2 i.

Ž . Ž .This is simply a restatement of 6.1 taking into account 3.4 .

7. LIE ALGEBRAS OF TYPE B, C, OR D

w xIn this section we use the results of L4 to give an explicit formula for
Ž .the Poincare polynomial P t when G is of type B, C, or D. Recall that´ G r s
Ž .in the hyperoctahedral case type B or C , a conjugacy class in the Weyl

Ž w x. Ž q y.group W is given see L4, Sect. 1 by a pair l s l , l of partitions
< q< < y< Ž m i n j. qsuch that l q l s n. We shall write l s i , j , where l has mi

cycles of length i, ly has n cycles of length j, and Ý im q Ý jn s n.j i i j j

Ž . Ž . Ž .7.1 DEFINITION. i For any natural number i G 1 i.e., i s 1, 2, 3, . . .
define the polynomials

1 q t if i s 1¡
p t if i is odd, i / 1Ž .i

q ~ kp t sŽ . 2 ki 2 p t yp yt if is2 i , with i odd, i /1, and k/0Ž . Ž .i i 1 1 11

i k¢2 p t q t y 1 if i s 2 , k / 0,Ž .i

and

1 q t if j s 1¡
k2 ky ~p y yt if j s 2 j , with j odd and j / 1.Ž .p t sŽ . Ž .j 1 1 1j 1¢ j k1 y t if j s 2 , k / 0,

Ž . Ž .where p t is the polynomial defined in 5.1 .i
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Ž . Ž .ii With notation as in i , define, for any positive integer i,

p" tŽ .i"q t s .Ž .i i2 i ytŽ .

Ž .iii For natural numbers i and m, define the polynomials

m "i q tŽ .Žm." iP t s 2 i yt m!Ž . Ž .Ž .i ž /m

Ž .notation being as in 5.1.1 .

Ž . w Ž .x7.2 PROPOSITION L4, 5.6 . Let W be a Weyl group of type B or C ,n n
Ž q y.i.e., a hyperoctahedral group. Suppose w g W is of type l s l , l with

q Ž m i. y Ž n j. Ž .Ž .l s i and l s j . Then in the notation of 7.1 iii ,

P w , t s P Žm i.q t P Žn j.y t .Ž . Ž . Ž .Ł ŁM i jW
i j

Ž . Ž Ž ..The number n l of elements of W of type l notation as in 7.2 is
given by

2 nn!
n l s . 7.3Ž . Ž .m ni jŁ 2 i Ł 2 j m !n !Ž . Ž .i j i j

Further, the explicit description of w g W of type l as a product of
Ž w Ž .x.positive and negative cycles cf. L4, 1.4 yields easily that

m ni ji jdet 1 y wt s 1 y t 1 q t . 7.4Ž . Ž . Ž . Ž .Ł Ł
i j

We are now able to state

Ž .7.5 THEOREM. Let G be the Lie algebra of a semisimple complex Lie
group of type B or C . The Poincare polynomial of its regular semisimple´n n
¨ariety is gï en by

m iin q ytŽ .q tŽ .i4 kP t s 1 y tŽ . Ž .Ł Ý ŁG 2 ir s mž / ž /1 y tiq yks1 iŽ .ls l , l
q m y ni jŽ . Ž .l s i , l s j

n jjy ytŽ .q tŽ .j
= ,Ł 2 jn ž /ž / 1 q tjj
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Ž q y. q Ž m i. y Ž n j.where the sum is o¨er pairs l s l , l of partitions l s i , l s j
"Ž .such that Ý im q Ý jn s n and the polynomials q t are defined ini i j j i

Ž .Ž .7.1 ii .

Ž .Ž . Ž . Ž .The proof is an application of 4.2 i , taking into account 7.2 , 7.3 ,
Ž .and 7.4 .

Ž . Ž . Ž . Ž .7.6 EXAMPLE. If we write P t for P t with G as in 7.5 , we listB Gn r s

here the first few values

Ž .n P tBn

6 5 22 2 t q 2 t q t q 2 t q 1
19 18 15 14 13 11 10 9 7 6 5 3 23 t q t q 4 t q 5t q t q 5t q 8 t q 3t q 4 t q 7t q 3t q t q 2 t q 2 t q 1

32 31 30 28 27 26 24 23 22 214 3t q 4 t q t q 12 t q 16 t q 4 t q 19t q 31t q 13t q t
20 19 18 17 16 15 14 13 12 11q26t q 42t q 18t q 2t q 22t q 40t q 22t q 4t q 16t q 28t
10 9 8 7 6 5 4 3 2q16t q 4t q 6t q 13t q 10t q 3t q t q 2t q 2t q 2t q 1

This list, together with other evidence, points to the hypothesis that
Ž .there is a stability result like 6.1 for this case. We now prove such a

Ž Ž ..result. We start with a variation on the cyclotomic identity cf. 6.2 .

Ž . Ž .7.7 LEMMA. For any indeterminates x and t o¨er say C, we ha¨e the
identity

q y xŽ . Ž .q t q t y1i ji j1 y x 1 y x s 1 y x 1 qŽ . Ž . Ž .Ł Ł ž /tiG1 jG1

ww y1 xx ww y1 xx Ž .kin the ring C x, t , where for elements h, k of C x, t , 1 q h denotes
k rŽ .Ý h .r G 0 r

Ž . qŽ .Proof. This follows immediately from 6.2 upon observing that q ti
yŽ . Ž . qŽ . yŽ . Ž .q q t s q t for i G 2 while q t q q t s q t y 1. The latteri i q 1 1

Ž . Ž .equations may be checked from definitions 5.1 and 7.1 , although they
can also be proved directly.

Ž .7.8 THEOREM. Let G be the Lie algebra of a simple Lie group of type
Ž . iŽ .B or C . If b n s dim H G , C is the ith Betti number of its ¨ariety ofn n i r s

Ž . Ž .regular semisimple elements, then b n s b 2 i for all n G 2 i.i i

Ž .Proof. This is similar to that of 6.1 , so we suppress the details. Denote
Ž . Ž . Ž . Ž . Ž .the Poincare polynomial given in 7.5 by P t and write P t s h t k t ,´ n n n n

where

n
4 kh t s 1 y tŽ . Ž .Łn

ks1
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and

m ni ji jyq yt ytŽ . Ž .q tŽ .q tŽ . jik t s .Ž . Ý Ł Łn 2 i 2 jm nž / ž / ž /ž /1 y t 1 q ti jq y i jŽ .ls l , l
q m y ni jŽ . Ž .l s i , l s j

Ž . Ž .As in the proof of 6.1 , we reduce the proof to showing that if G t, z s
Ž . n Ž w x ww xx. n Ž . Ž .Ý k t z g C t z , then the coefficient of z in 1 y z G t, znG 0 n M
m w x Ž .lies in t C t , where m G nr2. Using 7.7 , we haveM

qŽ . y Ž .q t q ti ji j1 y z s 1 q zt 1 y yzt 1 y yzt . 7.8.1Ž . Ž . Ž . Ž .Ž . Ž .Ł Ł
iG1 jG1

Moreover one easily sees that

q Ž . y Ž .q t q ti ji jytz ytzŽ . Ž .
G z , t s 1 q 1 q . 7.8.2Ž . Ž .Ł Ł2 i 2 jž / ž /1 y t 1 q tiG1 jG1

Ž . Ž .Hence 1 y z G t, z is the product of 1 q zt with two factors, each of
Ž .which is similar to the right hand side of 6.1.6 . But each of these factors

n m w xhas the property that the coefficient of z lies in t C t , where m G nr2.M
This is obvious for 1 q zt and proved for the other two factors in the same

Ž . qŽ . i k yŽ . i kway as in 6.1 , the relevant point being that both q t t and q t t liei i
w xin C t . This completes the proof.

As in the case of type A , this result may be restated in terms of then
graded representations of the hyperoctahedral group on its coinvariant
algebra and the cohomology ring of its hyperplane complement.

Ž . Ž .Žn.7.9 COROLLARY. Let SrJ and K respectï ely be the coin¨ariantn
algebra and complex hyperplane complement associated with the hyperoctahe-

Ž .dral Weyl group of type B or C . Then for any i G 0 the inner product ofn n
characters

Ž .n kSrJ , H KŽ . Ž .jÝ ž /n Sn
2 jqksi

is independent of n for n G 2 i.

Ž .7.10 EXAMPLE. Let b be the ith Betti number of G , where G isi r s
Ž . Ž .as in 7.8 , for all sufficiently large n; by 7.8 , n G 2 i suffices. We give a

list of the first 14 values of b in the table below.i

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13
b : 1 2 2 2 2 5 12 20 29 45 75 127 213 349i
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Ž .We now turn to the case of type D. The Weyl group W D has indexn
Ž . Ž .two in W B . It is therefore a union of conjugacy classes of W B and itn n

Ž q y.is standard that, in the above notation, the conjugacy class l , l of
Ž . Ž .W B is contained in W D precisely when Ý n is even, i.e., when then n j j

number of negative cycles is even.
w x Ž .The method of L3 may be applied to obtain the analogue for W D ofn

Ž . Ž w Ž .x.7.2 see B1, 5.5.4v .

Ž .7.11 PROPOSITION. Let W be a Weyl group of type D . Suppose w g Wn
Ž q y. q Ž m i. y Ž n j.is of type l s l , l with l s i and l s j . Then in the notation

Ž .Ž .of 7.1 iii ,

n t m t1 1
P w , t s 1 y yŽ .MW ŽD .n ž /1 q 2n y 1 t 1 q 2m y 1 tŽ . Ž .1 1

= P Žm i.q t P Žn j.y t ,Ž . Ž .Ł Łi j
i j

where M is the hyperplane complement of type D .W ŽD . nn

Ž . Ž .Note that although we only need 7.11 for w g W D , the larger groupn
Ž .W B acts on the hyperplane complement M and the formula inn W ŽD .n

Ž . Ž .7.11 holds for any w g W B .n
Ž .The same analysis as in 7.5 may now be carried through. The result is

Ž .7.12 THEOREM. Let G be the Lie algebra of a semisimple complex Lie
group of type D . The Poincare polynomial of its regular semisimple ¨ariety is´n
gï en by

ny1
2 n 4 kP t s 2 1 y t 1 y tŽ . Ž . Ž .ŁG r s

ks1

=
n t m t1 1

1 y yÝ ž /½ 1 q 2n y 1 t 1 q 2m y 1 tŽ . Ž .q y 1 1Ž .ls l , l
q m y ni jŽ . Ž .l s i , l s j

m ni ji jyq yt ytŽ . Ž .q tŽ .q tŽ . ji= ,Ł Ł2 i 2 jm nž / ž / ž / 5ž /1 y t 1 q ti ji j

Ž q y. q Ž m i. y Ž n j.where the sum is o¨er pairs l s l , l of partitions l s i , l s j
Ž . "Ž .with Ý n ' 0 mod 2 , Ý im q Ý jn s n, and the polynomials q t arej j i i j j i

Ž .Ž .defined in 7.1 ii .
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Ž . Ž . Ž . Ž .7.13 EXAMPLE. If we write P t for P t with G as in 7.12 , weD Gn r s
Ž .give here the coefficients of P t for n s 4, 5, and 6. They are listedD n

Ž .below in increasing order of degree i.e., with the constant term first, etc.

Ž .n Coefficients of P tD n

4 1, 1, 0, 1, 1, 3, 9, 9, 3, 4, 14, 22, 12, 3, 16, 27, 14, 1, 8, 19, 12, 0, 3, 6, 3
5 1, 1, 0, 0, 0, 4, 9, 9, 9, 15, 26, 31, 32, 41, 62, 66, 62, 71, 95, 101, 91, 92, 114,

114, 94, 91, 103, 100, 78, 67, 71, 66, 45, 36, 35, 31, 18, 12, 10, 9, 4, 2, 1, 1
6 1, 1, 0, 0, 0, 3, 6, 8, 16, 24, 23, 36, 78, 103, 75, 99, 222, 288, 180, 182, 453,

605, 349, 277, 730, 996, 547, 343, 971, 1359, 728, 360, 1087, 1563, 822, 316,
1033, 1531, 799, 238, 831, 1268, 661, 143, 557, 885, 463, 69, 301, 501, 265,
24, 123, 218, 119, 5, 33, 65, 37, 0, 4, 10, 6

8. RATIONAL POINTS OVER FINITE FIELDS

ŽSuppose that X is a variety defined over F the Galois field of qq
.elements , with corresponding Frobenius endomorphism F : X ª X. The

F -rational points of X are the fixed points X F of X under F; they mayq
w xbe counted by Grothendieck’s formula D

jF j< <X s y1 trace F , H X , Q , 8.1Ž . Ž .Ž .Ž .Ý c l
j

jŽ . Ž .where H y, Q denotes l-adic cohomology l a prime not dividing qc l
with compact supports.

< F < < F <The methods above may be used to compute G and G where G isr s r s
a connected reductive group defined over F , F is the correspondingq

Ž .Frobenius endomorphism, and G and G etc. are defined as for the Gr s r s
Ž Ž . Ž . .of Section 2. The key results analogous to 3.2 and 3.3 above are

jŽ . Ž . Ž . Ž .8.2 PROPOSITION. i H GrT, Q s 0 unless j s 2 s s g N and Fc l
2 s sŽ .acts on H GrT, Q with all eigen¨alues equal to q .c l

Ž . tŽ . tŽ . tyrii F acts on H T and on H T with all eigen¨alues equal to q .c r s c r s

Ž . w x Ž . Ž w xProof. Part ii is proved in L3 while i is well known see, e.g., Sp or
w x.Sr .

Ž . w Ž .x8.3 PROPOSITION L2, 4.12 . Suppose that in the notation abo¨e, the
Ž .lattice of intersections of the reflecting hyperplanes of W is the same in T C

Ž . w xas in G F , i.e., that in the notation of L2 , the characteristic p is regular forq
W. Then

< F < < F < W y1 W y1G s G P yq , P q .Ž . Ž .Ž .r s M Sr JW W
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Ž .Proof. We have, by the Kunneth theorem, using 2.2¨

w xjr2

j 2 s jy2 sH G ( H GrT m H T , 8.3.1Ž . Ž . Ž . Ž .� 4[ 1c r s c c r s W
ss0

j � 4where H denotes l-adic cohomology with compact supports and Ac 1W

denotes the 1 -isotypic component of the W-module A. Moreover theW
Ž . � 2 sŽ .isomorphism 8.3.1 respects the action of F, so that F acts on H GrTc

jy2 sŽ .4 jyŽ rqs.m H T with all eigenvalues equal to q . It follows thatc r s 1W

jF j< <G s y1 trace F , H GŽ . Ž .Ž .Ýr s c r s
j

j jyrys 2 s jy2 ss y1 q H GrT , H T .Ž . Ž . Ž .Ž .Ý c c r s W
j, s

Ž .Ž . 2 sŽ . Ž .But similarly to 3.2 ii , we have H GrT ( SrJ for all s. Chang-c 2 Nys
ing variables in the above sum to a s 2 N y s and b s j y 2 s we then

< F < 2 Nqrobtain, taking into account that G s q ,

bF F y2 r ya b< < < <G s G q q SrJ , yq H TŽ . Ž . Ž .Ž .Ý ar s c r s W
a, b

< F < y1 y2 rs G P q , q P yq ,Ž .Ž .Ž .Sr J T , cr s

b bŽ . Ž .where P t s Ý H T , Q t .T , c b c r s lr s

But the assumption on the lattices of hyperplane intersections implies,
w x y2 r Ž . Ž y1 .by L3, Theorem 1.4 that t P yt s P yt , whence the result.T , c Mr s W

The corresponding result for G isr s

Ž .8.4 THEOREM. Let G be a connected reductï e group defined o¨er F ,q
with corresponding Frobenius endomorphism F. Then in the notation abo¨e

< F < 2 Nyr W W y1G s q P yq , P q ,Ž . Ž .Ž .r s T , c Sr Jr s W

where

W j jP t s H T , Q t .Ž . Ž .ÝT , c c r s lr s
j

Ž .Proof. This is entirely analogous to that of 8.3 .
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W Ž .Note that P t may generically be computed with T replaced by itsT , c r sr s
Ž w Ž .x.analogue over C cf. DL, 5.5 .
Ž .In analogy with 5.5 , these formulae may be given explicitly for the case

of type A. For gl the statement isn

Ž . Ž8.5 COROLLARY. If the characteristic p is regular for gl p does notn
. Ž .dï ide n suffices the number of regular semisimple elements in gl F isn q

n y1 ymq yq iŽ .nŽny1.r2 j iiq q y 1 q y 1 ,Ž . Ž .Ł Ý Ł ž /mimjs1 iiŽ .ls i
l&n

Ž . Ž w y1 x. Ž .where q t is the polynomial in C t defined in 5.1 .i

Ž .We shall next prove a stability result like 6.1 for the proportion of
Ž . Ž .regular semisimple matrices in gl F . Dividing the expression in 8.5 byn q

q n2
, we see that this proportion is given by

n y1 ymq yq iŽ .yj iiK q s 1 y q q y 1 .Ž . Ž . Ž .Ł Ý Łn ž /mimjs1 iiŽ .ls i
l&n

Ž y1 . Ž . w y1 x ŽSince the degree in t of q t is i, K q is a polynomial in Z q ofi n
Ž ..course we know this already from 8.3 .

Ž .8.6 PROPOSITION. The proportion of regular semisimple matrices in
Ž .gl F is a polynomialn q

1 Ž .Ž .ny1 nq2 y12

yiK q s a n q .Ž . Ž .Ýn i
is0

Ž . Ž .Moreover we have a n s a 2 i for all n G 2 i.i i

Proof. The first part of the statement is clear from the above remarks,
Ž . Ž .8.3 , and 3.4.2 . For the second part, write

m iin tq ytŽ .iy1 jH t s K t s 1 y tŽ . Ž . Ž .Ł Ý Łn n imž / ž /1 y timjs1 iiŽ .ls i
l&n

s c t d t ,Ž . Ž .n n

n j q ytŽ .iŽ . Ž . w x Ž . Ž .mwhere c t s Ł 1 y t g C t and d t s Ý Łi mn js1 n lsŽ i .r l& n i i

Ž i Ž i..m i w xt r 1 y t , an element of C t , which we recall is the localization ofM
w xC t at the set M of polynomials all of whose roots are roots of unity. The
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Ž .proof now follows the lines of that of 6.1 . We have

H t y H t s c t d t y d t q d t c t y c t .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n ny1 n n ny1 ny1 n ny1

Ž . Ž . nSince c t y c t is divisible by t , it will suffice to show thatn ny1

wŽnq1.r2x w xFor n G 2, t divides d t y d t in C t . 8.6.1Ž . Ž . Ž .Mn ny1

Ž . Ž . n w x ww xx Ž .Write u z, t s Ý d t z g C t z . Then in analogy with 6.1.3 ,nG 0 n M
we have

Ž .q ytiitzŽ .
u z , t s 1 q . 8.6.2Ž . Ž .Ł iž /1 y tiG1

Ž .Moreover, replacing t by yt in 6.1.5 , we have

Ž .q ytii1 y z s 1 y yzt . 8.6.3Ž . Ž .Ž .Ł
iG1

Ž . Ž .Combining 8.6.3 and 8.6.2 , it follows that

Ž .q ytiit ii 21 y z u z , t s 1 q tz y tz . 8.6.4Ž . Ž . Ž . Ž . Ž .Ł ž /iž /1 y tiG1

i Ž . w x Ž .Using the fact that t q t g C t , 8.6.1 follows immediately, proving thei
proposition.

Ž . Ž .The next statement is a rephrasing of 8.6 , taking 8.3 into account.

Ž . Ž .8.7 COROLLARY. In the notation of 6.5 , we ha¨e for any i, the inner
product

Ž .k n ka n s y1 SrJ , H MŽ . Ž . Ž . Ž .jÝ ž /i n Sn
jqksi

is independent of n for n G 2 i

Ž .We give below a list of values of the constants in 8.7 . Let a be thei
Ž .common value of a n for n G 2 i.i
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Ž .8.8 EXAMPLE. The first fifteen values of the a are given in the tablei
below.

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a : 1 y1 y1 0 0 1 0 1 0 0 0 0 y1 0 0i

There appears to be empirical evidence that a s 0, " 1 for all i. Wei
have verified this by computer for 0 F i F 20.

The next result is an explicit statement of the result corresponding to
Ž .8.5 for Lie algebras of type B or C .n n

Ž .8.9 PROPOSITION. Let G be the Lie algebra of a connected semisimple
group of type B or C which is defined and split o¨er F . Assume that then n q
characteristic is regular for G. The number of F -rational points of the regularq
semisimple ¨ariety in G is

n q y1 ym2 q yq iŽ .n 2 k iiq q y 1 q y qŽ . Ž .Ł Ý Ł ž /miq yks1 iŽ .ls l , l
q m y ni jŽ . Ž .l s i , l s j

qy yqy1 ynŽ . jj j= q q 1 ,Ž .Ł nž /jj

Ž q y. q Ž m i. y Ž n j.where the sum is o¨er pairs l s l , l of partitions l s i , l s j
"Ž .such that Ý im q Ý jn s n, and the polynomials q t are defined ini i j j i

Ž .Ž .7.1 ii .

Ž .This is 8.3 applied to the cases described.
We conclude with some specific values of the polynomials above.

Ž Ž . Ž . Ž .8.10 EXAMPLE. Write L q for the number of 8.9 , i.e., L q is then n
number of F -rational points of the regular semisimple variety in G , whereq

Ž .G is of type B or C ; we list here the first few values of L q . Recalln n n
< F < 2 n2qnthat G s q .r s

Ž .n L qn

10 y1 y2 y3 y4Ž .2 q 1 y 2 q q q y 2 q q 2 q
21 y1 y2 y3 y4 y5 y6 y7 y8 y9Ž3 q 1 y 2 q q 2 q y 4q q 7q y 7q q 8q y 6q q 5q y 4q

y1 0 y11.qq y q
36 y1 y2 y3 y4 y5 y6 y7 y8 y9Ž4 q 1 y 2 q q 2 q y 5q q 11q y 17q q 22 q y 32 q q 38q y 42 q

y1 0 y11 y12 y13 y14 y15 y16 y17 y18.q40q y43q q39q y31q q23q y16q q13q y4q q3q
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