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We use the equivariant cohomology of hyperplane complements and their toral
counterparts to give formulae for the Poincaré polynomials of the varieties of
regular semisimple elements of a reductive complex Lie group or Lie algebra. As a
result, we obtain vanishing theorems for certain of the Betti numbers. Similar
methods, using /-adic cohomology, may be used to compute numbers of rational
points of the varieties over the finite field F,. In the classical cases, one obtains,
both for the Poincaré polynomials and for the numbers of rational points, polyno-
mials which exhibit certain regularity conditions as the dimension increases. This
regularity may be interpreted in terms of functional equations satisfied by certain
power series, or in terms of the representation theory of the Weyl group.  © 1998
Academic Press

In this paper we give formulae for the Poincaré and weight polynomials
of the variety of regular semisimple elements of a complex reductive
algebraic group and its Lie algebra. The results use the equivariant
cohomology of hyperplane complements and their toral counterparts. One
of the applications of our results is a vanishing theorem (see (3.4) below)
for the top cohomology in the Lie algebra case. Our general formulae are
applied to give explicit polynomials in the case of classical complex Lie
algebras of type A4, B, C, or D. These are quite manageable and easily
yield the relevant Betti numbers (see (5.8), (7.6), and (7.11) below).

As a special case, we give an explicit formula for the Poincaré polyno-
mial of the variety of n X n matrices with distinct eigenvalues. In this case
we prove a stability result, which asserts that the first [n/2] + 1 Betti
numbers of this variety are “independent of »” in the sense that there is a
single universal power series whose first [n /2] + 1 coefficients are the first
[n/2] + 1 Betti numbers of the regular semisimple variety of g[, for all
n. The same thing applies in the case of algebras of type B or C.
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THE REGULAR SEMISIMPLE VARIETY 667

Our method may also be used to compute numbers of rational points
over finite fields, which we do in Section 8 below. In this case a similar
analysis to that which applies to the Poincaré polynomials shows that the
proportion of regular semisimple matrices over a finite field F, is a
polynomial in ¢!, whose initial sequence of coefficients stabilizes as the
size of the matrices increases. Regularity statements such as these have
interpretations both in terms of functional equations for certain power
series and in terms of the representation theory of the Weyl groups. We
discuss both below, although we leave open many questions.

The author thanks Allan Steel (who used Magma, cf. [CP]) and Burkhard
Hofling for computer calculations involved in the tables and examples.

1. INTRODUCTION AND NOTATION

Let G be a complex connected reductive algebraic group. We fix a
maximal torus T" and Borel subgroup B 2 T of G and write W = N,(T)/T
for the Weyl group. Then B = TU, where U is the unipotent radical of B.
We write &, 8, T, Ul for the Lie algebras of G, B, T, and U, respectively.
An element x € G is regular (cf. [K], [StD if its centralizer C;(x) has
minimal dimension (which is equal to r = rank G = dim 7). Similarly,
X e ® is regular if C5(X) (={g € G|Ad g(X) = X}) has minimal di-
mension r (here Ad denotes the adjoint action of G on ).

(1.1) DeriniTioN. () G, (resp. &,)) is the set of regular semisimple
elements of G (resp. &).

(i) T, (resp. T,,) is the set of elements of T (resp. ¥) which are
regular in G (resp. &).

It is known that G, (resp. &,,) is open dense in G (resp. &). Moreover
we have, recalling that W acts on € as a finite reflection group, the
following well known characterization of regular semisimple elements.

(1.2) LEmMA. Letx € T (resp. £ € T). The following are equivalent.

() x (resp. &) is regular.
(i) The centralizer of x (resp. &) in W is trivial.

(iii)  x is not annihilated by any root of G with respect to T (resp. & is
not on any reflecting hyperplane for the action of Won ).

Our results will be formulated in terms of certain polynomials which are
defined as follows. Let X be a complex algebraic variety and suppose a
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finite group I acts on X as a group of automorphisms. Denote by H(X)
the complex (singular or de Rham) cohomology of X and by H/(X) the
complex cohomology with compact supports, both regarded as I'-modules.

As in [DL, Sect. 1] each cohomology space H!(X) has a T-invariant
weight filtration

0 CW,H!(X) CW,HI(X)C -+ CW,gmxHI(X)=HI(X). (1.3)
If we denote the graded quotients by
Gr, HI(X) = W, HI(X) /W, HI(X)
then we may form the weight m equivariant Euler characteristic.

E} ((X) = (=1’ Gr, HI(X) (1.4)

This is to be thought of as an element of R(I'), the Grothendieck ring
of I

(1.5) DEFINITION. Let S be a complex algebraic variety with a T-
action, where T is a finite group. Define elements Py(¢) and Q% .(¢) of
R(D)[¢] by

Pi(t) = LHI(X)0!

Ox (1) = LE, (X)t".

The reason for considering QY% .(¢) is its “Boolean additivity” (cf. [DL,
Section 2]) which asserts that if Y and Z are complementary T-invariant
subvarieties of X which are respectively open and closed, then Qﬁ}, A1) =
0y (1) + 0F (b).

(1.6). We write, forg €T,

Py(g.t) = Y trace(g, H'( X))t/

and

Ok (g.t) = Y trace(g, E,, (X))t".

If T ={e}, we drop the superscript and replace all modules by their
dimension. Our purpose here is to compute these polynomials when
X=G,or®,.
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2. AN UNRAMIFIED COVERING

We recall in this section that the part of the “Grothendieck—Springer
resolution” which lies over G, (resp. &,,) is unramified and show that this
fact reduces our problem to W-equivariant problems concerning 7, (resp.
¥, )and G/T.

(2.1) DeriNITION.  Define varieties G, and &, by

G, ={(g.2T) € G, X G/T|x g € T}
®,, ={(&1T) €, x G/T|Adx ¢ € T).

(2.2) ProposiTioN (cf. [Sh]D. (i) The first projection (h?l”. - G, is an
unramified covering with covering group W and similarly for &, — & ..

(ii) We have W-equivariant isomorphisms

~

G

rs

5T, x G/T

@rs > Irs X G/T!
where w € W acts on G /T via xT — xwT, on T, and T, by conjugation
and Ad, respectively, on G,; by (g, xT)-w = (g, xwT), and similarly on
©®,..

Proof. The statement (i) follows easily from the facts that if two
elements of T (resp. ¥) are in the same G-orbit, they are in the same
W-orbit (see [L2, 2.6]) and that if + € T,, then C;(t) = T (together with
the corresponding statement for ). This shows that the fibers of the map
G,, = G, are of the form {(g, xwT) |w € W}, which is a W-orbit on G,,.

(i) Consider the map ¢:G,, - T, X G/T defined by ¢(g,xT) =
(x~'gx, xT). This clearly has inverse (¢, xT) — (xtx~*, xT); moreover for
weW, ¢(g, xwT) = (w x gw, xswT) = ¢(g, xT) - w, whence ¢ is W-
equivariant. |

We may now write down the following general formulae.

(2.3) THEOREM. Let P and Q be the polynomials defined in (1.5). Then
with the abouve notation, we have

Fg (1) = (P;V,S(t): PGW/T(t))W
and

Py, (1) = (ng(t) PGW/T(I))W'
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where (—, =)y, denotes the inner product [L2, Sect. 1], in the ring ROV )[¢],
and similarly for Qi (t) and Q¢ (1),

Proof.  From (2.2)(ii), G, is an unramified quotient ofgs by W. Hence
by the transfer theorem for cohomology, H/(G,,) = H/(G,,)" (where M"
denotes the W-invariants in a module M), ie., dim H/(G,) =
(H/(G,,),Dy,. But using (2.2)ii), we obtain from the Kunneth theorem
that

PGKV(t) = Pr () Pg,7(t). (2.3.1)
It follows that

Po (1) = (P5,(1).1),,
(PRADPE)7(1).1),,

(P;Vm(t)’PGW/T(t))W

since all representations of W are self-dual.
The proofs of the other statements are similar, although for the formula
corresponding to (2.3.1) for the weight polynomials Q, we use [DL, (6.1)].
|

3. SOME EQUIVARIANT POINCARE AND
WEIGHT POLYNOMIALS

From (2.3) it is apparent that in order to compute the Poincaré and
weight polynomials for G,, and &, one requires the corresponding
W-equivariant polynomials (i.e., elements of R(W)[¢] for G/T, T, and
Z,,. All of these have been studied elsewhere; we collect together the
results in this section. In order to state them we need the following
notation.

It has been remarked above that W acts on T (= LieT) as a (real)
finite reflection group. Let S = C[T] be the ring of polynomial functions
on ¥ and write J for the ideal of S generated by the W-invariants of
positive degree. Then S/J is a graded version of the regular representa-
tion of W. Moreover if we write 2N for the number of roots of G with
respect to T (so that N = dim U) then the following facts are known (see,

e.g., [B]).
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(B.1). If (S/1),; denotes the ith graded component of S/J (as a W-
module), then
i (S/)); =0 fori>N
(i) S/ =1y
(i) (S/Dy_;=e®(S/)); (for i =0,...,N) where ¢ is the alter-
nating representation of W.

To express our results, we shall use the following notation. If A4 =
®,c7_,4; 1sagraded I' module (T" being any finite group), write

PI(1) = LAt € R[],

Recall that a variety X is said to be pure if for each j, there is an integer
m; such that Gr,, H'(X) = H/(X), i.e., H/(X) is a pure Hodge structure
of weight m; (cf. (DL, Sect. 3.

(3.2) PrRoPOSITION.  Let G be a connected reductive group over C, T a
maximal torus of G, and S /J the corresponding coinvariant algebra regarded
as a graded W-module, where W is the Weyl group of G with respect to T.
Then

(i) H/(G/T) is pure of weightj (j = 0,1,...).
(ii) We have H(G /T) = 0 unless j is even. Moreover we have

N
P, (1) = 2 (S/T)t% =Py, (t%).
i=0
(iii)  In the notation of (1.5), we have
N .
QEV/T,C(I) = 2 (S/ )y it? PN = t4NPSu;J(t_2)-
i=0

Proof. (i) We have a locally trivial vibration G/T — G /B with fiber
U = A", But G/B is non-singular and complete, whence H/(G/B) =
HJ(G/B) is pure of weight j. The result follows (e.g., from [DL, (6.1)].

(ii) This is a standard result, essentially due to Borel (see [Hi], [Sr],
[SpD.

(iii) This follows from (i) and (ii) using [DL, (1.6)], since G/T is
smooth and connected. |

We now turn our attention to the varieties 7,, and T ,,.
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(3.3) PROPOSITION.  Let notation be as in (3.2) above.

(i) Let My, be the complexified hyperplane complement corresponding
to W. Then T, = My, and PY (1) = Py, (1) (in the notation of [L2, (4.6)].

(i) The varieties T, and T  are minimally pure (mp) in the sense of
[DL, (3.D)]; i.e., HI(X) is pure of weight 2j — 2dim X for X =% or T,,.
(iii)  We have
(@ Q% (0)=1*Py (~1t7%)
(b) OF () =t”Pr(=17?).

Proof. (i) It follows from (1.2)(iii) that T, is the complement in T of
the union of the hyperplanes which are the kernels of the roots of & with
respect to T. Thus T, = M, and the result follows.

(ii) The minimal purity of the hyperplane complements is proved in
[L3]; moreover T,, is the complement in T of a “toral arrangement,” i.e.,
the union of a finite set of codimension 1 subtori of 7. This is shown in
[DL, (4.2)] to be mp (see also Looijenga [La, (2.4.3)]).

(iii) Let X = T, or T,,. Then X is smooth of dimension r (= rank G).

It follows from (ii) and Poincaré duality that H’(X) is pure of weight 27,
so that QY (1) = ¥’ Py (—1~?). The statements (a) and (b) follow. [

As an immediate application we obtain

(3.4) THEOREM. Let G be as above (i.e., a connected reductive algebraic
group over C). If s is the semisimple rank of G (i.e., the rank of G') and N is
the number of positive roots of G (with respect to T) then H'(®,) = 0 for
i>2N+s—2=dimG' — 2, where G' is the derived group of G.

Proof. 1t follows from Theorem (2.3), together with (3.2)(ii) and (3.3)(i)
that

Py (1) = (P&,(£%), Py, (1)),,- (3.4.1)

Now Py, (1) is a polynomial of degree s, while P’ ,(+?) has degree 2N.
Moreover the term of highest degree of P’,,(t?) is £, t*", where &, is
the alternating character of W. But from [L2, Theorem (4.8)] (see also
[L7]) we have

(ew, Py, (1)),, = 0. (34.2)

It follows that the highest possible power of ¢ occurring in P(ﬁ“(t) is
t2N_2+S. I
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4. EXPLICIT FORMULAE

(4.1) LEMMA. With notation as in Section 3, we have

r

Py (w,t) = TT(1 — t¥)det(1 — we) ",
j=1
where w € W, det is the determinant of the action of Won ¥, and d,,...,d

are the basic degrees of W.

Proof. (cf. [L2, Sect. 1]). It is well known that by Chevalley’s theorem,
S =5/] ®S" as graded W-modules (where S" is the set of W-invariants
in S), so that

r

PY(t,w) = PS”;,(t,w)PSw(t).

It is also well known that (cf. [L2]) P&’ (¢, w) = det(1 — wt)~!; the result is
now clear. |

This enables us to write explicit formulae for the required polynomials,
which reduce their computation to that of the corresponding polynomials
for T,, and ..

(4.2) THEOREM. Let G, T, W, T, T,,, etc. be as above (so that & is
the variety of regular semisimple elements in the Lie algebra & of the complex
connected reductive algebraic group G). Then with notation as in (1.5) we
have

. T P, (1)
O P (=W TTA-) B o ey

where Py, (t) is the Poincare polynomial of W acting on the cohomology of its
complex hyperplane complement.

- |W|71 2r+2N 4 2d 1 Z PMW(W’ _[72)
i s (1) = N T (124 — e

( ) Q(Si,s,c( ) j=1( )WEW det(t2 _ W)
(4.3) THEOREM. With notation as in (4.2), we have

] T P (w,t)
(M P (1) =™ 1:[1(1 —2h) X .

e det(1 — wr?)

i) Qo (1) =Wl (- 1y § L)
o j=1 vew det(rz—w)
Proof. Both Theorems (4.2) and (4.3) follow from (2.3), (3.2), (3.3), and
(4.1) after a little calculation. [

Now the polynomials Py, () have all been computed (see [L1, L4, FJ,
B1]) and general formulae exist for Py, (w, ) for many (but not all) w € W
(see [L3, L6]). Thus Theorem (4.2) does give an explicit solution to the
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problem of computing the polynomials Py and Q¢ .. For the group
case, Py (t) has only hitherto been computed for G of type A [L5].

5. THE CASE OF GL,
In this section we give closed formulae for the four polynomials P and
Q in the case G = GL,(C), using the results of [L1, L5].

(5.1) DerFiNniTION. (i) For any natural number i (= 1,2,...) define the
polynomials

n(f)—Zu( ) )

dli

(1) = pi(1)

1
i(—t)'
(where u(j) is the arithmetical Mdbius function).

(ii) For rational integers i > 1 and m > 0 define the polynomial

PI(e) = pi(1)(pi(1) = i(=0)") (i) = 2i(—1)") -
X (p1) = (m = )i(=1)')
- (i(—t)i)mm!(q"r(nt) )

where for any non-negative integer m, we write

(a)=a(a—1)---(a—m+l).

a (5.1.1)

m!

When G = GL,, W is the symmetric group S,. The conjugacy class of
w € §, is described by a partition A of n, which we write in the form
A = (i"™), ¥, im; = n. The integer m; is called the multiplicity of the part :
in A. With this notation we have

(5.2) ProrosiITION [L1, (5.5)]. Suppose W =S, and that w € S, is of
type (i.e., belongs to the conjugacy class of type) A = (i"™). Then P, (w t) =
I, Pi™i )(t) where P{™(t) is as defined in (5.1)ii).

Now the number n(2) of elements w € S, of type A = (i™) is given by

n!
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Moreover the eigenvalues of w(~ (i")) acting on T form a complete set
of ith roots of unity, each occurring with multlpI|C|ty m;. It is therefore
apparent that

det(1—wr) = TT(1—¢)"" (5.4)

(5.5) THEOREM. Let &,, be the variety of n X n matrices over C with
distinct eigenvalues. The Poincare and weight polynomials (see (1.5)) of &,
are given by

() Py (1) = r[(l—tzf) y H(ql(t))((_f).)

420
A=(0") ¢t 1 4
Abn

(i) Qg (t)_tnwl_[(tz]_l) ) l_[(ql _t))(tm_l) '
A (l”l[)l 1

where the sums are over all partitions A = (i") such that ¥, im; = n and the
polynomials q.(t) are defined in (5.1).

Proof. 'We substitute the expressions (5.2) and (5.3) into (4.2), taking
into account that {d,,...,d,} = {1,..., n} here and after some rearrange-
ment, obtain the stated formulae. |

We turn now to the group case.

(5.6) ProrosITION [L5]. Let G = GL, and suppose w € W =S, is of
type A = (i"™). Then we have Py (w,1) —P("“Jrl)(t)l_[,>l P"™(t), where
P{"X(t) is as above.

Given (5.6), the next result follows in analogous fashion to (5.5).

(5.7) THEOREM. Let G,, be the regular semisimple variety in GL,(C). The
Poincare and weight polynomials of G,, are given by

P(m1+1)t Pl_(mi)l
@ r0-fla-@ ¥ 0 0 __
" (1 — mi(1 — 2
a=Gmiy M (1 — ¢ ) i>1 mlim(1 — )
An

) 0,0 = [T -y ¢ A2t

i At) =" te —

G Ay M2 = 1)
An

Pm(—17%)
BT mtim(? - 1)

where the polynomials P\"™(t) are defined in (5.1).
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(5.8) ExampLE. If we write P,(¢) for P,,, ) (¢), we list here the first few
values

n P(t)

2 14¢

3 1+t+83+4 45+ =Q +00 + 1% +15

4 T4+t +3+20% + 365+ 3% + 267 + 3% + 3% + 2480 1 412 4 418

The Betti numbers of &, are thus easily obtainable from this formula.

(5. 9) PROPOSITION.  Let ®,, be as in (5.5). Then H(®,) =0 for
i > n? — 3 while dim H" *3((5,% )—1

Proof. The first statement follows from (3.4) since 2N + s — 2 =n? — 3
here. Next, observe that the term of degree 2N — 2 in Pg S s
ey pyt*N "% where p,, is the reflection character of W. But a simple
calculation using Frobenius reciprocity, together with [L1, (5.5)] shows that
in this case

(swow  H' H(My))y = 1. (5.9.1)

This, together with (2.3), (3.2)i), and (3.3)(i) shows that H"*~3(® ) has
dimension one, as required. |

6. A STABILITY RESULT FOR THE REGULAR
SEMISIMPLE VARIETY OF G¥,

In this section we shall prove

(6.1) THEOREM. let & be the Lie algebra of GL,(C). If B(n)=
dim H(®,,,C) is the ith Betti number of its variety of regular semisimple
elements, then B;(n) = B2i) for all n > 2i.

The proof will involve the explicit formula of (5.5). Notice that the
theorem implies that the Betti numbers of (g!{,),, stabilize (with respect to
n) and that we may therefore speak of universal Betti numbers of (gl,),,,
or Betti numbers of gl_,,.

In the proof of (6.1) we shall use

(6.2) LEMMA (“Cyclotomic Identity”). For any indeterminates x and t
over (say) C, we have the identity

X
TT(1—x)™ =147

i>1
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in the ring Cl[x, t 111, where for elements h, k of Cl[x,t 1], (1 + h)* denotes
Zr > O(lr()hr

Although this is well known, we give here the following short proof.
Note that in the definition of (1 + 4)* above, 4 and k must be such that
the definition makes sense, e.g., & € xC[[x, t !]] suffices, for then the
coefficient of x’¢/ involves only finitely many terms in the sum.

Proof. For any prime power ¢, it is well known that ¢,(—q~*) is the
number of irreducible polynomials of the form ¢ + a,;t'"* + --- +a; with
a; € [,. Consider the set ., of all polynomials over [, of the above form,
with i = n. Since each such polynomial has a unique (up to order)
factorization as a product of irreducible polynomials of the same form, the
cardinality of ., is clearly the coefficient of x” in IT,. (1 —x/)~%:(-4",
Using the fact that this number is g¢”, we obtain that for any prime power
g, T1,.,(1 —x)" 94D =% gix/ =1 —qgx)"!. The result is now
clear. |

Proof of (6.1). For any integer n > 1, write P(t) = X,., B(nm)t' €
Clt]; also P,(¢) = 1. The stated result is clearly equivalent to

For n > 2,t"*'/2 divides P,(¢) — P,_,(¢t) inC[¢].  (6.1.1)

To prove (6.1.1) we write P,(¢) = f,(t)g,(¢t), where for n > 1, f,(¢) =
1_.[;'1: 1(1 - t2/) and gn(t) = ZAZ([’"[)/)LFH nl(q‘,f,f))((_t)l/(l - tZi))mi- AISO
write fy(z) = g,(¢) = 1. Note that f (¢) € C[¢], while g, (¢) € Cl¢],,, the
localization of C[¢] at M, where M is the multiplicative set of polynomials

in C[z], all of whose roots are roots of unity.
Now

Pn(t) _Pnfl(t) =fn(t)(gn(t) _gnfl(t)) +gn71(t)(fn(t) _fnfl(t))'
(6.1.2)

Moreover f,(¢) — f,_(t) = f,_(t) - (—¢?"), so that the second summand
in (6.1.2) lies in t2*C[¢].

Now consider the first summand f,(¢)(g,(¢) — g, _4(¢)). Define T'(z,¢)
Clelyllzllby I'(z, 1) = X, » g,(t)z". A simple calculation then shows that

q:(t)

[(z,t) = 1_[(1 + (——tz)')

1_t2i

q,(t)

TT(1 -+ (—2))""TT(a - )" (6.13)
i>1 i>1
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Note that although ¢,(¢t) € ¢ C[t], each term of the sums (1 + h)%®
occurring in (6.1.3) lies in C[¢1,,[[z]]
But by (6.2), IT,. (1 — #?)%" = 1 + ¢, whence

P(z,0) =1+ T -+ (-))"". (6.1.9)
i>1
If we write g_,(t) =0 then (1 —2)I'(z,1) = £, ((g,(t) — g,_(t))z".
Moreover applying (6.2) again, we have

1-z=TI(1-(-))"" (6.1.5)

i1

Combining (6.1.4) and (6.1.5) we obtain

—1 2i . i 4.1
(1-2)(z,0) = (1 +0) ' TI(1 = (20)" =2 + (=1%2)) 7. (6.1.6)
i>1

Now f,(¢)(g,(t) — g,_ (1)), which we know to be in C[¢], is f,(¢) times
the coefficient of z" in the right hand side of (6.1.6). We show that this
coefficient is divisible by ¢(**1/2 in C[¢],,, from which it will follow that
£.)(g (1) —g,_(t) is divisible by ¢+ /2] in C[¢].

Now

(1- () = 22+ (—22) )"

=Y (-1)f q’(t))((zt)Zi + 12 — (—t3z)i)k
k>0

= Y (-1 (q’( )) ( Ziti+ti—(—tzz)i)k. (6.1.7)
k>0

Recalling that (4(")t** € C[¢], it is clear from (6.1.7) that in the expan-

sion of the right side of (6.1.6), the coefficient of z” is divisible (in C[¢],,)
by ™, where m is an integer satisfying m > n /2. This completes the proof
of (6.1). 1

We remark that there is strong empirical evidence that the statement
(6.1) is not the best possible. In fact we have

(6.3) CONJECTURE. In the notation of (6.1), we have B/(n) = B(i) for
all n > i. Moreover B;(i — 1) = B,(i) — 1 foralli > 1.

(6.4) ExampLE. Let B; be the ith Betti number of (gl,), for all
sufficiently large n; by (6.1), n > 2i suffices. We give a list of the first 15
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values of B; in the table below.

8§ 9 10 11 12 13 14

i 0 56 7
1 4 6 9 17 30 47 75 131 221 358

123 4
B 1012

2
0

(6.5) CoroLLARY. Let (S/J)" and M, respectively be the coinvariant
algebra and complex hyperplane complement associated with the symmetric
group S, of degree n. Then for any i > O the inner product of characters

> (s HA (M)

2j+k=i

is independent of n for n > 2i.

This is simply a restatement of (6.1) taking into account (3.4).

7. LIE ALGEBRAS OF TYPE B, C, OR D

In this section we use the results of [L4] to give an explicit formula for
the Poincaré polynomial Py (¢) when & is of type B, C, or D. Recall that
in the hyperoctahedral case (type B or C), a conjugacy class in the Weyl
group W is given (see [L4, Sect. 1]) by a pair A = (A%, A7) of partitions
such that |A*| 4+ |A7] = n. We shall write A = (i, j*), where A* has m;
cycles of length i, A~ has n; cycles of length j, and X; im; + ¥, jn; = n.

(7.1) DeriniTioN. (i) For any natural number i > 1 (Gi.e,,i =1,2,3,...)
define the polynomials

1+1¢ ifi=1
pi() if iisodd, i # 1
pr(t) = _ _ 2k e ok - . .
2p(t) —pi(—t if i=2%, with i, odd, i;#1,and k#0
2pi(t) +t' —1 if i =25 k+0,
and
1+¢ if j=1
pr (1) = {p(—(—0)) if j = 2%j,, with j, odd and j, # 1.
1—¢ if j =25 k#0,

where p,(¢) is the polynomial defined in (5.1).
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(ii) With notation as in (i), define, for any positive integer i,

B Pii(t)'

(iii) For natural numbers i and m, define the polynomials

PME(f) = (2i(—t)i)mm!(qi+n$t))

notation being as in (5.1.1).

(7.2) ProrosITION [L4, (5.6)]. Let W be a Weyl group of type B, or C,,
i.e., a hyperoctahedral group. Suppose w € W is of type A = (A", A7) with
A= (") and A~ = (j"). Then in the notation of (7.1)iii),

Py, (w,t) = TTP™ () T TP (¢).

The number n(A) of elements of W of type A (notation as in (7.2)) is
given by

2"n!

- I1,(2i) "' T1,(2j) "m\n;)”

n(A) (7.3)

Further, the explicit description of w € W of type A as a product of
positive and negative cycles (cf. [L4, (1.4)]) yields easily that

det(1 —wt) = [T(1 = )" T+ )", (7.4)
i J
We are now able to state

(7.5) THEOREM. Let & be the Lie algebra of a semisimple complex Lie
group of type B, or C,. The Poincare polynomial of its regular semisimple
variety is given by

roo-Ta-e ()

A=(A", A7) i i 1 _tZl
AT=(@"), A=)

(-0’

1+ %

nj

<1 (q,“n(.f) |
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where the sum is over pairs A = (A*, A7) of partitions At = (i), A== (j")
such that X,im; + ¥; jn; = n and the polynomials q;(t) are defined in
(7.2)Gb).

The proof is an application of (4.2)(i), taking into account (7.2), (7.3),
and (7.4).

(7.6) ExampLE. If we write Py () for Py (¢) with & as in (7.5), we list
here the first few values ‘

N

P, B,l(t )

20+ 215+ 2+ 2+ 1

O+ 4 5 B 5 80 3 AT+ TS 3 22+ 2r L
3132 4+ 413 4+ 130 4 12428 4 16177 + 4125 4+ 1917 + 3142 + 1312 + %

+26t20 + 42t1° + 18t + 2t¥7 + 22t16 + 40t'° + 22t + 4t1% + 16112 + 28t!!

+16t10 + 4t° + 68 + 13t + 108 + 3P+t + 20+ 22+ 2t + 1

S owN

This list, together with other evidence, points to the hypothesis that
there is a stability result like (6.1) for this case. We now prove such a
result. We start with a variation on the cyclotomic identity (cf. (6.2)).

(7.7) LEMMA. For any indeterminates x and t over (say) C, we have the
identity

1@ —xf)‘”(”]l:[l(l —x =1 —x)*l(l + ;)

i>1

in the ring Cl[x, t 111, where for elements h, k of Cl[x,t 1], (1 + h)* denotes
Zr > O(Ir()hr

Proof.  This follows immediately from (6.2) upon observing that ¢;"(¢)
+q; (1) =qt) for i =2 while gq,/(¢) +q;(¢) =q,(t) — 1. The latter
equations may be checked from definitions (5.1) and (7.1), although they
can also be proved directly. i

(7.8) THEOREM. Let & be the Lie algebra of a simple Lie group of type
B, or C,. If B:(n) =dim H'(®,,,C) is the ith Betti number of its variety of
regular semisimple elements, then B,(n) = B,(2i) for all n > 2i.

Proof. This is similar to that of (6.1), so we suppress the details. Denote
the Poincaré polynomial given in (7.5) by P,(¢) and write P,(¢) = h,(t)k, (1),
where

(1) =TT =)
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and

k()= % n(%ﬁ,ﬁ”)(“—”) U(q"n(t)
J

A=(A", A7) i i 1 - tZZ J
AT=@"), A=)

nj

(-0’

1+ ¢

As in the proof of (6.1), we reduce the proof to showing that if T'(z, z) =
Y,.ok,(D)z" (e Clt],l[z]D, then the coefficient of z” in (1 — 2)I'(¢, z)
lies in t™C[¢],,, where m > n/2. Using (7.7), we have

1-z= @+ Il(1- (-20)"TI(2 - (~2)" ", (781)

j=1
Moreover one easily sees that

i qr([) j q/-’(t)
—iz —1z
1+ u) 11 (1 + u

1— % j=1 1+ %

I'(z,t) = 11

i>1

. (782)

Hence (1 — 2)I'(¢, z) is the product of 1 + zt with two factors, each of
which is similar to the right hand side of (6.1.6). But each of these factors
has the property that the coefficient of z” lies in t"C[¢],,, where m > n/2.
This is obvious for 1 + zt and proved for the other two factors in the same
way as in (6.1), the relevant point being that both ¢;"(¢)¢™* and q; (1)t lie
in C[t]. This completes the proof. |

As in the case of type A, this result may be restated in terms of the
graded representations of the hyperoctahedral group on its coinvariant
algebra and the cohomology ring of its hyperplane complement.

(7.9) CoroLLARY. Let (S/1)™ and K, respectively be the coinvariant
algebra and complex hyperplane complement associated with the hyperoctahe-
dral Weyl group of type B, (or C,). Then for any i > 0 the inner product of
characters

Y (/0 HY(K,)),

2j+k=i
is independent of n for n > 2i.

(7.10) ExampLE. Let B; be the ith Betti number of &, , where & is
as in (7.8), for all sufficiently large n; by (7.8), n > 2i suffices. We give a
list of the first 14 values of B; in the table below.

i 012345 6 7 8 910 11 12 13
B 1 2 2 2 2 5 12 20 29 45 75 127 213 349
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We now turn to the case of type D. The Weyl group W(D,) has index
two in W(B,). It is therefore a union of conjugacy classes of W(B,) and it
is standard that, in the above notation, the conjugacy class (A™, A7) of
W(B,) is contained in W(D,) precisely when ¥, n; is even, i.e.,, when the
number of negative cycles is even.

The method of [L3] may be applied to obtain the analogue for W(D,) of
(7.2) (see [B1, (5.5.4v)]).

(7.11) PrROPOSITION. Let W be a Weyl group of type D,. Suppose w € W
is of type A = (A", A7) with A= (i"") and A\~ = (j"). Then in the notation
of (7.1)Gii),

p 1 nqt mqt
lt = - -
e, (W1 1) 1+ (2n, — 1)t 1+ (2m, — D)t

X [TPm () TTP" (1),
i j

where My,  is the hyperplane complement of type D,.

Note that although we only need (7.11) for w € W(D,), the larger group
W(B,) acts on the hyperplane complement My p , and the formula in
(7.11) holds for any w € W(B,).

The same analysis as in (7.5) may now be carried through. The result is

(7.12) THEOREM. Let & be the Lie algebra of a semisimple complex Lie
group of type D,. The Poincare polynomial of its regular semisimple variety is
given by

Po ) =20 =) T =)

X Y (1 l ey )

A=t A7) 1+2n, -1 1+ 2my— )t
/\+:(iln‘), )\’:(j"/)
n/}

g ([ (=0)" 11—1 a7 (t)
m; 1 — % i n;
where the sum is over pairs A = (A", A7) of partitions A* = (i"™), A~ = (j)
with ¥;n; = 0 (mod 2), L, im; + ¥; jn; = n, and the polynomials q;*(t) are
defined in (7.1)(ii).

(-0’

1+ ¢4

<11
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(7.13) ExampLe. If we write P, (1) for P (¢) with & as in (7.12), we
give here the coefficients of PD”(t) for n = 4, 5, and 6. They are listed
below in increasing order of degree (i.e., with the constant term first, etc.)

n Coefficients of Py, (¢)

4 1,1,0,1,1,3,9,9,3,4,14,22,12, 3,16, 27,14,1, 8,19, 12,0, 3,6, 3

5 1,1,0,0,0,4,9,9,9,15,26,31,32,41, 62, 66,62, 71,95, 101, 91, 92, 114
114, 94,91, 103, 100, 78, 67, 71, 66, 45, 36, 35, 31, 18, 12,10,9,4,2,1,1

6 1,1,0,0,0,3,6,8,16,24,23,36, 78, 103, 75, 99, 222, 288, 180, 182, 453

605, 349, 277,730, 996, 547, 343,971, 1359, 728, 360, 1087, 1563, 822, 316
1033, 1531, 799, 238, 831, 1268, 661, 143, 557, 885, 463, 69, 301, 501, 265
24,123,218,119, 5, 33,65, 37,0, 4, 10,6

8. RATIONAL POINTS OVER FINITE FIELDS

Suppose that X is a variety defined over [, (the Galois field of ¢
elements), with corresponding Frobenius endomorphism F: X — X. The
F,-rational points of X are the fixed points XF of X under F; they may
be counted by Grothendieck’s formula [D]

|XF| = Z(—l)ftrace(F, Hi(X,0))), (8.1)

where H)(—, Q,) denotes [l-adic cohomology (/ a prime not dividing ¢q)
with compact supports.

The methods above may be used to compute |GX| and |&£| where G is
a connected reductive group defined over F,, F is the corresponding
Frobenius endomorphism, and G,, and &, (etc.) are defined as for the G
of Section 2. The key results (analogous to (3.2) and (3.3) above) are

(8.2) ProrosiTioN. (i) HG/T,Q,) = 0 unless j = 2s (s € N) and F
acts on H?>*(G /T, Q,) with all eigenvalues equal to q°.
(i) F acts on H((Z,,) and on H(T,,) with all eigenvalues equal to q'~".

Proof.  Part (ii) is proved in [L3] while (i) is well known (see, e.g., [Sp] or
[srD. 1

(8.3) PropPosITION [L2, (4.12)]. Suppose that in the notation above, the
lattice of intersections of the reflecting hyperplanes of W is the same in T(C)
asin @5([Fq), i.e., that in the notation of [L2], the characteristic p is regular for
W. Then

(S = 18Pl (—a ), P (a 7)),
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Proof. We have, by the Kiinneth theorem, using (2.2)

[j/2]

H{(G,) = @ {H?(G/T) ® H *(T,,)}
s=0

(8.3.1)

1y

where H/ denotes [l-adic cohomology with compact supports and {A}lw
denotes the 1,-isotypic component of the W-module A. Moreover the
isomorphism (8.3.1) respects the action of F, so that F acts on {H*(G/T)
® H]”*(T,))};, with all eigenvalues equal to ¢/~ **. It follows that

IG5 = Y (1) trace(F, H(G,,))

J

= L (=1q " (HX(G/T), H 7 (T,))y-

Jis

But similarly to (3.2)(i), we have H*(G/T) = (S/J),,_, for all 5. Chang-
ing variables in the above sum to a = 2N — s and b =j — 2s we then
obtain, taking into account that |G| = g*V*,

ISL =161 g % (q7(S/T) e (—9) 'HX(Z,)),,
a,b

=16"1(Ps, (a7 a 7Px, (—4)),

~rsy

where Py (1) =X, HX(Z,, O)t".
But the assumption on the lattices of hyperplane intersections implies,
by [L3, Theorem 1.4] that t~*'P;  (—1) = Py, (—¢"), whence the result.
1

The corresponding result for G,; is

(8.4) THEOREM. Let G be a connected reductive group defined over T,
with corresponding Frobenius endomorphism F. Then in the notation above

IGE = g (PY (=), PY, (a7 ),
where

PY (1) = LH(T, Q)0
J

Proof. This is entirely analogous to that of (8.3). 1
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Note that P}" (1) may generically be computed with T, replaced by its
analogue over C (cf. [DL, (5.5))].

In analogy with (5.5), these formulae may be given explicitly for the case
of type A. For gl, the statement is

(8.5) CoROLLARY. If the characteristic p is regular for g, (p does not
divide n suffices) the number of regular semisimple elements in g, (F,) is

q"n- 1)/21—[(41_1) Y H(‘L( ? ))(q _1)

A= (lm) 1 I
Abn

where q/(t) is the polynomial (in C[t™']) defined in (5.1).

We shall next prove a stability result like (6.1) for the proportion of
regular semisimple matrices in gl, ([F ). Dividing the expression in (8.5) by
q", we see that this proportion is given by

RS (SRR I e v KU AR) (R

Since the degree in ¢ of ¢,(:7!) is i, K,(q) is a polynomial in Z[g~*] (of
course we know this already from (8.3)).

(8.6) ProprosITION. The proportion of regular semisimple matrices in
al,(F,) is a polynomial

3n—Dn+2)—1

Kn(q) = Z O(l-(l’l)q_i

i=0
Moreover we have «,(n) = «;(2i) for all n > 2i.

Proof.  The first part of the statement is clear from the above remarks,
(8.3), and (3.4.2). For the second part, write

o -ka-1a-0 £ 1"
)\/\'Sl;:l) L i

= c,(1)d,(1),

where ¢,(t) = TT/_,1 — ¢/) € Clt] and d,(¢) = E,_ my/ar L1056 9)
(¢ /(1 — t'))™, an element of C[¢],,, which we recall is the localization of
Cl¢] at the set M of polynomials all of whose roots are roots of unity. The
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proof now follows the lines of that of (6.1). We have
H,(t) = H, 4(1) = ¢,()(d,(1) = d, (1)) +d, (1) (e,(1) = ¢, 4(1)).
Since ¢,(¢) — ¢, _4(¢) is divisible by #*, it will suffice to show that

For n > 2,12 divides d,(t) — d,_,(t) in C[t],. (8.6.1)

Write 6(z,1) = X, ., d,()z" € Clt],[[z]]. Then in analogy with (6.1.3),
we have

(tZ)i q,(—1)
0(z,t) = 1:[1 1+ - ﬂ') : (8.6.2)
Moreover, replacing ¢ by —¢ in (6.1.5), we have
i\a(=0
1-z=T(1-(-0)""" (8.6.3)

i>1
Combining (8.6.3) and (8.6.2), it follows that

q(—1)

()" = (22)") . (8.6.4)

(1—2)0(z,t)=T](1+ a

i=1 1-17
Using the fact that t'q,(¢+) € Cl¢], (8.6.1) follows immediately, proving the
proposition. [
The next statement is a rephrasing of (8.6), taking (8.3) into account.

(8.7) COROLLARY. In the notation of (6.5), we have for any i, the inner
product

a(n) = ¥ (=D (5D H (M)
jrk=i
is independent of n for n > 2i

We give below a list of values of the constants in (8.7). Let «; be the
common value of «,(n) for n > 2i.
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(8.8) ExampLE. The first fifteen values of the «; are given in the table
below.

8 9 10 11 12 13 14
00 0 O -1 0 O

There appears to be empirical evidence that «, = 0, + 1 for all i. We
have verified this by computer for 0 < i < 20.

The next result is an explicit statement of the result corresponding to
(8.5) for Lie algebras of type B, or C,.

(8.9) ProPOSITION. Let & be the Lie algebra of a connected semisimple
group of type B, or C, which is defined and split over F,. Assume that the
characteristic is regular for &. The number of T -rational points of the regular
semisimple variety in & is

W 1T (2K a7 (=a ")\, . —m
" T1(¢* -1) )y I1 m (@ —a)
k=1 A=A A7) ! !
AT=3G"0), A= (")

xT1 (q"_(;_q_l) (¢ +1) ",

where the sum is over pairs A = (A*, A7) of partitions A" = (i), A~ = (j")
such that ¥;im; + ¥, jn; = n, and the polynomials q;*(t) are defined in
(7.2)G).

This is (8.3) applied to the cases described.
We conclude with some specific values of the polynomials above.

(8.10 ExampLE. Write L,(g) for the number of (8.9), i.e., L,(g) is the
number of [ -rational points of the regular semisimple variety in &, where
& is of type B, or C,; we list here the first few values of L,(g). Recall
that |GF| = g2+,

n Ln(q)

2 g1 -2 +q?2-29"%+297%

3 ¢®(1-2¢g +29g72-4¢g % +7¢g*—7¢°+8¢%—6q 7" +5q%—4q°
+q’1° _ qfn)

4 ¢®¥1-2¢gr'+2¢2-5¢°%+11qg*— 17 % +22q°5—-32¢77 +38q 8 —42q°
+40q’10743q’11+39q’12731q’13+23q’“f16q’15+13q’1674q’17+3q’18)
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