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Abstract

We study high order convergence of vanishing viscosity approximation to scalar hyperbolic conservation
laws in one space dimension. We prove that, under suitable assumptions, in the region where the solution
is smooth, the viscous solution admits an expansion in powers of the viscosity parameter ε. This allows an
extrapolation procedure that yields high order approximation to the non-viscous limit as ε → 0. Further-
more, an integral across a shock also admits a power expansion of ε, which allows us to construct high order
approximation to the location of the shock. Numerical experiments are presented to justify our theoretical
findings.
Published by Elsevier Inc.
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1. Introduction

Consider a system of equations of conservation laws with viscosity in one space dimension

ut + f (u)x = εuxx, u(0, x) = ū(x). (1.1)

We want to study qualitatively how the solution of this system approximates the one without
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viscosity

ut + f (u)x = 0, u(0, x) = ū(x), (1.2)

as the viscosity parameter ε tends to zero.
It is well known that, even for a smooth initial data, the solution of (1.2) can develop shocks

in finite time. This accounts for most of the difficulties in the theoretical and numerical studies
of the solutions of (1.2). For a short list of some classical literatures on hyperbolic conservation
laws and the recent progresses, see e.g. [2,9,10,18,22,24].

For general solutions with small total variation, various approximating algorithms are known
to converge to the unique entropy weak solution. Namely: the Glimm scheme [12], wave-front
tracking [2,7,15], and vanishing viscosity approximations [1]. In all cases, the rate of convergence
is rather slow. For a fixed time τ > 0, as the step sizes �x, �t of the grid approach zero at the
same rate, the analysis in [3] proved that

lim
�x→0

‖uGlimm(τ ) − uexact(τ )‖L1√
�x |ln�x| = 0.

A similar bound was established in [4] for viscous approximations. Namely, let A(u) = Df (u)

be the Jacobian matrix of the flux function f , and uε be the solution to the parabolic equation

uε
t + A

(
uε

)
uε

x = εuε
xx (1.3)

with same initial data (1.2). Then, for a fixed time τ > 0 one has∥∥uε(τ ) − u(τ)
∥∥

L1 = O(1) · √ε|ln ε|. (1.4)

Higher order numerical approximations to (1.2) has a large literature. Many methods have
been proposed, see [5,6,19,20,23,26] and reference therein. Most of high order schemes achieve
high order convergence rates for smooth solutions. However, in the presence of shocks, the con-
vergence is often degraded to fractional order.

According to Glimm’s theorem, solutions to hyperbolic conservation laws are functions with
bounded variation. Their set of discontinuities may well be everywhere dense. In this generality,
it is unlikely that a high order approximation methods will ever be found. However, in most of
the relevant applications, the solutions are much better behaved, with a finite number of shock
curves and a finite set of points where new shocks form or two shocks interact. Throughout the
paper, we assume the solution is piecewise smooth.

In order to achieve high convergence rates also in the presence of shocks, one possibility is
to use high order front tracing algorithms, developed by Glimm and his co-authors [13,14]. In a
neighborhood of each shock line t �→ x(t), the system of quasi-linear equations

ut + A(u)ux = 0 (1.5)

must be supplemented by the Rankine–Hugoniot conditions. For a shock connecting the left and
right states u−, u+, respectively, these take the form

f (u+) − f (u−) = ẋ(u+ − u−). (1.6)
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Assuming that the solution is smooth to the right and to the left of the shock, one can use a
Taylor expansion of (1.6) and derive a high order numerical algorithm. For a solution containing
various shocks, it is essential that all shock curves are traced with high order. In the end, one has
to solve a family of N ordinary differential equations, one for each shock curve, coupled with the
quasi-linear hyperbolic system (1.5) in the various domains bounded by the shock curves, with
appropriate boundary conditions derived from (1.6). Despite its complexities, the feasibility of
this approach has been demonstrated in [13].

In the present paper we pursue a different approach. At the present stage, our study is only
a theoretical one, and we consider only the scalar equations in one space dimension. The idea
is to construct viscous approximate solutions uε of (1.1), with different viscosity coefficients
ε1 > ε2 > · · · > 0. A high order approximation to the non-viscous solution u of (1.2) is then
sought by means of Richardson’s extrapolation technique.

More precisely, fix a time τ > 0. Assuming that the limit solution u(τ, ·) is piecewise smooth,
with shocks located at x1 < · · · < xN . On regions where u is smooth, under suitable assumptions,
we prove that the viscous solution uε has an expansion of the form

uε(x) = u(x) + v1(x)ε + v2(x)ε2 + · · · . (1.7)

Knowing the values of uε(x) for different values of ε yields a high order approximation to u(x).
Furthermore, the location of the j th shocks xj can be recovered by computing a scalar func-

tional of the form

Ij (u) =
bj∫

aj

ej · u(τ, x) dx, (1.8)

where [aj , bj ] is an interval containing one shock xj in its interior. We prove that Ij also satisfies
an power expansion of the form

I (ε) = I0 + εI1 + ε2I2 + · · · + εkIk +O
(
εk+1). (1.9)

Combining this with an expansion for the values of u(τ, ·) to the right and to the left of the shock,
we can construct a high order approximation of the location of the shock xj .

In the literature, similar high order convergence results were obtained in [11], for vanishing
viscosity approximations to Hamilton–Jacobi equations, restricted to open sets where the limit
solution is smooth. A high order numerical method based on [11] is presented in [25]. Our paper
provides a counterpart for those two papers.

In Section 2 we present our main results, and give the proof. Numerical experiments support-
ing our theoretical findings are included in Section 3, which shows that high order accuracy is
obtained. In Appendix A we give the proof to a technical lemma, which provides an essential
ingredient in the proof of our main theorem.

2. The main result

We consider here a scalar conservation law

ut + f (u)x = 0, x ∈ R, t ∈ [0, T ], (2.1)
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and a bounded initial data

u(0, x) = ū(x). (2.2)

We assume that the flux function f is smooth and strictly convex, so that

fuu(u) � κ > 0 for all u ∈ R. (2.3)

In addition, we consider the viscous Cauchy problem with the same initial data

uε
t + f

(
uε

)
x

= εuε
xx, uε(0, x) = ū(x). (2.4)

It is well known [17] that under these hypotheses the Cauchy problem (2.1)–(2.2) admits a unique
entropy solution u = u(t, x). Moreover, the assumption (2.3) implies the Oleinik inequality [21]

u(t, y) − u(t, x) � y − x

κτ
∀x < y, t > 0. (2.5)

In the following, the right and left limits of u at a point (t, x) are written

u+(t, x)
.= lim

y→x+u(t, y), u−(t, x)
.= lim

y→x−u(t, y).

On regions where the limit solution is smooth, the main result on high order convergence of
viscous approximations is the following.

Theorem 1. Assume that the solution u of (2.1)–(2.2) is uniformly Lipschitz continuous and
infinitely many times continuously differentiable restricted to a domain of the form

Ω = {
(t, x); t ∈ [0, T ], a(t) < x < b(t)

}
,

where a(·), b(·) are Lipschitz continuous curves whose derivatives satisfy

ȧ(t) � f ′(u+(
t, a(t)

))
, ḃ(t) � f ′(u−(

t, b(t)
))

, (2.6)

for almost every t ∈ [0, T ]. For any δ > 0, consider the subdomain

Ωδ = {
(t, x); t ∈ [0, T − δ], a(t) + δ � x � b(t) − δ

}
. (2.7)

Then, for any k � 1, the family of viscous solutions uε admits an expansion at ε = 0:

uε(t, x) = u(t, x) + εu1(t, x) + · · · + εkuk(t, x) + Rk,ε(t, x), (2.8)

where u1, . . . , uk are smooth functions and the remainder satisfies

lim
ε→0+ ε−k · Rk,ε(t, x) = 0 (2.9)

uniformly as (t, x) ∈ Ωδ .
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Fig. 1. Illustration of α(t) and β(t).

Remark 1. A typical situation where (2.6) holds is when Ω is the region bounded by a maximal
backward characteristic a(·) and a minimal backward characteristic b(·), as defined in [8].

Proof of Theorem 1. The result will be proved in several steps.
1. Let δ > 0 be given. We begin by constructing smooth curves t �→ α(t) and t �→ β(t) such

that [
α(t), α(t) + η′] ⊂ ]

a(t), a(t) + δ
]
,

[
β(t) − η′, β(t)

] ⊂ [
b(t) − δ, b(t)

[
, (2.10)

and {
f ′(u(t, x)

)
� α̇(t) − 2η, x ∈ [

α(t), α(t) + η′],
f ′(u(t, x)

)
� β̇(t) + 2η, x ∈ [

β(t) − η′, β(t)
]
,

(2.11)

for some constants η,η′ > 0. To construct the curve α(·) we proceed as follows. Consider the
backward Cauchy problem

ẋ(t) = min
{
ȧ(t), f ′(u(

t, x(t)
) − 4η

)}
, x(T ) = a(T ) + η.

Since the right-hand side of the ODE is Lipschitz continuous, for every small η > 0 we ob-
tain a unique solution xη(·). Clearly, xη(t) > a(t). Moreover, as η → 0, we have xη(t) → a(t)

uniformly for all t ∈ [0, T ]. We can thus choose η > 0 small enough so that

xη(t) ∈ ]
a(t), a(t) + δ/2

]
, t ∈ [0, T ].

By a mollification, we now replace the Lipschitz function xη(·) with a smooth function t �→
α(t) > a(t). Using (2.6) and the continuity of u, we can achieve the bound

α̇(t) � f ′(u(
t, α(t)

)) − 3η, t ∈ [0, T ].

Still by continuity, we can choose η′ > 0 such that the first inequality in (2.11) holds. The con-
struction of the curve β(·) is similar. See Fig. 1 for an illustration.
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2. Next, recalling that a(t) < α(t) < β(t) < b(t) for all t ∈ [0, T ] and that u is smooth on the
domain Ω , we construct a smooth function ũ : [0, T − δ/2] × R �→ R such that

ũ(t, x) = u(t, x), x ∈ [
α(t), β(t)

]
, (2.12)

and

ũ(t, x) = 0, |x| � M, (2.13)

for all t ∈ [0, T − δ/2] and some constant M large enough.
Defining the smooth function

φ(t, x)
.= ũt (t, x) + f

(
ũ(t, x)

)
x
,

it is trivial to check that ũ provides a solution to the balance law

ũt + f (ũ)x = φ. (2.14)

Notice that, by construction, we have φ(t, x) = 0 whenever x ∈ [a(t) + η,b(t) − η], and also
when |x| � M .

3. We now consider the viscous approximations ũε , defined as the solutions to the viscous
Cauchy problems with source term

ũε + f
(
ũε

)
x

= φ + εũxx, ũε(0, x) = ũ(0, x). (2.15)

Since the limit solution ũ is globally smooth, it is well known that the functions ũε admit an
asymptotic expansion in terms of powers of ε:

ũε = u0 + εu1 + ε2u2 + · · · + εkuk + R̃k,ε. (2.16)

We recall here the basic construction. The functions uj can be inductively determined by requir-
ing that (

u0 + εu1 + · · · + εjuj

)
t
+ f

(
u0 + εu1 + · · · + εjuj

)
x

= φ + ε
(
u0 + εu1 + · · · + εjuj

)
xx

+O
(
εj+1) (2.17)

with initial data

u0(0, x) = ũ(0, x), uj (0, x) = 0, j � 1. (2.18)

In particular, we have

u0
.= ũ,

while u1 is found by solving the linear equation

(u1)t + f ′(ũ)(u1)x + f ′′(ũ)ũxu1 = ũxx .
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In general, uj satisfies a linear equation of the form

(uj )t + f ′(ũ)(uj )x = A(t, x)uj + B(t, x), (2.19)

where the coefficients A, B are smooth and depend on the previous functions u0, . . . , uj−1. The
linear equation (2.19) can of course be solved by the method of characteristics. Recalling (2.11),
we conclude that the restriction of all functions uj to the region

Ωα,β .= {
(t, x); t ∈ [0, T − δ/2], x ∈ [

α(t), β(t)
]}

(2.20)

is independent of the choice of the smooth function ũ.
To estimate the remainder term R̃k,ε in (2.16), we introduce the functions

ũε,k
.= u0 + εu1 + ε2u2 + · · · + εkuk.

For each k � 1, the remainder R̃k,ε satisfies a nonlinear equation of the form, with w as the
unknown,

(ũk,ε + w)t + f ′(ũk,ε + w)(ũk,ε + w)x = φ + ε(ũk,ε + w)xx (2.21)

with zero initial data. Recalling (2.17), one can write (2.21) in the equivalent form

wt + f ′(ũk,ε)wx + Φk,ε(w)w · (ũk,ε + w)x = εwxx + ψk,ε, (2.22)

where Φk,ε is the smooth function defined by

Φk,ε(w)
.=

1∫
0

f ′′(θũk,ε + (1 − θ)w
)
dθ.

Moreover, by the smoothness of the functions u0, . . . , uk , for every ν � 0 we have

lim sup
ε→0+

ε−k−1‖ψk,ε‖Cν < ∞. (2.23)

Therefore, for every k, ν � 1 there exists a constant Ck,ν such that

‖R̃k,ε‖Cν � Ck,νε
k+1 (2.24)

for every ε > 0 sufficiently small.
4. In the remainder of the proof we compare the solution uε of (2.4) with the solution ũε .

Uniformly on the domain Ωα,β defined in (2.20), for any k � 1 we claim that

lim
ε→0

|ũε − uε|
εk

= 0. (2.25)

Together, (2.24) and (2.25) will establish the theorem.
The estimate (2.25) will be established by a homotopy method. For θ ∈ [0,1], define wε,θ as

the solution to the following Cauchy problem
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wt + f (w)x = θφ + εwxx, (2.26)

w(0, x) = θũ(0, x) + (1 − θ)u(0, x). (2.27)

Observe that wε,0 = uε while wε,1 = ũε .
To prove the estimate (2.25), it suffices to prove an estimate on the partial derivative∣∣∣∣ ∂

∂θ
wε,θ (t, x)

∣∣∣∣ � Ckε
k+1 (2.28)

uniformly on Ωα,β . Toward a proof of (2.28), we observe that the function z
.= ∂

∂θ
wε,θ provides

a solution to the linear, non-homogeneous Cauchy problem

zt + [
f ′(wε,θ

)
z
]
x

= φ + εzxx, (2.29)

z(0, x) = ũ(0, x) − u(0, x). (2.30)

Before working out details, we explain here the heart of the matter. According to (2.29)–(2.30),
the initial data vanishes in a neighborhood of the interval [α(0), β(0)]. Moreover, the source
term φ vanishes on a whole neighborhood of Ωα,β . If ε = 0, Eq. (2.29) reduces to a first order
linear equation, and the method of characteristics immediately yields z = 0 on a neighborhood
of the domain Ωα,β . On the other hand, for ε > 0, the small diffusion, which possibly takes mass
inside the domain, is overwhelmed by convection, which transports mass with a speed that points
strictly outward across the boundaries of Ωα,β . The total mass which is found inside the domain
is thus o(εk), for every k � 1.

It is convenient here to rescale time and space coordinates. In terms of the new coordinates
(t ′, x′) = (t/ε, x/ε), the linear Cauchy problem (2.19)–(2.30) takes the form

zt ′ +
[
f ′(wε,θ

)
z
]
x′ = εφ + zx′x′ (2.31)

with

z(0, x′) = ũ(0, εx′) − u(0, εx′). (2.32)

Notice that in this case the solution is uniformly Lipschitz continuous on the domain

Ωα,β
ε

.= {
(t, x); t ∈ [0, T /ε], x ∈ [

α(t)/ε,β(t)/ε
]}

. (2.33)

Moreover, for all ε > 0 sufficiently small, the drift λ = f ′(wε,θ ) ≈ f ′(u) points strictly outward,
on the regions {

(t ′, x′); t ′ ∈ [0, T /ε], α(εt ′) � εx′ � α(εt ′) + η′},{
(t ′, x′); t ′ ∈ [0, T /ε], β(εt ′) − η′ � εx′ � β(εt ′)

}
.

The key fact is that, as ε → 0, the width of these regions grows as η′/ε. By linearity, the solution
of the Cauchy problem (2.31)–(2.32) is the sum of two solutions: one with initial data and source
term supported in the region where x < α(t), and one with initial data and source term supported
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in the region where x > β(t). We can thus apply Lemma 1 (see Appendix A) to each of these
solutions, obtaining the bound∣∣z(t ′, x′)

∣∣ � 2Ce−ε0η
′/ε, x′ ∈

[
α(εt ′) + η′

ε
,
β(εt ′) − η′

ε

]
. (2.34)

Returning to the original variables, for x ∈ [α(t) + η′, β(t) − η′] using (2.34) we conclude

∣∣uε(t, x) − ũε(t, x)
∣∣ �

1∫
0

∣∣∣∣ ∂

∂θ
wε,θ (t, x)

∣∣∣∣dθ � 2Ce−ε0η
′/ε.

Since ε0, η
′ > 0, this implies (2.25), completing the proof of Theorem 1. �

Next corollary gives an estimate to the remainder term in the expansion (2.8).

Corollary 1. In the same setting as Theorem 1, in the expansion (2.8) the remainder term satisfies
the estimate

lim
ε→0+ ε−k · ‖Rk,ε‖Cν (Ωδ) = 0 (2.35)

for every k, ν � 1.

Proof. In view of (2.14), it suffices to show that the difference ũε − uε converges to zero in
Cν(Ωδ) faster than any power of ε.

In the rescaled variables (t ′, x′) = (t/ε, x/ε), the functions uε , ũε satisfy the uniformly par-
abolic equations

uε
t ′ + f

(
uε

)
x′ = uε

x′x′ , ũε
t ′ + f

(
ũε

)
x′ = εθφ + ũε

x′x′ .

Moreover, their initial data are smooth restricted to the intervals [a(0)/ε, b(0)/ε]. By standard
parabolic estimates, all their derivatives remain uniformly bounded on the rescaled domains Ω

α,β
ε

at (2.33), namely∣∣∂m
t ′ ∂

n
x′uε(t ′, x′)

∣∣ � Cm,n,
∣∣∂m

t ′ ∂
n
x′uε(t ′, x′)

∣∣ � Cm,n, (t ′, x′) ∈ Ωα,β
ε .

In the original variables t , x, for every ν � 0 this yields the estimates∥∥uε
∥∥
Cν+1(Ωα,β)

� Cνε
−ν−1,

∥∥ũε
∥∥
Cν+1(Ωα,β )

� Cνε
−ν−1 (2.36)

for a suitable constant Cν . The bounds (2.36) are far from optimal, but suffice for our purposes.
Indeed, let integers ν, � � 1 be given. Using (2.9) with k = ν + � + 1 one obtains∥∥uε − ũε

∥∥
C0(Ωα,β)

= Ckε
ν+�+2. (2.37)

By interpolation, (2.36) and (2.37) yield∥∥uε − ũε
∥∥
Cν (Ωα,β )

= O
(
ε�

)
. (2.38)

Since ν, � are arbitrary, the corollary is proved. �
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Next corollary shows that an integral across a shock also admits a similar expansion.

Corollary 2. Fix a time τ > 0 and assume that u is smooth on a neighborhood of two backward
characteristics passing through the points (τ, ā) and (τ, b̄). Then the integral

I (ε)
.=

b̄∫
ā

uε(τ, x) dx

admits an expansion of the form

I (ε) = I0 + εI1 + ε2I2 + · · · + εkIk +O
(
εk+1). (2.39)

Proof. Call t �→ a(t), t �→ b(t) the two characteristic curves. Since Eq. (1.3) is in conservation
form, we can write

I (ε) =
b(0)∫

a(0)

u(0, x) dx +
τ∫

0

[
f

(
uε

(
t, a(t)

)) − f
(
uε

(
t, b(t)

))]
dt

+
τ∫

0

[
uε

x

(
t, b(t)

) − ux

(
t, a(t)

)]
dt. (2.40)

Even if the limit solution u contains shocks inside the region bounded by the characteristics a(·)
and b(·), applying Corollary 1 with ν = 1 we obtain that the last integrands in (2.40) admit an
asymptotic expansion in powers of ε. This concludes the proof. �

The previous results are obtained assuming that all viscous solutions have the same initial
data (2.2). One can show that the same conclusions hold provided that the initial data uε(0, ·)
converge to ū in a suitable way.

Corollary 3. Assume that, as ε → 0+, the initial data uε(0, ·) remain uniformly bounded in L∞
and converge to ū in L1

loc. Moreover, assume that an expansion of the form

uε(0, x) = ū(x) + εu1(0, x) + · · · + εkuk(0, x) +O
(
εk+1) (2.41)

holds as ε → 0+, in neighborhood of the point y. Then the conclusion of Theorem 1 remains
valid.

If expansions of the form (2.7) hold in a neighborhood of the two points a′ = a − τf ′(u(τ, a))

and b′ = b − τf ′(u(τ, b)), then the conclusion of Corollary 1 remains valid.

The proof is the same as in Theorem 1, except that the initial data for z now is not ≡ 0 but
satisfies an estimate ∣∣z(0, x)

∣∣ � C0ε
k.

The conclusion does not change.
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3. Numerical experiments

In this section we present some numerical experiments to verify our theoretical findings in
Section 2. Assume some quantity u(ε) admits a power expansion in ε such that

u(ε) = ū + εu1 + ε2u2 + ε3u3 + · · · .

Knowing the values of u for different values of ε allows us to obtain high order approximation
to the zero limit ū by Richardson extrapolation technique. Say if we computed u1 = u(ε) and
u2 = u(ε/2), then 2u2 − u1 is a second order approximation to ū,

2u2 − u1 = ū + (
ε2)ũ2 + · · · .

By choosing a sequence of ε, we can generate a triangular table. If the rates of convergence are
as expected, it is an indication that the expansion is valid.

In our numerical experiments we consider the viscous Burgers’ equation

ut +
(

u2

2

)
x

= εuxx (3.1)

with periodic initial condition

u(x,0) = 1 − sin(2πx).

For any positive ε, solutions of (3.1) are smooth for all time. Theoretically viscous shocks will
form at t = 1.

Several experiments are carried out.

3.1. Extrapolation in smooth region; Theorem 1

In this computation we want to verify Theorem 1, i.e., an expansion as in (2.8) is valid in
the smooth region that satisfies the assumptions in Theorem 1. Our numerical approximation is
computed on the interval x ∈ [0,1], and we impose corresponding periodic boundary conditions
at x = 0 and x = 1. We consider three cases: at t = 0.5 (before shock formation), at t = 1
(right at shock formation) and at t = π

2 (after shock formation). To compute the solutions to the
viscous Burgers’ equation, we use high order numerical approximation: we use a fifth order finite
difference WENO reconstruction in space direction and third order TVD Runge–Kutta in time
discretization. We refer to [16] for the detail of high order finite difference WENO schemes. Grid
size is chosen very small to give an accurate approximation.

We compute solutions to viscous Burgers’ equation with a sequence of ε, chosen in a way
such that εi+1 = 1

2εi . Provided that the expansion (2.8) is valid, one can design a Richardson
extrapolation technique to obtain higher order approximation to the zero limit. Let ūε be the
(numerical) solutions to the viscous Burgers’ equation, and u the (exact) solution of the invicid
Burgers’ equation. At a point x = xs where the invicid solution is smooth, the errors at different
levels of extrapolations are computed as
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Table 1
Errors of extrapolation in smooth region

ε e1 r e2 r e3 r

t = 1/2, before viscous shock is formed
1/20 3.9922e–2
1/40 2.0330e–2 0.9735 7.3812e–4
1/80 1.0255e–2 0.9873 1.8040e–4 2.0395 5.4983e–6
1/160 5.1498e–3 0.9937 4.4387e–5 2.0000 9.5282e–7 2.5300
1/320 2.5804e–3 0.9972 1.0994e–5 2.0324 1.3672e–7 2.7999
1/640 1.2915e–3 0.9985 2.7349e–6 2.0065 1.8176e–8 2.9109

t = 1, the time when viscous shock is formed
1/20 2.6790e–2
1/40 1.3030e–2 1.0398 7.2933e–4
1/80 6.4292e–3 1.0191 1.7187e–4 2.0852 1.3944e–5
1/160 3.1937e–3 1.0093 4.1733e–5 2.0421 1.6477e–6 3.0811
1/320 1.5917e–3 1.0046 1.0283e–5 2.0208 1.9936e–7 3.0470
1/640 7.9459e–4 1.0023 2.5525e–6 2.0103 2.4479e–8 3.0257

t = π/2, after viscous shock is formed
1/20 9.5957e–3
1/40 4.6714e–3 1.0385 2.5282e–4
1/80 2.3060e–3 1.0184 5.9290e–5 2.0922 5.2228e–6
1/160 1.1458e–3 1.0090 1.4380e–5 2.0436 5.8915e–7 3.1481
1/320 5.7115e–4 1.0044 3.5425e–6 2.0212 7.0171e–8 3.0696
1/640 2.8513e–4 1.0022 8.7922e–7 2.0105 8.5554e–9 3.0360

e1 = ūε(xs) − u(xs),

e2 = [
2ūε/2(xs) − ūε(xs)

] − u(xs),

e3 =
[

1

3
ūε(xs) − 2ūε/2(xs) + 8

3
ūε/4(xs)

]
− u(xs).

The results are shown in Table 1. We see clearly that they show a solid support to the expan-
sion (2.8).

3.2. Integral across a shock; Corollary 2

The goal of this experiment is to numerically support our Corollary 2. In our test problem, the
shock is formed at t = 1 where x = π

2 , with shock speed 0. At t = π
2 , after shock formation, we

consider the integral

Ī ε =
3π
4∫

π

uε(x) dx
4
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Table 2
Errors and rates of convergence for I , the integral across a shock

ε e1 r e2 r e3 r

1/20 4.6644e–6
1/40 2.2077e–6 1.0791 2.4893e–7
1/80 1.0774e–6 1.0350 5.2903e–8 2.2341 1.2439e–8
1/160 5.3253e–7 1.0166 1.2353e–8 2.0982 1.1634e–9 2.3130
1/320 2.6477e–7 1.0081 2.9886e–9 2.0470 1.3286e–10 2.5746
1/640 1.3201e–7 1.0040 7.3298e–10 2.0275 1.8903e–11 2.7848

across the shock for the viscous equation, and compare it to the same integral for the invicid
equation

I =
3π
4∫

π
4

u(x)dx.

Again, we compute several Ī ε with the same choices of ε as in our previous test. Assume the
expansion (2.39) is valid, we can again design a Richardson extrapolation technique, and the
errors at each level are

e1 = Ī ε − I,

e2 = [
2Ī ε/2 − Ī ε

] − I,

e3 =
[

1

3
Ī ε − 2Ī ε/2 + 8

3
Ī ε/4

]
− I.

The results are shown in Table 2. Again, the rates are as predicted by Corollary 2.

3.3. Recovering shock location with high order accuracy

Based on Theorem 1 and Corollary 2, we can design an algorithm to recover the location of a
shock with high order accuracy as follows.

• We first roughly determine the shock location xs . This can be achieved by two tale-telling
signs: (1) a local maximum in the size of the gradient |uε

x(τ, ·)|; (2) the blow-up of the
gradient as ε → 0, i.e. |uε

x(τ, x)| = O(ε−1).
• We construct an interval around x0, containing the shock. In our experiment, we choose the

interval [a, b] where a = x0 − |4ε log(ε)| and b = x0 + |4ε log(ε)|.
• For the integral I across the shock, provided the expansion (2.39), we can extrapolate to get

high order accuracy: Iv = 1/3Ī ε − 2Ī ε/2 + 8/3Ī ε/4.
• At the points a, b, we reconstruct two fifth order polynomials Pa(x), Pb(x) from extrapo-

lated high order approximate solution v = 1/3uε − 2uε/2 + 8/3uε/4.
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Table 3
Errors and rate of convergence of recovered shock location at t = π/2

ε eu r ev r

1/20 1.5214e–3 1.6173e–2
1/40 5.6003e–4 1.4215 4.1072e–4 1.9644
1/80 3.7014e–5 3.9198 1.0218e–4 2.0356
1/160 4.9121e–7 6.2386 5.3349e–7 7.5516

Table 4
Errors and rate of convergence at t = 1, in the smooth region inside a centered rarefaction fan

ε e1 r e2 r e3 r

1/20 9.3135e–6
1/40 5.4262e–6 0.7793 1.5388e–6
1/80 2.9793e–6 0.8649 5.3252e–7 1.5309 1.9708e–7
1/160 1.5711e–6 0.9232 1.6287e–7 1.7090 3.9660e–8 2.3130
1/320 8.0841e–7 0.9586 4.5712e–8 1.8331 6.6573e–9 2.5746
1/640 4.1028e–7 0.9784 1.2152e–8 1.9113 9.6601e–10 2.7848

• We use the polynomials Pa(x), Pb(x) as high order approximation to the invicid Burgers’
equation at the left and the right of the shock, respectively. The approximated shock loca-
tion x̄s can then be computed by solving the equation

x̄s∫
a

Pa(x) dx +
b∫

x̄s

Pb(x) dx = Iv.

The errors and rates of convergence are given in Table 3, where ev = x̄s − xs is the error and
xs = π

2 is the exact shock location. We see clearly that high order rate of convergence is obtained.

3.4. In the smooth region inside a rarefaction wave

This numerical experiment studies if an expansion of the form (2.8) is also valid in the smooth
region in the middle of a rarefaction wave. We note that a theoretical proof of such an expansion
is not provided in this paper. The difficulty lies in the fact that the backward characteristics for a
smooth region in the rarefaction fan will join at a point where the initial discontinuity lies. The
technique for proving Theorem 1 cannot be applied in this case. This is a topic of further research
for the authors. Here, however, we present a preliminary numerical study which indicates that
such an expansion is also valid.

We choose our initial data with a discontinuity of an upward jump,

u(x,0) =
{−1, x < 0.5,

1, x � 0.5.

We consider the point at t = 1 and x = 0, which lies in the middle of the rarefaction fan. The
experiment is carried out in a similar way as in our first test in Section 3.1. The errors and rates
of convergence are presented in Table 4, which clearly indicates such an expansion (2.8) is valid.
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Appendix A

We prove here a technical lemma, which provide the basic ingredients in the proof of Theo-
rem 1.

Lemma 1. Consider the linear parabolic Cauchy problem

zt + [
λ(t, x)z

]
x

= φ(t, x) + zxx, z(0, x) = z̄(x) (A.1)

with λ uniformly bounded. Assume that there exist constants 0 < η � 1, η′ > 1/2η and a smooth
curve t �→ α(t) with the following properties

z̄(x) = 0, x � α(0), (A.2)

φ(t, x) = 0, x � α(t), (A.3)

λ(t, x) � α̇(t) − η, x ∈ [
α(t), α(t) + η′]. (A.4)

Then the solution satisfies ∣∣z(t, x)
∣∣ � Ce−ε0η

′
, x � α(t) + η′. (A.5)

Here the constants C,ε0 > 0 depend on η, ‖λ‖L∞ , ‖φ‖L∞ , and on the local Lipschitz constant
of λ in a neighborhood of (t, x), but not on η′.

Proof. By possibly replacing x by the shifted space variable y = x − α(t), it is not restrictive to
assume that α(t)

.= 0. For some constants η, λ̂ > 0 we thus have

λ(t, x) � −η, x ∈ [0, η′], (A.6)∣∣λ(t, x)
∣∣ � λ̂, x ∈ R. (A.7)

The proof will be given in several steps.
1. Consider the fundamental solution Γ (t, x, τ, y) of the linear homogeneous equation

zt + [
λ(t, x)z

]
x

= zxx (A.8)

with initial data at time τ consisting of a unit mass concentrated at the point y. The first step in
the proof is to show that, for any y � 0, the total mass that creeps inside the half line x > η′/2 is
small. Indeed, Γ = Zx , where Z provides the solution to

Zt + λ(t, x)Zx = Zxx, Z(τ, x) =
{

0 if x < y,

1 if x > y.
(A.9)

Using (A.6) we can construct a lower solution to (A.9) by setting

Z0(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x � 0,

1 − e−ηx if x ∈ [0, η′/2],
P (x) if x ∈ [η′/2, η′′],

′′ ′′
(A.10)
P(η ) if x � η .
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Here P(·) is the quadratic polynomial obtained as the second order Taylor expansion of the
function f (x) = 1 − e−ηx at the point x = η′/2. Moreover,

η′′ .= η′

2
+ 1

η
� η′

is the point where P attains its maximum. Defining the small constant

κ
.= −P ′′

P
(η′/2) = η2e−ηη′/2

1 − e−ηη′/2
, (A.11)

it is straightforward to check that the function

Z∗(t, x)
.= e−κ(t−τ)Z0(x)

is a lower solution to (A.9). In particular, for every t > τ we obtain the upper bound

∞∫
η′/2

Γ (t, x, τ, y) dx � 1 − Z∗(t, η′/2) = 1 − e−κ(t−τ)
(
1 − e−ηη′/2)

< κ(t − τ) + e−ηη′/2 � Cηe
−ηη′/2(1 + t − τ) (A.12)

for a suitable constant Cη.
In the case y � 0, a better upper bound is obtained simply observing that, by (A.7), the

solution to

Wt + λ̂Wx = Wxx, W(τ, x) =
{

0 if x < y,

1 if x > y.
(A.13)

provides an upper solution to Z in (A.9). In particular, for t > τ and any y ∈ R one has

∞∫
η′/2

Γ (t, x, τ, y) dx �
∞∫

η′/2−λ̂(t−τ)−y

e−x2/4(t−τ)

2
√

π(t − τ)
dx

=
∞∫

(η′/2−y)(t−τ)−1/2−λ̂(t−τ)1/2

e−x2/4

2
√

π
dx. (A.14)

Recall that, for s > 0,

∞∫
s

e−x2/4

2
√

π
dx �

∞∫
s

e−sx/4

2
√

π
dx = 2√

πs
e−s2/4.

When y � −2λ̂(t − τ), the above estimates yield
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∞∫
η′/2

Γ (t, x, τ, y) dx �
∞∫

−y/2
√

(t−τ)

e−x2/4

2
√

π
dx

� 2√
π(

−y

2
√

t−τ
)
e−y2/16(t−τ) � 4√

−2πλ̂y

eλ̂y/8 � C′eλ̂y/9 (A.15)

for a suitable constant C′.
2. The solution of the non-homogeneous problem (A.1) admits the integral representation

z(t, x) =
0∫

−∞
Γ (t, x,0, y)z̄(y) dy +

t∫
0

0∫
−∞

Γ (t, x, τ, y)φ(τ, y) dy dτ. (A.16)

Therefore, for every t > 0 using the bounds (A.14) and (A.15) we obtain

∞∫
η′/2

∣∣z(t, x)
∣∣dx � ‖z̄‖L∞ ·

( 0∫
−η′−2λ̂t

+
−η′−2λ̂t∫
−∞

)( ∞∫
η′/2

Γ (t, x,0, y) dx

)
dy

+ ‖φ‖L∞ ·
t∫

0

( 0∫
−η′−2λ̂(t−τ)

+
−η′−2λ̂(t−τ)∫

−∞

)( ∞∫
η′/2

Γ (t, x,0, y) dx

)
dy dt

� ‖z̄‖L∞ ·
(

(η′ + 2λ̂t) · Cηe
−ηη′/2(1 + t) +

−η′−2λ̂t∫
−∞

C′e−λ̂y/9 dy

)

+ ‖φ‖L∞ ·
t∫

0

((
η′ + 2λ̂(t − τ)

) · Cηe
−ηη′/2(1 + t − τ)

+
−η′−2λ̂(t−τ)∫

−∞
C′e−λ̂y/9 dy

)
dτ. (A.17)

As long as t � (η′)2, from (A.17) we deduce

∞∫
η′/2

∣∣z(t, x)
∣∣dx � C1

(‖z̄‖L∞ + ‖φ‖L∞
) · (1 + η′)3e−ε1η

′

� C0
(‖z̄‖L∞ + ‖φ‖L∞

)
e−ε0η

′
(A.18)

for suitable constants ε1 > ε0 > 0 and C1,C0 large enough.



W. Shen, Z. Xu / J. Differential Equations 244 (2008) 1692–1711 1709
3. The estimate (A.18) provides an integral bound on the total mass which is carried by dif-
fusion beyond the line x = η′/2. In this last step, we transform this integral estimate (A.18) into
a pointwise estimate, valid on a region where the drift coefficient λ = λ(t, x) is Lipschitz con-
tinuous. Fix a point (t∗, x∗) with t∗ > 0, x∗ � η′. Call t0

.= max{t∗ − 1,0}, and assume that λ is
Lipschitz continuous with constant L on the rectangle

Q
.= [t0, t∗] × [x∗ − 2λ̂, x∗ + 2λ̂].

Set λ∗ .= λ(t∗, x∗) and consider the Green kernel

G∗(t, x)
.= e−(x−λ∗t)2/4t /2

√
πt.

Writing (A.1) in the equivalent form

zt + [(
λ(t, x) − λ∗)z]

x
+ λ∗zx = φ(t, x) + zxx, z(0, x) = z̄(x), (A.19)

we can represent its solution as

z(t) = G∗(t − t0) ∗ z(t0) +
t∫

t0

G∗(t − s) ∗ φ(s) ds −
t∫

t0

G∗
x(t − s) ∗ [(

λ(s) − λ∗)z(s)]ds.

(A.20)

Hence

z(t∗, x∗) =
( η′/2∫

−∞
+

∞∫
η′/2

)
G∗(t∗ − t0, x

∗ − y)z(t0, y) dy

+
t∗∫

t0

0∫
−∞

G∗(t∗ − s, x∗ − y)φ(s, y) dy ds

−
t∫

t0

( η′/2∫
−∞

+
∞∫

η′/2

)
G∗

x(t
∗ − s, x∗ − y)

[(
λ(s, y) − λ∗)z(s, y)

]
dy ds. (A.21)

Because of (A.18), it is clear that all of the above integrals become exponentially small as
η′ → ∞. Indeed, the portion containing the singularity can also be estimated, observing that

t · ∣∣G∗
x(t, x)

∣∣ � 1√
8πe

, |x| · ∣∣G∗
x(t, x)

∣∣ � C√
t
.

This yields
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t∗∫
t0

x∗+λ∗(s−t∗)+1∫
x∗+λ∗(s−t∗)−1

G∗
x(t

∗ − s, x∗ − y)
[(

λ(s, y) − λ∗)z(s, y)
]
dy ds

�
t∗∫

t0

max
|x−x∗−λ∗(t−t∗)|�1

∣∣G∗
x(t

∗ − s, x∗ − y)
(
λ(s, y) − λ∗)∣∣ ·

x∗+λ∗(s−t∗)+1∫
x∗+λ∗(s−t∗)−1

z(s, y) dy dt

�
t∗∫

t0

L ·
(

1√
8πe

+ C√
(t∗ − s)

)
·

∞∫
η′/2

∣∣z(s, y)
∣∣dy ds.

This establishes (A.5), with a possibly smaller constant ε0 > 0. �
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