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Abstract

For “criss-cross commuting” tuples A and B of Banach space operators we give two suf-
ficient conditions for the spectral equality σT (AB) = σT (BA). © 2002 Elsevier Science Inc.
All rights reserved.
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1. Introduction

If A and B are operators on a Banach space, it is well known ([1] and [2, Propo-
sition 6, p. 16]) that the spectra of the two products AB and BA are very nearly the
same:

σ(AB)\{0} = σ(BA)\{0}. (1.1)

Necessary and sufficient for full equality is that either of the following two conditions
hold:
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0 ∈ σ(AB) ∩ σ(BA), (1.2)

0 	∈ σ(AB) ∪ σ(BA). (1.3)

If more generally A and B are “criss-cross commuting” systems of operators ([6];
see Definition 1.1 below), then in particular each of the systems AB :=
(A1B1, . . . , AnBn) and BA := (B1A1, . . . , BnAn) of products is commutative,
and the analog of (1.1) is true for the Taylor spectrum. Thus it is clear that for full
equality we will need the analog either of (1.2) or of (1.3). In this paper, we find
one condition sufficient for the analog of (1.2), and another sufficient for the analog
of (1.3).

Definition 1.1. A = (A1, . . . , An) and B = (B1, . . . , Bn) are said to criss-cross
commute if

AiBkAj = AjBkAi and BiAkBj = BjAkBi (all i, j, k).

As we mentioned before if A = (A1, . . . , An) and B = (B1, . . . , Bn) criss-cross
commute, then each of AB and BA is a commuting n-tuple. Several authors have
obtained analogs of (1.1) for various joint spectra, under special conditions. In [6], Li
proved that if A and B are criss-cross commuting, then σT (AB)\{0} = σT (BA)\{0},
and in [7], he showed that ind(AB − z) = ind(BA − z) for z /= 0. In [12], Wro-
bel proved the first equality under the stronger condition A1 = · · · = An = A and
ABj = BjA (all j = 1, . . . , n). In [5], Harte extended this result to different kinds
of joint spectra for criss-cross commuting pairs of n-tuples.

For a commuting n-tuple T = (T1, . . . , Tn) acting on a Banach space X, let K(T −
z) denote the Koszul complex associated with T − z (cf. Section 3 below, [4,9–11]).
We define the Taylor spectrum σT (T) and approximate point spectrum σπ(T) as
follows:

σT (T) := {
z ∈ Cn : K(T − z) is not exact

}
and

σπ(T) :=
{

z ∈ Cn : inf‖x‖=1

n∑
i=1

‖(Ti − zi)x‖ = 0

}
.

Given a bounded linear operator T on a Banach space X, we let T ∗ denote the adjoint
of T, acting on X∗, the dual space of X. Also, σ(T ) and σπ(T ) denote the spectrum
and the approximate point spectrum of T, respectively. In this paper, we show that
for a pair A = (A1, . . . , An) and B = (B1, . . . , Bn) of criss-cross commuting n-tu-
ples on a Banach space, if (i) 0 ∈ σπ(A) ∩ σπ(A∗) or (ii) there exists an invertible
operator which is a linear combination of {A1, . . . , An}, then σT (AB) = σT (BA),
where A∗ ≡ (A∗

1, . . . , A
∗
n).
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2. The singular case

First we prove:

Theorem 2.1. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be criss-cross com-
muting. If 0 ∈ σπ(A) ∩ σπ(A∗), then σT (AB) = σT (BA).

For the proof of Theorem 2.1, we need the following result.

Theorem 2.2 [10, Theorem 3.6]. Let A ≡ (A1, . . . , An) be a commuting n-tuple of
operators. Then σT (A) = σT (A∗).

Proof of Theorem 2.1. By Li’s Theorem [6], it suffices to show that 0 ∈ σT (AB) ∩
σT (BA). By assumption, there exists a sequece {xn} of unit vectors in X such that
Ajxn→0 as n→∞ (j =1, . . . , n). Then BjAjxn→0 as n→∞ (all j =1, . . . , n).
Thus, we have 0 ∈ σT (BA). Now, since 0 ∈ σπ(A∗), there exists a sequence {fn} of
unit vectors in X∗ such that A∗

j fn→0 as n→∞. Then B∗
j A

∗
j fn → 0 as n→∞ (all

j = 1, . . . , n). Thus, we have 0 ∈ σT (B∗A∗). Since σT (B∗A∗) = σT ((AB)∗), we
must have 0 ∈ σT (AB) by Theorem 2.2. Hence σT (AB) = σT (BA), as desired. �

Next we study the condition
0 ∈ σT (A) ⇒ 0 ∈ σπ(A) ∩ σπ(A∗). (∗)

Definition 2.3. An n-tuple A = (A1, . . . , An) is called strongly commuting if, for
each 1 � j � n, there exist operators Hj and Kj , each with real spectrum, such that
Aj = Hj + iKj and S = (H1,K1, . . . , Hn,Kn) is a commuting 2n-tuple (cf. [8]).

Theorem 2.4. If A = (A1, . . . , An) is a strongly commuting n-tuple, then A has
condition (∗).

For the proof of Theorem 2.4 we need the following result.

Theorem 2.5 [3, Theorem 2.1]. Let T = (T1, . . . , Tn) be a strongly commuting n-
tuple of operators. Then σT (T) = σπ(T).

Proof of Theorem 2.4. By Theorem 2.5 we have 0 ∈ σπ(A). Since by Theorem 2.2,
σT (A∗) = σT (A) and since A∗ = (A∗

1, . . . , A
∗
n) is also strongly commuting, by

Theorem 2.5 we have 0 ∈ σπ(A∗). �

For the rest of this section, we consider the single operator case.

Corollary 2.6. If an operator A satisfies condition (∗), then σ(AB) = σ(BA) for
every operator B ∈ B(X).
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Proof. If 0 	∈ σ(A), then it is clear that σ(AB) = σ(BA). If 0 ∈ σ(A), then by
Theorem 2.1 we have σ(AB) = σ(BA). �

We now let

� := {
(x, f ) ∈ X × X∗ : ‖f ‖ = f (x) = ‖x‖ = 1

}
.

Definition 2.7. For an operator T ∈ B(X), the numerical range V (T ) of T is de-
fined by

V (T ) := {
f (T x) : (x, f ) ∈ �

}
.

An operator T is said to be Hermitian if V (T ) ⊆ R; T is said to be normal if there
exist Hermitian operators H and K such that HK = KH and T = H + iK .

It is well known that σ(T ) ⊆ V (T ), where V (T ) is the closure of V (T ). Hence
normal operators satisfy condition (∗). We thus have:

Corollary 2.8. If A is normal, then σ(AB) = σ(BA) for every operator B ∈
B(X).

3. The nonsingular case

For a commuting n-tuple of operators A = (A1, . . . , An), we consider the follow-
ing properties (P1) and (P2):

∃a = (a1, . . . , an) ∈ Cn and a ◦ A := a1A1 + · · · + anAn is invertible, (P1)

0 = (0, . . . , 0) 	∈ σT (A). (P2)

Proposition 3.1. For a commuting n-tuple of operators A = (A1, . . . , An), (P1)

implies (P2).

Proof. By the spectral mapping theorem we have

σ(a ◦ A) = a ◦ σT (A).

Hence

0 	∈ σ(a ◦ A) ⇐⇒ 0 	∈ a ◦ σT (A)

⇐⇒ a ◦ z := a1z1 + · · · + anzn /= 0

(all z = (z1, . . . , zn) ∈ σT (A)).

Therefore, we have 0 	∈ σT (A), so (P2) holds. �
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Remark 3.2. In general, (P2) � (P1). To see this, we shall need the following result
[10, Theorem 4.1]. There exists a 5-tuple A = (A1, . . . , A5) such that A is non-sin-
gular but the equation A1B1 + · · · + A5B5 = I cannot be solved for B1, . . . , B5 ∈
(A)′, where (A)′ := {T : AiT = TAi for all Ai (i = 1, . . . , 5)}. Assume now that
(P2) ⇒ (P1). Then, for A = (A1, . . . , A5) as above, there exists a = (a1, . . . , a5)

such that a ◦ A is invertible. Since it is clear that
∑5

i=1 ai(a ◦ A)−1Ai = I and ai(a ◦
A)−1 ∈ (A)′ (i = 1, . . . , 5), we get a contradiction.

Theorem 3.3. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be criss-cross com-
muting n-tuples. If there exists an invertible operator T which is a linear combination
of {A1, . . . , An}, then σT (AB) = σT (BA).

Proof. We need to recall the construction of the Koszul complex. Let E be the
exterior algebra on n generators, that is, E is the complex algebra with identity
e0 generated by indeterminates e1, . . . , en such that ei ∧ ej = −ej ∧ ei for all i, j ,
where ∧ denotes multiplication. The elements ej1 ∧ · · · ∧ ejk , 1 � j1 < · · · < jk �
n form a basis for the subspace of k-forms, Ek (k = 1, . . . , n), while E0 = Ce.
Thus, E is a graded algebra, with E = ⊕n

k=0 Ek . For X a Banach space, let Ek(X)

:= Ek ⊗C X. For z = (z1, . . . , zn) ∈ Cn, we define Dk and Dk : Ek(X) →
Ek−1(X) by

Dk(x ⊗ ej1 ∧ · · · ∧ ejk )

=
k∑

i=1

(−1)i+1(AjiBji − zji )x ⊗ ej1 ∧ · · · ∧ ěji ∧ · · · ∧ ejk

and

Dk(x ⊗ ej1 ∧ · · · ∧ ejk )

=
k∑

i=1

(−1)i+1(BjiAji − zji )x ⊗ ej1 ∧ · · · ∧ ěji ∧ · · · ∧ ejk ,

respectively (here ěji means deletion). We thus have two chain complexes (Koszul
complexes)

K(AB − z) : 0 → En(X)
Dn→En−1(X)

Dn−1→ · · · D2→E1(X)
D1→E0(X) → 0

and

K(BA − z) : 0 → En(X)
Dn→En−1(X)

Dn−1→ · · · D2→E1(X)
D1→E0(X) → 0.

By hypothesis, there exist complex numbers ai (i = 1, . . . , n) such that T := a1A1 +
· · · + anAn is invertible. For i = 1, . . . n, x ∈ X, and a complex number z,
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(AiBi − z)x = (AiBi − z)T T −1x

= (AiBi − z)(a1A1 + · · · + anAn)T
−1x

= T (BiAi − z)T −1x,

because A = (A1, . . . , An) and B = (B1, . . . , Bn) criss-cross commute. It follows
that

Dk(x ⊗ ej1 ∧ · · · ∧ ejk ) = TDk
(
(T −1x) ⊗ ej1 ∧ · · · ∧ ejk

)
(k = 0, . . . , n).

This identity readily implies that K(AB − z) is exact if and only if so is K(BA − z).
Therefore, σT (AB) = σT (BA). �

We proved in Section 2 that a normal operator on a Banach space satisfies condi-
tion (∗). Applying this result and Theorems 2.1 and 3.3, we obtain the following:

Corollary 3.4. Let A = (A, . . . , A) and B = (B1, . . . , Bn) be criss-cross commut-
ing. If A is normal, then σT (AB) = σT (BA).

Proof. If 0 ∈ σ(A), then Theorem 2.1 applies; if 0 	∈ σ(A), then use Theorem 3.3.
�

We conclude this section with an application of Theorem 3.3 to commuting n-
tuples of operators in a somewhat restricted form.

Corollary 3.5. Let A = (A1, . . . , An) be a commuting n-tuple operators which is
non-singular, that is, 0 = (0, . . . , 0) 	∈ σ(A). Suppose that for i = 1, . . . , n, if 0 ∈
σ(Ai), then 0 is an isolated point of σ(Ai). Let B = (B1, . . . , Bn) be an n-tuple of
operators such that A and B criss-cross commute. Then σT (AB) = σT (BA).

For the proof of Corollary 3.5, we need the following lemma. For i = 1, . . . , n,
let Pi : Cn → C denote the orthogonal projection onto the ith coordinate.

Lemma 3.6. Let M ⊆ Cn be a compact subset and assume that 0 	∈ M . Assume that
0 ∈ Pi(M) and that 0 is an isolated point of Pi(M) (all i = 1, . . . , n). Then there
exist numbers a1, . . . , an such that a1x1 + · · · + anxn /= 0 for every (x1, . . . , xn) ∈
M .

Proof. Since 0 is an isolated point of Pi(M), there exist positive numbers bi, ci
such that if 0 /= z ∈ Pi(M), then bi � |z| � ci (i = 1, . . . , n). Let a1 := 1 and se-
lect a2 > 0 such that a2b2 > c1. Next select a3 > 0 such that a3b3 > c1 + a2c2. In-
ductively, select ai > 0 such that aibi > c1 + a2c2 + · · · + ai−1ci−1 (i = 3, . . . n).
Then for all (x1, . . . , xn) ∈ M we must have

x1 + a2x2 + · · · + anxn /= 0.
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For, assume that x1 + a2x2 + · · · + anxn = 0. If xn /= 0, then

anbn � an|xn|
= |x1 + a2x2 + · · · + an−1xn−1|
� c1 + a2c2 + · · · + an−1cn−1

< anbn,

a contradiction. Thus, we must have xn = 0. Therefore, x1 + a2x2 + · · · + an−1xn−1
= 0, and a repeated application of the above argument shows that x1 = x2 = · · · =
xn = 0, contradicting the hypothesis on M. �

Proof of Corollary 3.5. If there exists i such that 0 	∈ σ(Ai), then let T := 0 · A1 +
· · · + 0 · Ai−1 + Ai + 0 · Ai+1 + · · · + 0 · An = Ai . Since T is invertible, by
Theorem 3.3 we have σT (AB) = σT (BA). Thus, we may assume 0 ∈ σ(Ai)

(all i = 1, . . . , n). By the hypothesis and Lemma 3.6 (applied to M := σT (A)),
there exist numbers a1, . . . , an such that a1x1 + · · · + anxn /= 0 for all (x1, . . . , xn)

∈ σT (A). Let f : Cn → C be given by f (z1, . . . , zn) := a1z1 + · · · + anzn,
and let T := f (A1, . . . , An). By the Spectral Mapping Theorem for the Taylor
spectrum we have σ(T ) = {a1x1 + · · · + anxn : (x1, . . . , xn) ∈ σT (A)}, and
thus 0 /∈ σ(T ). Therefore, T is invertible, so by Theorem 3.3 we have σT (AB =
σT (BA). �

Acknowledgement

The authors would like to thank the referee for several useful suggestions.

References

[1] B.A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math.
Soc. 126 (1998) 1055–1061.

[2] F. Bonsall, J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
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