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Abstract—This paper attempts to examine the utility foundation of the Analytic Hierarchy Process (AHP).
It identifies the conditions under which the selection of an alternative is consistent with the maximization
of an underlying utility function, or more precisely, the conditions under which the AHP-recommended
choice corresponds with the solution attained from maximizing the respondent’s utility function.

INTRODUCTION

This paper attempts to examine the utility foundation of the Analytic Hierarchy Process (AHP).
It identifies the conditions under which the selection of an alternative is consistent with the
maximization of an underlying utility function, or more precisely, the conditions under which the
AHP-recommended choice corresponds with the solution attained from maximizing the respondent’s
utility function.

In this analysis, we assume the existence of an underlying utility function, and abstract from the
uncertainty about the alternatives and from the errors in preference responses. The paper focuses
on the compatibility of the AHP and the utility (or more accurately, value) function, when the
underlying utility function is of the types: uni-attribute, multi-attribute, additive and non-additive.

This examination shows that the AHP method is unconditionally consistent with the utility
maximization criterion when the underlying utility function is uni-attribute. The consistency with
the additive (but non-linear) function requires an additional assumption regarding the underlying
utility function or, alternatively, a careful interpretation of pairwise comparisons of attributes. One
very interesting result is that once we modify the procedure of aggregating the local weights into
global weights, the AHP becomes unconditionally consistent with the utility maximization criterion
in the cases of multiplicative utility functions. The unconditional nature of such a capability opens
up an interesting and scarcely researched avenue for combining the AHP and utility theory in
solving selection decision problems.

UNI-ATTRIBUTE UTILITY FUNCTIONS

Let us start with the general form of utility function U(x), where x = (x,, x,,...,X,,) constitutes
the vector of m attributes. The utility maximization criterion requires the selection of alternative a
such that:

{a:U(a) = max [U(x):xe S]}, )

where S is the set of all alternatives under consideration.

A special case of expression (1) is when the decision maker bases the selection on only one
attribute of alternatives. In such a case, x in expression (1) is scalar. This section shows that if one
can elicit pairwise responses as utility ratios, the AHP and the utility maximization criterion lead
to the same choice in the case of the uni-attribute function.

Define the following decision rule:

{a:D(a) = max [@O(x):xeS and d(x)e M]}, (2)
387
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where

M= { O(x): D(x) = Y [UXYUMW/Y dy). x.veSl

ves yes
dIlU D lb lnC same bClCLllOH set as IIl CXperblOl’l (1) _;- S]I)(.«C we dDblrdLl lrUHl €Irors or IHLOIlblblCﬂLle
which exist in preference responses, one can easily show that the decision rule (2) results in the
same ordering of alternatives in S as the AHP estimation methods: the eigenvalue method [1], the
simple row average method [2] and the mean transformation method [3]. The case of the simple
row average is quite obvious because dividing each ®(x) by a fixed number n (the number of
alternatives) does not change the ordering of alternatives in M. In the absence of preference errors
and inconsistencies, the identical outcome of the eigenvalue and the mean transformation methods

that Af tha cimnle raw avaraogse hoo haan natad mea g An s thic analycic we

Wth liatr vl Lll\- SILIPIG LUV avuxasb 1Has ULl 1iviila pu.v:uual_y LL 3} Hk«uvc, in llllb allalyblb, A A%
will use decision rule (2) to represent the aggregation method of the AHP, and avoid the lengthy
discussion of which of the other AHP computational methods may or may not be consistent with
decision rule (2).

The following theorem establishes that decision rules (2) and (1) select the same alternative.

Theorem 1

Given a utility function U and a finite and discrete set of alternatives S, decision rules (1) and

(2) have the same solution.

£ UL . Siulk

yeS§ yeS
and
A A TN/ A TTi LT T N
A)= A UIR)/ 2, AT UY) = LTUIR)
yeS
where
A=) [1/U(y)}
yes
and

C=A4/Y A-Uly) = 1/Y U(y)

yesS yeS

In other words, C is the normalizing factor which makes the ®(x)s sum to 1. For any given set of
S, C is fixed, and positive. The latter is due to the desirability, and hence, positive utility, of
alternatives in toto. Thus, ®(x) is a linear transformation of U(x). Hence, the alternative a which
maximizes rule (1) also maximizes rule (2).

Note that in decision rule (2), the aggregation rule of the pairwise scores is in the form of a
summation, and it does admit averaging and other linear transformations. In other words, those
AHP computational methods which conform to such aggregation lead to the maximization of the

underlymg utility function.

1) , where y(x) = TE(L). The
S A Euw

+ A more clear, and longer, specification in decision rule (2) is to define ®{x) as ®»(x) =

formulation of decision (2) was adopted for the sake of notational brevity.
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Let us clarify the development of this section with an example. Assume that the only decision
criterion is the price of alternatives with the following underlying utility function:

U(p) = 1000000/p? (3

where p is the price attribute. Assume S, the alternative set, contains three alternatives with the
price attributes $10,000, $12,000 and $8000, respectively. Decision rule (1) leads to the U(x) value
0.01, 0.0069 and 0.0156, respectively, recommending the selection of the third alternative. The
pairwise comparisons of the alternatives, assuming away any inconsistency and errors in preference
responses and considering pairwise scores as utility ratios, result in the following matrix:

B=|069 1 0.44

1 1.44 0.64)
C156 225

Applying decision rule (2) attains ®(x) values of 0.31, 0.21 and 0.48 for the three alternatives,
respectively, and hence recommends the choice of the third alternative, a solution consistent with
that of decision rule (1).

In the above analysis, we have assumed that the AHP elicits the relative utilities of alternatives.
This assumption seems plausible given the repeated emphasis of the pairwise values as the relative
preferences [2]. This, however, underlines the importance of the elicitation process for ensuring
that respondents express their pairwise relative utilities of the attributes. Secondly, in such an
analysis, the responses are not limited to the integer interval 1, 2, 3,...,9, as suggested [1], for
respondents’ convenience rather than any theoretical necessities.

ADDITIVE, NON-LINEAR, MULTI-ATTRIBUTE UTILITY FUNCTIONS

In this section, we explore the same question of the consistency of the AHP with the utility
maximization criterion when the utility function has the additive, non-linear, multi-attribute form.

This time assume that the decision maker takes into account m attributes of alternatives to reach
a selection decision. That is, the decision maker’s underlying utility function is multi-attribute, i.e.
x in decision rule (1) is a vector with m elements. Furthermore, assume that the form of the utility
function is non-linear, but additive, as

U = S a-Ux), >0, (4)

i=1

where U(x;) is the utility of attribute i of alternative x, and g; is the weight related to attribute i.
U; may possess any non-linear form (of which the linear form is a special case). The following
lemma and theorem establish the aggregation rules for inter-attribute scores that lead to the same
selection as decision rule (1).

Lemma 1

If W(i,j) = a;/a; and ¥(i)) = > P(ij), then W¥(i) is a linear transformation of a;.
j=1
Proof. We have

m m

¥ = 5 W)= 3 aja;=a S 1a, = Kas

i=1 =1 i=1

Since K is fixed and positive for any given set S, the lemma holds.
Now, consider the following decision rule:

{a:D(a) = max [®(x):x e S, B(x)e M]}, 5
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where

M= {(I)(x ): D(x) = Z ¥(i) Dx,) }
and

Dx) = Z LUAx)/ ULy Z Oy,
Yi Yi
and (i) has the same definition as in Lemma 1.

Theorem 2

Given equation (4) as the utility function, decision rules (1) and (5) select the same alternative iff
the utilities of each attribute sum to a fixed value.
Proof. From Theorem 1 and the fixed value for utility sums, we have

D(x;) = C-Ufxy, C>0,
and from Lemma 1,
Y(i) = Ka;, K > 0.

Hence, ®(x) is a linear transformation of U(x) and decision rules (1) and (5) select the same
alternative. This establishes the sufficiency of fixed value for C.

To show the necessity of equal C (and thus its inverse 1/C) for all utilities of attributes, let us
consider the following counterexample with m = 2, i.e. a two-attribute utility function. Assume that
the application of decision rule (5) to alternative x has led to

O(x) = V()0 (x,) + Y (2)Dy(xy).
From Theorem 1 and Lemma 1, we have
O(x) = Ka,C,U (x;) + Ka,C,U,(x,),

where 1/C, and 1/C, are the sums of utilities of attributes 1 and 2 of alternatives in the selection
set S. Let C,/C, = f > 1. If decision rule (1) selects the alternative a, decision rule (5) will select
over a any alternative which has the same U (x,) and above [(1//)Y(U,(x,)] utility for x,, hence the
contradiction. Q.E.D.

Let us demonstrate the restriction implied by Theorem 2 with an example. Consider the selection
of one of three cars with two attributes: price and gas mileage. Assume the following underlying
utility function:

U(p,8) = a,Uy(x;) + a,U,(x;) = 5(1000000/p?) + 4(g°). (6)

The three cars have prices equal to $7000, $8000 and $10,000, and gas mileage of 24, 28 and 34,
respectively. Using function (6) results in U(car ) = 19.7, U(car,) = 21.24 and U(car,) = 23.37,
which, based on decision rule (1), recommends the selection of the third car.

The AHP solution of the same problem requires one matrix of pairwise comparisons per attribute.
To attain the entries of the two input matrices, one only needs to observe from function (6) that
U,(xy) = 1/49, U,(x,) = 1/64, U (x3) = 1/100, U,(x,) = 24°3, U,(x,) = 28%% and U,(x;) = 34°.
Based on the assumption that the AHP elicits relative utilities of each attribute of every pair of
alternatives, and abstracting from any inconsistencies in the responses, one can construct the two
matrices of pairwise comparisons as follows:
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Price Gas mileage
131 2.04\ (1 0.92 0.84\
(0.76 1156 108 1 091).
049 064 1 118 109 1

Using any of the AHP computational methods results in the following relative local weights for
the three cars:

®, = {0.44,0.34,022} and @, = {0.31,0.33,0.36}.

Construction of the input of pairwise weights for the attributes requires an additional assumption
regularly made in the literature [e.g. 4] that the higher level of the hierarchy recovers the relative
weights of the attributes a;s in equation (4). In other words, combining (via multiplication) the local
weights of attributes {at the higher level of the hierarchy) with the local relative weights of

altarnativac ta arrive at tho alahal waichte 1n the AHD simnlicitly acqumeag that thae lacal ralative
QAIVLHIALLYVO LV 4dAliivYyy al Lo EIUUGI “Ulslllb 411 LG /211X llll}lll\-lll] ADOURIIVY LliAdl iy 1vval 1vidiuayye

weights of attributes estimate a; in equation (4). We too use this assumption in the following
presentation. This allows us to note later the extreme importance of this assumption in the
compatibility of the AHP with the additive utility functions.

The input matrix of the weights of attributes could be similarly constructed from utility function
(6), due to the fact that a, = 5 and a, = 4, as:

p g
B, = ( 1 54 ), with the relative weights ¥ = {0.56,0.44}
\4/5 1
' 4/3 1
Aogorecating the local weights leads to the following global weights:
\ggregaling the local weights leacds to the following global weights:

2
l = {0.38,0.34,0.28},

b ¥4
30/

®(x) = [0.56,0.44] (

—
=)
[9%]
(9%

=)
»
b N
=
L
=
<o O
&

~
D

CD

which recommends the selection of the first car. which differs from the choice of the third car

recommended by decision rule (1). This incompatibility is the consequence of lacking the necess1ty
condition of Theorem 2: the necessity of having an underlying utility function in which the utilities
of each attribute sum to a fixed value 1/C. In the present methods of AHP, this fixed value is 1.
One may resolve the above incompatibility in one of the following two ways. The first is to
assume thai the underlying utility function is such that the utilities of each atiribuie sum to 1. The
second approach consists of changing the interpretation of the relative weights of attributes.
(1) To show the first approach, let us change the form of the underlying utility function in the

previous example such that the utilities of each attribute sum to 1, as follows:

U(p,g) = 5(1/0.046)1 000 000/p2) + 4(1/16.02)g°5, %)

where 0.046 and 16.02 are, respectively, the sum of price and gas mileage utilities of the three cars.
Using function (7) in decision rule (1), we get U(car,) = 3.44, U(car;) = 3.02 and Ufcar,) = 2.54,
which recommends the selection of the first car. Taking (1 /0 046) and (1/16.02) as the normalization

factare of I7. and I7T tha AHD caluitian nging fiimotion ramining tha cama oo that ~f firentinnm
1aCI01s O1 Uy ana U,, ul® Anr SCi1ulion usiing function \/} remains the same as that of function

(6), i.e. the choice of the third car. Hence, the two decision rules (1) and (5) coincide in solution. In
this way, the AHP assumes that the underlying utility function, if additive, depends on the
alternatives under consideration. In other words, if another alternative is added to the set S, the
coeflicients of the underlying utility function change. Although this may indeed be the case in some
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decision problems, such an assumption would be in contrast with the popular view of the utility
function as a choice-independent function.

(2) The second way to resolve the incompatibility depends on the interpretation of the relative
weights of attributes. In Theorem 2, we interpreted the relative weights of attributes as the ratios
of the coefficients a;s in the utility function. An alternative interpretation is to consider the pairwise
comparison of weights as the ratios of collective utilities attained from one attribute against another.
In the three-car example, the pairwise comparison of price and gas mileage attributes not only
depends on the relative importance of one attribute against another, but also on the sum of the
utilities of price attributes against that of the gas mileage of the three cars.

Let us show this point with the three-car example. When the price and gas mileage attributes
are compared at the higher level of the hierarchy, one should ask the relative utility of the price
and gas mileage of all three cars taken together. In such a case, the respondent would not just be
comparing a, = 5 vs a, = 4, but (0.046a,) = 0.23 vs (16.02a,) = 64.08, where 0.046 and 16.02 are,
as before, the sum of the price and gas mileage utilities of three cars. In such a case, the pairwise
comparison of attributes would be

( 1 0.004\
B, = and W(p,g) = {0.004,0.996}.
\2786 1 / ) ’

Using the above local weights for attributes and the set of local weights of the alternatives arrived
at before results in the global relative weights 0.31, 0.33 and 0.36, leading to the selection of the
third car, a choice consistent with the utility maximization criterion of utility function (6).

In summary, when the underlying utility function has an additive form, to reconcile the AHP
with the utility maximization criterion, one must assume that the utilities of each attribute sum to
1, and hence, posit an underlying utility function dependent on the selection set S. Or, alternatively,
one must interpret the relative weights of attributes such that the local relative weights of attributes
account for the total utilities of aiternatives, as well.

Both of the above two methods of reconciliation seem less than perfect. The present framework

of inveqticatinon however nermits uc ta exnlare a clichtly different elicitation strateov to reconcile
Ul HIVUSUIgatiUll, HUOWUOVYLL, PULiiiies us U CAPIULC 4 siighiuy GLICIVIOL Clivitd Uil stiaivgy 1o itionvue

the two approaches more fully. Such a line of investigation, however, will take us beyond the focus
of this paper, and may be found in Ref. [5].

In this section, we explore cases where the underlying utility functions have non-additive forms
Let us start with the pure multiplicative form of the utility function:
m
U(x) = H aiU,-(X,-), a,' > 0 and U,-(Xi) > 0, fOI‘ i = 1, 2, Y /(8 (8)

i=1

Since in this utility function, the product of the g;s is independent of the utilities, we can rewrite it
as

I
=

= Ff[ Udx), F 9)

W
—-

It can be immediately observed that the aggregation of inter-attribute scores (to arrive at the global
relative weights) by taking the weighted averages does not lead to a selection compatible with
function (9). However, one can define the inter-attribute aggregation according decision rule:

{a:D(a) = max [D(x):xe S, D(x)e M]}, (10)
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where

M= { O(x): D(x) Fm] d).-(xi)}

-y

~
=3
j=

Di(x) = Z Uix)/Udy), for i=12,....m

The fn]lnwmo lemma

shows that if decision rule (10} is used in the aggrega. 1 ttribute sc
(or local relatlve weights) of alternatives, the resultant solutlo equals the se

decision rule (1).

I't
UIVCU LllC uuul_y 1uuuuuu(

that of decision rule (10).
Proof. From Theorem 1, we have

Dx;) = A Ufxy), A; > 0.

Incorporating the above in decision rule (10), we get
®(x) = H AUi(x)=D H Ui(xy),
{ i=1

where D = [] A4;, which is positive and fixed for any given set of S. Hence, ®(x) is a linear
i=1
transformation of U(x). Decision rules (1} and (10), thus, lead to the same selection decision.

ann that in the case nf fhp underlving nh]lhl function unfh a pure mnlhnhpafuzp form such ag
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function (9), one does not need to find the relative weights of attributes. Scoring the alternatives
based on their attributes will suffice.

Let us examine the approach suggested by Lemma 2 with an example. Assume the three-car
example of the previous section has the following utility function:

U(x) = a,U,(x,) a,U,(x;) = 5(1000000/p*) 4(g°). (11)

Using the same price and gas mileage values (37000, $8000, $10,000; and 24, 28, 34, respectively)
in function (11) yields the following utility values: Uf(car,) = 2.0, U(car,) = 1.65 and U(car,) = 1.17.
Thus, decision rule (1) selects the first car. Multiplying the scores: ®, = {0.44, 0.34, 0.22} and
®, = {0.31, 0.33, 0.36}, obtained by applying the AHP computational method in the previous
example, according to decision rule (10), we get: ®(car,) = 0.44(0.31) = 0.14, ®(car,)
= 0.34(0.33) = 0.11 and ®(car;) = 0.22(0.36) = 0.08, which leads to the selection of the same car

mmandad hy dacician »is la 41 M tha frat aar (MNnma mmav 3F e inclinad mAarmalizcas tha dho f

recomimenaea Uy uluidivil 1uiv ll} i.c. lllb HisL vail. \Ullb llla_)‘, i1 SO lllbllllbu, noullialisLe lllC Wy Ul
the cars to add up to 1.) Thus, when the underlying utility function is in a pure multiplicative form,
the AHP method and the inter-attribute aggregation in the form of the multiplication of scores
results, without any condition, in the selection of the same alternative as that of the utility
maximization criterion. This is an interesting result because no utility estimation method can claim
the same unconditional recovery capability. (The von Neumann—Morgenstern utility function, for

example, constrains the utility of each attribute to the interval [0, 1], in addition to a number of
other constraints for the mnlhnlmahwa form [6,p p.3411)

Another form of the multlphcatlve form for the utility function is

U =e', y= f] Ux). (12)

i=1



394 F. ZAHEDI

Define the following decision rule:
{a: U(a) = max {®(x),x e S, D(x)e M}, (13)

where

= {(I)(x), O(x) = e,z = ﬁ Oilx;), Di(x;) = Z U.‘(xi)/Ui(yl')}

i=1

It can be shown, with a similar reasoning to that in the proof of Lemma 2, that decision rules (1)
and (13) select the same alternative.

Again, let us demonstrate the decision rule by continuing with the three-car example, and the
following underlying utility function:

L5(1000000/p2)a(g0-5)
( )4(g-3)

Usine the same nrice an

sing the sam e price ar as
of the three cars: Ulcar,) = 73 U(car y=152
best choice. The application of de01s1on rule (13), using the AHP computed local weights of
®, = {044, 034, 022} and @, = {0.31, 033, 036}, results in ®(car,) = e®**®3 = 115
®(car,) = e%340-33 = 112 and ®(car;) = %2238 = 1,08, which recommends the selection of the
first car, the same as that of the utility maximization criterion.

In decision rule (13), one may observe that the intra-attribute scoring (local relative weights) are
based on the AHP, and the inter-attribute aggregation (arriving at the global relative weights) is
based on the form of the underlying utility function. The unconditional correspondence of the two
decision rules is quite striking, and underlines an aspect of the AHP which has scarcely been
explored—aggregating the local relative weights based on an underlying utility function assumption.

Let us now examine other forms of non-additive utility functions. One such function is

1d ea
ga

wn
5‘
o]
Q
¢
<
=

(53

w

Ux) = Y, aUi(x) + G+ Upei(xi, ), for some i, k, < m. (15)

j=1

In such a case, one can define x,, ., as the attribute representing the interaction of x; and x,, or
Xm+1 = (x;, x,). Then, the results obtained in the previous section remain true for function (15), as
well.

Another form of non-additivity is the case where some attributes have the additive form of
equation (4) and some the multiplicative form of function (8). It can be shown [5] that even when

tha 1 11 Af A 1 .
the two aggregation rules of decision rules (5) and (10) are combined to accommodate such an

extreme case of non-additivity, the conclusions arrived at in the additive utility function case in
the previous section hold true for it, as well.

CONCLUDING REMARKS

This paper presents a framework for synthesizing the AHP and utility theory. It shows that the
AHP maximizes the underlying utility function in the single attribute case. In multi-attribute cases,
the AHP is unconditionally consistent with the utility maximization criterion where the undertying
utility function has pure muitiplicative forms. In the additive or mulitiplicative-additive cases, either
an additional assumption about the underlying utility function or the careful interpretation of the
relative weights of attributes would reconcile the AHP with the utility maximization criterion.

This analysxs highlights the importance of aggregation methods used in combining local relative
weights to arrive at global relative weights. It provides alternative aggregation methods which
depend on the underlying utility function; the framework of this analysis opens up the possibility
of exploring various aggregation processes which are in line with the functional form of the
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respondent’s utility, hence synthesizing the AHP and utility theory to provide additional tools for
solving selection problems.
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