COMMUNICATION

A 1-TOUGH NONHAMILTONFAN MAXIMAL PLAAA靸 GRAPH

Takao NISHIZEKI
Deparment of Electrical Com nmications. Faculty of Engineering. Tohoku Unicersity. Sendan. Japan 980

Commumicated by V. Chvatal Recened 23 January 1980

Abstract

We constuct a maxima planar greph which is :-tough but nowhomitonian. The graph is an answer io Chatal's quesion on the existence of suth a graph

1. Introduction

In this note we consider or y finite undirected graph without loops or multiple ddges. Our terminology and hotation will be standard except as indicated. For a graph $G=(V, E)$ we denote by $k(G)$ the number σ_{1} connectei compunents of Q. A graph $G=(V, E)$ is $1-$ tough if $k(G-S) \leqslant|S|$ for every nonempty property subset S of the vertex set V. Clearly 1 -toughness is a necessary condition for a graph to be namiltonian [1]. Since the graph shewn in Fig. 1 is 1 -tough but nonhamiltonian, the 1 -toughness is not a sufficient condition in general.

The question when a maximal planar graph is hamiltonian is of considerable interest. However no nontrivial necessary and sufficient condition for a maximal planar graph to be hamiltonian is known. When V. Chvátal visited our Department 1979. he raised the following question: is the 1 -toughness a sufficient condition for a maximal planar graph to be hamiltonian? We give an answer to the question by constructing a 1 -tough nonhamiltonian maximal planar gaph.

2. Construction

First we give an easy lemma.
Lemma. Let $G=(V, E)$ and $S \subset V$. If $G-v$ is 1 -tough for a vertex $v \in V$. and if $k(G-S)>|S|$, then v does not belong to S but all of its neighbours do.

Proof. Immediate.

Fig. 1. A 1-tough nonhariltonian planar graph.
We can eonstruct a 1-tough no hamitonian maximal planar graph as follows.

Theorem. Form a maximal plan or graph (i as follows: begin with K_{+}, the complete graph with four vertices. and in sach inner triangular face of K_{1} place the graph C: of Fig. 2 so that K_{4} and G_{1} hate precisely the triangle in common. (See Fig. 3.) Then G is 1-tough but nonhamiltonian.

Proof. First we show that G is 1-tough. Let T denote the set of verticen of degree three in G. then T has the properties that
(i) for every c in T, the graph $G-v$ is hamiltonian, so $G-v$ is 1 -tough, and (ii) every vertex not in T has a neighbour in T.

Fin. 2. A mamal plamar graph G_{1}.

Fig. 3 A - -tough mohamiltonian maximal planar graph C.

Fig. 4. A maximal planar graph.
These pruperties together with the above Lemma skow that the only S that can possibly satisfy $k(G-S)>|S|$ is the complement of T. However this set S h... $k(G-S)=|S|=9$.

Next we show that G is nonhamiltonian. Denote the set of vertices inside the triangle $x_{i} x_{i} x_{k}$ by $S_{i j}$. and suppose that G has a hamiltomian cycle C. One of the three set $S_{i j}$ contams neither of the two vertices that are neighbours of x_{4} in C. This set $S_{i 1}$ contains thee vertices u, v, w of degree three such that u and v are neighbours of x_{4}. Since neither u nor v is adjacent to x_{4} in C. the portion of C passing through u and v has the form . .., $a, u, b, v, x_{i}, \ldots$ such that a, b and x_{1} are the only ne ighbours of w in G. Now w cannot be adjacent to b in C and it can be adjacent to at most one of a, x, in C. Hence w cannot tave two neighbours in C. a contradiction.

We can similarly construct infinitely many maximal planar graphs which are 1-tough but nonhamiltonian as follows: place the graph in $\mathrm{Fi}_{\mathrm{g}} .4$. instead of G_{1}. in the interior of one of three inner faces of K_{4}. and place G_{1} in each interior of other inner faces. The proof is left to the reader.

Acknowledgement

We would like to thanh Professor V, Chvatal for his valuabic suggestions. This work was supported by the Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan under Grant: Cooperative Research (A) 435013 (1979) and 475235 (1979.

Reference

[1] V. Chvátal. Tough graph and Hamiltonian circuits, Discreie Math. 5(1973) 215-928.

