were studies for number, arrangement, measurements and morphological features by light microscope. Differentiation between hooklets developed in liver, lung and spleen hydatid cysts from camels, and hepatic and pulmonary cysts was also considered. Measurements were done by the calibrated eyepiece. Differences in protoscolices and their hooklets measurements in different hosts and different organs including length and width of protoscolices and total, blade, handle lengths and width of hooklets as were statistically analyzed to illustrate their significance. Results obtained indicate the presence of different 'Strains' pf E. granulosus in Libya regarding the host or the site on infection of these hosts. In addition to the large and small rings of rostellar hooklets, very small and even tiny hooklets were illustrated, which may be indicative of specific strains of the parasite.

doi:10.1016/j.ijid.2008.05.320

18.013

Avian Influenza (H5N1) Outbreak in Suffolk - The Rapid Setup of a Database

C. Lim 1, T. Sundkvist 1, P. Nair 2,*, S. Godward 3, A. Pereira 4, G. Brown 1, S. Bracebridge 5

1 Norfolk, Suffolk & Cambridgeshire Health Protection Unit, Suffolk Office, Suffolk, United Kingdom
2 Norfolk, Suffolk, Cambridgeshire health Protection Unit, Norfolk, United Kingdom
3 Norfolk, Suffolk & Cambridgeshire Health Protection Unit, Cambridge Office, Cambridge, United Kingdom
4 Great Yarmouth & Waveney Primary Care Trust, Great Yarmouth, United Kingdom
5 East of England Regional Epidemiological Unit, Health Protection Agency, Cambridge, United Kingdom

Aim: To describe lessons identified from the rapid setup of a dataset of at-risk people requiring prophylaxis and seasonal influenza vaccination during an outbreak of highly pathogenic H5N1 Avian Influenza in a poultry farm in Suffolk.

Methods: Administrative and clinical data were collected in paper form at the clinic dispensing prophylaxis to exposed people. Fields on the form provided headings for an Excel spreadsheet. Data was entered by several staff onto their uniquely-named copies, appended to create the main dataset. The principal spreadsheet was used to create other spreadsheets for identifying at-risk people requiring further prophylaxis and to collect data on seasonal influenza vaccination, nationality and employer. Microsoft Access was used to link spreadsheets but the primary spreadsheet remained in Excel and was used to monitor uptake of prophylaxis and vaccination, notifying at-risk people of clinics, providing GPs and Health Protection units with lists of people receiving prophylaxis, and identifying who to telephone for further treatment.

Results: The main dataset contained 46 fields and 482 records.

- Data entry suggested some revisions needed to be made to the paper form, e.g. exact time prophylaxis was given and clarity regarding pre and post-exposure status.
- Spreadsheets were quick to develop and easy to use but multiple spreadsheets
- Complicated file management.
- Data entry should begin earlier, e.g. at the clinic providing prophylaxis.
- Correcting inconsistencies in postcodes and GP practices was time-consuming and details should be entered as accurately as possible at the clinic.
- Data analyses needed to be timely to meet requests for information during the outbreak, e.g. nationalities of at-risk people.

Conclusion: A rapid database setup following a major incident is crucial for the management and follow-up of at-risk people. Our experience provided valuable learning points and will help us prepare for future possible Avian Influenza outbreaks.

doi:10.1016/j.ijid.2008.05.321

18.014

Comparison of RB51 & S19 Vaccines in Control and Prevention of Brucellosis in Dairy Farms of Tehran Province (Iran), During 1997—2007

O.A. Nekouie Jahromi 1,∗, H. Ekhtiarzade 2, A.R. Bahonar 1, M. Rabbani 3

1 Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran (Islamic Republic of)
2 Tehran Veterinary Organization, Tehran, Iran (Islamic Republic of)
3 Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran (Islamic Republic of)

Keywords: Brucellosis; RB51; S19; Surveillance

Brucellosis is one of the most important zoonotic infections, with obvious economical and public health importance. In spite of passing a long time from the beginning of control and prevention program in Iran, there are many implicated problems about that (especially in the field of vaccination, as one of the best and practical means of the control programs). RB51 new vaccine has notable characteristics. For example, since the lack of O-antigen, doesn’t induce disturbing antibodies in routine diagnostic tests of Veterinary Organization. RB51 has used since 2003 in Iran and has completely replaced the classical S19 vaccine since 2007. With special attention to this subject and lack of the potent surveillance system for bovine Brucellosis in Iran, performing of this statistical investigation seems to be necessary.

All data about Brucellosis control program (1997—2007) in Tehran province farms were obtained by referring to the Tehran Veterinary Organization and after summarizing, were organized in the related charts and diagrams and analyzed by SPSS.15.

Clearly, with increasing the use of new vaccine since 2003, occurrence of the disease has decreased (occurrence: 0.368% in 2003 & 0.082% in 2007 with −0.2 Pearson C.C.) also, it was seen that use of S19 increased the number of suspected cases of bovine Brucellosis (with +0.416 Pearson C.C.). These findings emphasize the high potency of RB51 vaccine in the control and preventing program of bovine