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In the theory of combinatorial generating ftmctions one can use the differen- 
tial calculus without limits, and almost without limit. 

1. INTRODUCTION 

In my enumerative work I commonly use formal power series as 
generating functions. On occasion I am asked ‘“But how do you know these 
series are convergent?” I reply “That does not matter; I am not trying 
to sum these series, only to determine the coefficients in some of them.” 
But this answer is not always accepted as satisfactory. There is a wide- 
spread belief that nothing can be done with power series unless they are 
Taylor-made to fit analytic functions. 

That belief is wrong. A rigorous theory of formal power series can be 
constructed, but accounts of it have not been too easy to find in the 
literature. Recently however there has appeared an expository article 
by Niven [4]. There is also some discussion of the problem in a still more 
recent paper by Gould [3]. The latter paper includes the somewhat 
unfortunate remark, not in tune with the rest of the exposition, that ccour 
viewpoint can be either rigorous or formal”. In a sense the whole of the 
present paper is a protest against the false opposition that this remark 
implies. When I[ knowingly use a non-rigorous argument I always describe 
it as informal. No, our viewpoint can be either analytic or formal, but in 
either case it ought to be rigorous. 

The subject under discussion is not really more “forma19 than other 
branches of mathematics. I[ prefer to think of it as elementary calculus, 
as distinct from the more complicated kind that involves the discussion of 
limiting processes. 

In the following sections I present my own idea of a rigorous theory of 
formal power series, or elementary calculus. It is not meant to rival or 
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supersede other accounts, but onlyto emphasize their message. Iconstructed 
it with the limited object of justifying to myself my own work with 
generating functions. No doubt much valuable material is omitted merely 
because I have not yet had occasion to use it. I have however often had 
occasion to use the Lagrange Formula, and sometimes I have needed the 
extension of it presented by Good in [2]. I therefore offer purely combina- 
torial proofs of the combinatorial parts of these theorems. 

The guiding principle in this work is that under no circumstances is 
there to be any attempt to sum an infinite sequence of numbers (“elements 
of J” in the text). An infinite sum of power series is permissible only if it 
reduces to a finite sum for each individual coefficient. 

2. DEFINITIONS 

We start with a finite set X of undefined elements called variables. We 
also suppose given a commutative ring J having a unit element. Commonly 
Jis the ring of integers, but the fields of rational, real and complex numbers 
are also in use. We refer to J as the coeficient-ring. 

A term is a mapping T of X into the set of nonnegative integers. We 
refer to the integer T(x) as the degree in T of the variable X. The sum of 
the degrees in T of the members of X is the degree dT of T. In particular 
we note the constant term, which has zero degree in every variable. Thus 
the degree of the constant term is zero. Let us denote the set of all terms 
by U. 

The carrier of a term T is the set of all variables having positive degree 
in T. We say that T is dependent on the variables of its carrier, and inde- 
pendent of the other variables. Two terms are independent of one another 
if they have disjoint carriers. A term T is said to be on a subset W of X if 
its carrier is contained in W. 

A power series (with respect to X and J) is a mapping P of U into J. 
The number P(T) is the coejkient of the term Tin P. The coefficient of the 
constant term is the initial of P. If P(T) is nonzero we say that T is active 
in P. Let us denote the set of all power series, with respect to X and J, by V. 

The zero power series is the power series in which each coefficient is 
zero, i.e., no term is active. A power series in which at most the constant 
term is active is a constant power series. It is then the unit power series if 
the coefficient of the constant term is 1. A power series with only a finite 
number of active terms is a polynomial. Its degree is the greatest integer 
that is the degree of some active term, except that the degree of the zero 
polynomial is taken to be zero. A polynomial P is n-homogeneous if all 
terms active in P have the same degree n. The zero polynomial is taken to 
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be n-homogeneous for every nonnegative integer n. By a ~o~~gene~~~ 
polynomial we mean one that is n-homogeneous for some ~o~~~gative 
integer rz. 

The threshold of a nonzero power series P is the least integer that is the 
degree of an active term. The zero power series has no threshold. 

In elementary calculus we often find a symbol used with two distinct, 
though related, meanings. Thus the symbol 5 may represent the integer 
zero, the zero element of J, or the zero power series. The symbol c of a. 
nonzero element of J may be used to denote the constant power series 
with that initial. The symbol x of a variable may be used to denote the term 
in which the degree of x is 1 and the degree of every other variable is 
zero. It may even be used to denote the power series in which the term x 
has coefficient I and every other term is inactive. IHowever the current 
meaning of a symbol is usually clear from the context. 

3. MULTIPLICATION OF TERMS 

Let TX , T, ,.,., T, , where n > 1, be terms. Then there is a uniquely 
determined term T such that 

for each variable x. We call T the product of the n terms Tj , and we write 

T = fi Tj = TIT, ..- Tn. 
j=l 

An empty product of terms is by convention taken to be the constant term. 
It is clear from the above definition that multiplication of terms is 

commutative and associative. We have the following obvious relation 
between degrees. 

d fiTjj = id?-,. 
1 

(3) 
j=l j=l 

The constant term is the unit of the above multiplication, and it is 
therefore often denoted by the symbol 1. If x and y are variables we 
naturally speak of the product of the term x and the term y as ‘“the term 
XY”, or if y = x as “the term x2”. In fact a term T is often denoted by the 
symbol 

xT(z) Y Tel/) . . . t?-(t) 2 (4) 

where (x, y,..*, t> is the carrier of T. 
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A factor of a term T is a term A such that A(x) < T(x) for each 
variable x. Thus a term A is a factor of T if and only if there is a term A* 
such that AA* = T. If such a term A* exists it is uniquely determined, 
and we call it the cofactor of A with respect to T. In particular T itself 
and the constant term are factors of T, each being the cofactor of the other. 

Returning to Eq. (2) we observe that the Tj are factors of T. We refer 
to the sequence (TI , Tz ,..., T,) as a resolution of T into n factors. Such 
a resolution can be found for each positive ~1. For example we can put 
TI = T and Ti = 1 wheenverj > 1. It is important to note the fact, obvi- 
ous from the above definitions, that a term T has only a finite number of 
distinct factors. Hence T has only a finite number of resolutions into y1 
factors, for each positive integer n. 

4. ADDITION OF POWER SERIES 

A collection of power series is a pair (Y, f ), where Y is a finite or 
countably infinite set, andfis a mapping of Y into V. We call Y the index- 
set of the collection. If Y is a finite set we say that (Y, f) is a finite collection. 
In what follows we often denote the power seriesf(y) by PV . We may then 
write the collection as (Y, y + P,). 

Let T be any term. We write K(T; Y, f) for the set of all y E Y such that 
T is active in f(y). We describe the collection (Y, f) as summable if 
K(T, Y,f) is a finite set for each term T. 

4.1. Every Jinite collection is summable. (Trivial). 

4.2. Let (Y, f) be a collection of power series. For each positive integer n 
let there be only a$nite number of elements y of Y such that f (y) is nonzero 
and has threshold less than n. Then (Y, f) is summable. 

Proof. Let T be any term. Write its degree as n - 1. By the definition 
of a threshold there are only a finite number of elements y of Y such that 
T is active in f(y). 

If (Y, f) is summable there is a uniquely determined power series P 
satisfying 

P(T) = 1 P,(T) (5) 
YfK 

for each term T, where K = K(T, Y, f). We call P the sum of the collection 
(Y, f), and we write 

P= Cf(v)= c PY. 
YEY ?JEY 

(6) 
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We note that the summation on the extreme right of (6) specifies both 
the index-set Y and the mapping f, the latter by the rule f(y) = PV S 
When we say that such a summation is we8 defined we mean that the 
corresponding collection is summable. We make the convention that the 
assertion of any formula includes by implication the assertion that all 
summations of power series occurring in it are well defined under the 
prevailing conditions. 

Let us denote the threshold of a nonzero power series P by Th(P). 

4.3. Let (Y, f> be a summable collection, and let P be its sum. TheB 
any term active in P is active in f (y) f or some y E Y. Hence, z~.P is nonzeros, 

Th(P) b Min(Th(P,)> VI 

where the minimum is taken over ally E Y such that f, is nonzero. 

The first part of this proposition follows from the definition of a sum, 
and then the remainder follows from the definition of a threshold. 

If Y is the set of all integers from j to k, or the set of al% integers from j 
upward, we can use the customary notation and write the sum P of (6) as 

respectively. On occasion the first symbol is used with k < j. It is then 
interpreted as the zero power series. The first and second summations 
of (8) are also denoted by 

and 

respectively. 
Our addition of power series is commutative, that is it does not depend 

on any particular order that may be assigned to the elements of Y. 
If P and Q are power series then the sum P + Q is P if and only if Q is 

the zero power series. As is usual for additive systems we write 
P + P = 2P. Similarly P + P + P = 3P, and so on. 

It is often convenient to change the index-set of a collection by making 
use of the following theorem. 

4.4. Let (T, f) be any summable collection of power series. Let W be a 
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set, and let g be a l-l mapping of W onto Y. Then the collection (W, fg) 
is summable, and moreover 

(9) 

Proof. Let T be any term. An element w of W belongs to K(T; W, fg) 
if and only if T is active in fg(w), that is if and only if T is active in f( y) 
where y = g(w). This is so if and only if g(w) belongs to K(T; Y,f). This 
observation establishes the summability of (W,fg). Moreover T has the 
same coefficient in fg(w) as in f(y), these being merely two names of the 
same power series. Hence T has equal coefficients in the two sides of (9). 

In the next investigation W denotes any subset of Y. We write SW for 
the restriction offto W, the mapping of W into V such thatf,(w) = f(w) 
for each w E W. We then have a collection ( W,&), and it is clear that 

KU-; W, fw) = W n K(T; r, f> wo 
for each term T. We deduce the following proposition. 

4.5. If (Y, f) is a summable collection and WC Y, then (W, fw> is a 
summable collection. 

Let us define a decomposition of Y as a finite or countably infinite set I’ 
of subsets of Y, these subsets being disjoint and having Y as their union. 
We say that r is admissible with respect to f if the collection (r, f,> is 
summabIe for each y E r. If r is admissible with respect to f we can define 
a mapping $ of rinto V by the following rule. 

e4 = c f(Y)* 
YW 

(11) 

Then we have a collection (.F, $) of power series. We call it the collection 
induced on r by f. 

4.6. Let (Y, f) be a summable collection, and let I’ be any decompo- 
sition of Y. Then I’ is admissible with respect to$ 

Let (r, r$) be the collection induced on I’ by f. Then (r, $) is summable. 
Moreover 

,c k4 = ;yfw. (12) 

Proof. The admissibility of r is a consequence of 4.5. 
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Let T be any term. Write 4(y) = Q, , j(y) = .PV and K(T; Y,f) = JK 
Let L denote the set of all y E P such that K I? y is ~~~~~~1. The 
K(T; F, 4) _C L, by 4.3. 

Since K is finite it meets only a finite number of members of Pm 
Accordingly T is active in Q,, for only a finite number of members y 
of J’, by 4.3. Hence (P, 4) is summable. Moreover 

by (18) and (11). Since K(T;T, 4) C Lit follows that Thas equal coefficients 
in the two sides of (12). The theorem follows. 

We say that we get from the expression on the left of (12) to that on 
the right by removing brackets, and from the expression on the right to 
that on the left by inserting brackets. The operation of removing brackets 
can be applied to a double sum such as 

the summations involved being well defined. We define Y to be t 
all ordered pairs (r, z) such that r E R and z E Z(F). We write y(r) for the 
set of all pairs (s, z) E Y such that s = r. The sets y(r), r E R, are then the 
member-sets of a decomposition r of Y. We can accordingly apply (22) 
provided that the collection (Y, (u, z) -+ P,,,) is summable. 

We can initially reject from R all elements r for which Z(r) is null. We 
then have a l-1 correspondence between R and P, to which we apply 4.4. 
We obtain the following rule. 

4.7. Ifall the summations are well defined, then 

whqe each P,,, is a power series and Y is the set of all ordered pairs (r, z) 
such that r E R apld z E .2(r). 

If Y = (I,& 3), then two applications of 4.6 give 

Thus 4.6 includes the associative law of addition. 
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5. MULTIPLICATION OF POWER SERIES 

Let P1 , PZ ,..., P, be power series, (n 2 1). We define the product 

fi P, = P,P, ..* p, 
j=l 

as the uniquely determined power series P in which the coefficient of an 
arbitrary term T is given by 

where the summation is over all resolutions R = (T, , T, ,,.., T,) of T 
into 72 factors. 

It is clear from this definition that multiplication of power series is 
commutative and associative. 

If PI, Pz ,..., P, are all equal to Q we write their product as Qn. On 
occasion we use the symbol Q”, interpreting it to mean the unit power 
series. 

By the above definition a product PQ of power series is equal to Q if P 
is the unit power series, and to 0 if P is the zero power series. 

5.1. If Pj is an m,-homogeneous polynomial for each j, then P,P,...P, 
is an m-homogeneous polynomial, where 

n 

m = 2 mj. 
j=l 

This follows from (3) and (14). 

5.2. If P = P,P,...P, and P is nonzero, then each of the power series 
Pj is nonzero. Moreover 

Th(P) 3 f Th(P,). (15) 
j=l 

Proof If Pj = 0 then P(T) = 0 for each term T, by (14). Hence each 
Pi must be nonzero. The remainder of the theorem follows from (3) and 
the definition of a threshold. 

5.3. Suppose J to have no divisors of zero. Suppose P = P,P,...P, where 

each of the factors Pj is nonzero. Then P is nonzero. Moreover 

Th(P) = i Th(PJ. 
j=l 
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ProoJ: We enumerate the variables as X, , x2 ,..“, X, D For each power 
series Pj we define the leading term Sj as that term of degree Th(Pj) that is 
active in Pj, has the highest degree in x1 consistent with this condition, 
has the highest degree in x, consistent with these conditions, an 
It is evidently uniquely determined. Write 

Then S has only one resolution (TI , T, ,..,, T,> into n factors such that 
Ti is active in Pj for each suEx j, namely the resolution (S, , Sz ,‘.., S,), 
It follows from (14) that P(S) is the product of the n numbers P&Q, which 
are ail nonzero. 

It follows from the condition imposed on J that S is active in l’, and 
therefore that P is nonzero. But dS is the sum of the thresholds of the 
power series Pj , by (3). The theorem now follows from (15). 

5.4. Let (Y,f), (Y, g) and (Y, h) b e collections of power series with 
the xame index-set Y. Suppose further that h(y) = j(y) g(y) for each 
y E Y. Let (Y, f) be summable. Then (Y, h) is summable. 

Proof. If a term T is active in h(y) then some factor of T is active in 
S(y), by (14). But T has only a finite number of factors and each of these 
is active in f(y) for only a finite number of members y of Y. Hence 
K(T, Y, lz) is finite. 

It can be shown that multiplication is distributive over addition. More 
generally we have the following theorem. 

5.5. Let (Y, f ), where f ( y) = P, , be any summable collection of power 
series. Let Q be aFzy power series. Then 

Proof. The implied assertion that the expression on the left is well 
defined is a consequence of 5.4. 

Let T be any term. Let 2 be the finite set that is the union of the sets 
I&4; Y, Jj, taken for all factors A of T. We shall use the symbol A I T 
to denote that A is a factor of T. 

The coefficient of 2” on the left of (I 6) is 

where A* is the cofactor of A in T, by the definitions of sum and product* 
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Since we are now dealing not with power series but with elements of J 
the above expression can be written also as 

But this is the coefficient of Ton the right of (16). 

5.6. Let (Y, f) and (Z, g) b e summable collections of power series. 
Let B be the set of all orderedpairs (y, z) such that y E Y and z E Z. Let h 
be the mapping of B into V such that h (y, z) = f(y) g(z) for each (y, z) E B. 
Then the collection (B, h) is summable. Moreover 

ProoJ: Let T be any term. If T is active in f(y) g(z) then some factor 
of T is active in f (y) and some factor of T is active in g(z), by (14). Since 
T has only a finite number of factors this can happen for only a finite 
number of members of B. Hence (B, h) is summable. Moreover 

by 4.6 and 4.7, 

It is by applying 5.5 that we obtain such well-known results as 

(P + QY = (P + Q> P + (P + Q) Q = P2 -I- 2PQ + Q2, 
(P + Q)” = (P + Q)“(P + Q> = P3 + 3P2Q + 3PQ2 + Q3, 

for arbitrary power series P and Q. Continuing along these lines we find, 
by way of a familiar induction, that power series satisfy the Binomial 
Theorem for any positive integral index. 

We often encounter symbols of the form kP, where k E J and P E V. 
We then interpret kP as the product of P and the constant power series 
with initial k. By (14) we have 

W’)(T) = W’(T)) (17) 

as a relation between coefficients, valid for each term T. By (17) we have 

($1 P = AW), (18) 



ELEMENTARY CALCUIBS 107 

and it does not matter whether the j and k of this identity are regarded 
as elements of J or as constant power series. 

In Section 4 we encountered the product IS of a power series B by a 
positive integer rz. It is clear from the definitions that this is identical with 
n’F, where II’ is the element of J corresponding to n. By this we mean that 
n’ is the sum of IZ elements of J each equal to the unit element 1. 

If k is the negative of the unit element of J we call kP the iczegutl’ve of 
the power series P and write it also as -P. Evidently this negative of P 
is the unique solution for Q of the equation P + = 0. The dzjference 
P - Q of two power series P and (2, in that order, is by de~~~~o~ 
pi- (-$2). 

If Tis any term we may speak of “the power series T”. This is the power 
series in which T is the only active term, with coefiicient 1. The product 
of the power series T by an element k of Jis the “power series kT”. ere 
T has coefficient k, and no other term is active. Using these conventions 
we can assert the following identity. 

I= = c P(T) . T. 
TEU 

(19) 

P(T) * T means the product of the power series T by the coefficient 
of the term T in the power series P. It is valid for any P, for the 

summation on the right is clearly well defined, and each term T has the 
same coefhcient on each side of the equation. 

If the term T is the product of the terms A and B it follows from (14) 
that the power series T is the product of the power series A and B. 
deduce the identity 

XEX 

Here the symbol on the left denotes the power series T, and T(X) is as 
usual the degree of the variable x in the term T. But xT(“) means the power 
series x raised to the power T(x). Formula (20) remains valid when we 
restrict the product to variables in the carrier of the term T” 

We can obtain some useful formulas by inserting brackets into (19). 
For example we can define A(P, n) as the sum of the collection of the 
power series P(T) . T, taken for all terms T such that dT = n. We note 
that A(P, PX) is an n-homogeneous polynomial. We call it the nth home- 
geneous component of P. We then have 
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by 4.6. We say that Formula (21) resolves the power series P into its 
homogeneous components. 

Let H be any subset of X. Write K = X - H. Each term T has a unique 
expression as a product AB, with A on Hand B on K. Using 4.6 we deduce 
from (19) that 

We define the multiplier M,(P, A) of A in P, with respect to H, by 

M&P, A) = C P(M) - B. 
BOllK 

(22) 

We can now write 

P = c &(P, A) *A. 
AonH 

(23) 

Here the expression under the summation sign is a product of two power 
series, M,(P, A) and A. 

5.1. Let P and Q be power series, and let H be a subset of X. Then, for 
each term A on H, 

ME@% 4 = c MH(p, c> MH(Q, C*), 
CIA 

(24) 

where C* is the cofactor of C in A. 

Proof. Applying 5.6 to (23) we find that 

PQ = c MH(P, C> MH(Q, B) - CB> 

where the sum is over all ordered pairs (C, B) such that C and B are terms 
on H. We now insert brackets, cohecting together all term-products CB 
such that CB = A. We find that 

Since all the terms active in M,(P, C) M,(Q, C*) are on X - H the 
theorem follows. 

Variations on the notation of (19) are often used to express power series, 



ELEMENTARY CALCULUS IfB9 

especially when there is only one variable x. We may for example be 
confronted with the expression 

P = 1 + 2x + 3x2 + 4x3 -+ ‘~.. G3,l 

This is the power series in which the term xn, the 72th power of the term X, 
has coefficient 72 + 1. We may be instructed that such an expression is 
what is meant by a “formal power series,” and that the crosses do not 
denote true addition but are there merely to separate the terms. However 
we can interpret the symbol x in (25) as meaning the power series X, an 
then the crosses indicate genuine addition as we have denned it for power 
series. 

6. SUBSTITUTIONS 

For the purpose of this section we require a second set x’ of variables. 
This gives rise to a new set U’ of terms and a new set V” of power series. 
In special cases x’ may be identical with X, or one of X and X’ may be 
a proper subset of the other. The same coefficient-ring J is used for V 
and V’. 

A substitution from X to x’ is a mapping 6 of X into v’. It is a regular 
substitution if O(x) has zero initial for each x E X. 

If T E U we define B(T) as the power series 

of V’, an empty product being as usual interpreted as the unit power series. 
Now suppose P E V. We have a collection (U, g) of power series, 

where g(T) = P(T) B(T) f or each TE U. We say that 9 is an admissible 
substitution with respect to P if the collection (U, g) is summable. If this 
condition holds we denote the power series 

of v’ by O(P) 

Q = c P(T) e(T; 
TEU 

Since all finite collections are summable we have the following. 

6.1. If % is a substitution.from X to x’, and P is a polynomial in V, thea 
% is admissible with respect to P. 

6.2. Let 6 be any regular substitution from X to x’. Let Tbe a term oj 
U such that B(T) is nonzero. Then the threshold of%(T) is at least equal to 
the degree of T. 
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To prove this we observe that B(X) is a product of dT power series, 
each with threshold at least 1. The theorem follows, by 5.2. 

6.3. Let 0 be any regular substitution from X to x’. Let P be any power 
series of V. Then 0 is admissible with respect to P. 

Proof. If T and T’ are terms of U and u’, respectively, and X’ is active 
in 19(x), then dT’ > dT by 6.2. Hence a given term X’ of U’ can be active 
in P(T) 6(X) for only a finite number of terms X of U. 

6.4. Let P and Q be power series of V. Let 0 be a substitution from X 
to X’ that is admissible with respect to both P and Q. Then 0 is admissible 
with respect to both P + Q and PQ. Moreover B(P + Q) = e(P) + O(Q) 
and O(PQ) = B(P) S(Q). 

Proof. Under the conditions stated a given term T’ of U’ is active 
in P(X) 6(X) or Q(T) O(T) for only finitely many terms T of U. Conse- 
quently it is active in (P(T) + Q(T)) O(T) for only finitely many terms 
T of U. Accordingly 0 is admissible with respect to P + Q. Moreover 

e(p + Q> = c V’(T) + Qcm fw) 
TEU 

= c f’(T) e(T) + c Q(T) ‘WI by 4.7, 
TEU TEU 

= W) + e(Q). 
Using 5.6 we find that 

where the sum is over all ordered pairs (A, B) of elements of U. We now 
use 4.6 to bring together all pairs (A, B) having the same product AB. 
Since it is clear from the definitions that O(B) = B(A) 6(B) for arbitrary 
terms A and B of U we then have 

where A* is the cofactor of A in TS 

= TTu (Coefficient of Tin PQ} B(T). 

Since the last expression is well defined, by 4.6 and 5.6, we deduce that 0 
is admissible with respect to PQ, and that 6(P) 8(Q) = e(PQ). 
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6.5. Let (Y,f), where f(y) = Py , be a s~~~rnab~e collection ofpower 
series of V, and let 6 be any regular substi~t~~~~r~m X to x’. Then 

Proof. We use 6.3 to establish admissibility. 

where K(T) = K(T; Y, f>, 

since P,(T) = 0 when y is not in K(T). 
Consider any term T’ of u’. It is active in 6(T) for onfy a finite number 

of terms T of U, by 6.2. For each such T there are only a finite number of 
elements y of Y such that P,(T) is nonzero. Hence T’ is active in P,(T) 6(T) 
for only a finite number of pairs (y, T). Accordingly it is permissible, 
by 4.6, to remove the brackets in the last double sum, and then to insert 
brackets in a different way. We find that 

We now note some very simple examples of regular snbs~~tnt~o~s. Let 
us describe a substitution 8 from X to X’ as advariant if for each variable 
x of X there is a variable x’ of X’ such that 8(x) is the power series 96’. 

Suppose first that X = X’. There is an advariant substitution 8 such 
that 6(x) is the power series x for each x G X. We call this the identical 
substitution from X to X. By (19), 6.4 and 6.5 we have B(P) = P for each 
BE v. 

A less trivial advariant substitution 0 from X to X is associated with a 
ermutation z- of the set X. We define B(x), x E X, as the power series 

n(x). Two power series P and 0(P) can then be said to be related by a 
permutation of the variables, and a power series P such that P = 8(P) 
can be called symmetrical with respect to the permutation n. 
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Another case arises when X is a subset of x’. There is an advariant 
substitution 8 from X to X’ such that O(x) is the power series x of V’ for 
each x E X. We call 6’ the direct embedding of V into V’. We seldom bring 
ourselves to distinguish between the power series P of V and the power 
series B(P) of v’. They are represented by the same formula (19); the only 
question is whether we are to consider the variables appearing in that 
formula as members of X or as members of the wider set X’. 

Let us say that a substitution 19 from X to X is conservative with respect 
to a variable x if e(x) is the power series x. Thus the identical substitution 
is conservative for every variable. Consider a substitution 6 from X to 
X transforming one variable x into a constant power series k, but 
conservative for every other variable. Applying 6’ is often called “assigning 
the particular value k to x”. It is a hazardous operation when k is nonzero, 
for then 0 is not regular and we cannot use 6.3 to guarantee its admissibility. 
But 0 is admissible with respect to every P E V when k = 0, by 6.2. 

A power series is often called a function of the variables. It may be 
denoted by some such expression as f(xl , x2 ,..., x3, where the xj are the 
variables. Then if 0 is some admissible substitution to the same set of 
variables we may find 0(x,) written as gj(xl , x2 ,..., xn). We may then 
replace each symbol xj in the expression f(xl, x, ,..., xJ by the corre- 
sponding symbol gi(xl , xZ ,..., x3, and regard the resulting expression as 
a representation of B(P). 

P, a power series of V, is said to be dependent on the variable x E X 
if some term active in P has a positive degree in x. Some simplification of 
the above notation can be made by ignoring variables of which the 
function under consideration is independent. For example if our variables 
are x, y, and z, and gz(x, y, z) is independent of y and z, we may agree to 
write that function simply as g%(x). As a concession to rigour we may make 
some mention of the direct embedding from {x} to (x, y, z). 

7. SUBSTITUTIONAL EQUATIONS 

Let X, X’, U, U’, V, V’ be as in Section 6. Let the variables of X be 
enumerated as x1 , x2 ,..., x, . For each xj let there be given zj E X’, 
Pj E V’ and Qj E V. We may ask: is there a substitution 0 from X to X 
such that 

KG = pi + @(Qj> (27) 

for each sufhx j? (1 < j < n). We refer to (27) as a set of substitutional 
equations for the unknown substitution 9. When yz = 1 the substitutional 
equation is usually solved by the Lagrange Formula. When n > 1 we can 
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use the more general Good Formula. We defer the discussion of these 
formulas to a later section. Here we strive only to show that if (27) has a 
solution for 0 then that solution is unique. To qualify as a solution a 
substitution 8 must of course be admissible with respect to each of t 
power series Qj . 

Let us say that two power series P and Q of V are n-eq~iv~~e~t, where a 
is a given positive integer, if P(T) = Q(T) for each term T of U such that 
d;” < IZ. For example we can define the n-truncation P, of P as the power 
series of iv such that P,(T) = P(T) when dT < IZ and P,(T) = 0 when 
CkT 3 n. Evidently .PB is a polynomial whose degree is less than n, and it 
is n-equivalent to P. 

The two following theorems are immediate consequences of the de& 
nitions of sum and product. 

7.1. Let (Y, f) and (Y, g) be two summable collections of power series 
of V, with the same index-set Y. Let n be a positive integer such that f (y) 
and g( y) are n-equivalent for each y E Y. Then the sums 

are n-equivalent. 

7.2. Let PI , P, , Q1 and Q, be power series of V, and let n be a positive 
integer such that PI is n-equivalent to Pz and QI is ~~-equivalent to Q, e 
Then .P,Q, is n-equivalent to P,Q, . 

The latter theorem has the following powerful variation, another 
immediate consequence of the definition of a product. 

7.3. Let PI , P, , Q, and Q, be power series of V, and let n be a positive 
integer such that PI is (n + I)-equivalent to P, and QI is n-equivalent to Q, e 
Suppose further that PI and PZ have zero initials. Then PIQl is (n + I)- 
equivalent to P,Q, . 

7.4. Let 8, and 8, be two solutions for 6’ of the s~bstit~t~o~a~ equations 
(27). Then 8, is identical with 8, . 

BoojY Let us say that 0, and O2 are n-equivalent for a given positive 
integer n if 6,(xj) and B,(xJ are n-equivalent power series of Y’ for each. 
scj E X. We note that 6, and e2 are necessarily l-equivalent, for the constant 
terms of 6$(x,) and 6,(x,) are each equal to the constant term of Pj 3 
by (271. 

Suppose 6, and 19~ are distinct. Then there must be a positive integer N 
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such that O1 and 8, are N-equivalent but not (N + I)-equivalent. We apply 
the foregoing theorems with v’ replacing V. Since O(Qi) is by definition a 
sum of products, each of an element of J and power series of the form 
0(x,) it follows from 7.1 and 7.2 that O,(Qj) and S,(QJ are N-equivalent 
for each j. Hence zj6,(Qi) and zjO,(Qj) are (N + l)-equivalent for each j, 
by 7.3. It follows from (27) and 7.1 that O,(xj) and 0,(x,> are (N + l)- 
equivalent for each j. But this is contrary to the choice of N. We conclude 
that 0, and O2 are the same substitution. 

Presumably the above argument could be developed into an existence 
theorem for 0. But the results of Section 11 will make this unnecessary. 

8. DIFFERENTIATION 

Let X, U and V be as in Section 2. 
Corresponding to each variable x of X we define a d@rential operator 

D, . This is a mapping of V into V. For each P E V we define D,(P) as 
follows. The coefficient of any term Tin D,(P) is the coefficient of the term 
XT in P, multiplied by the integer T(x) + 1. We call D,(P) the derivative 
of P with respect to x. We observe that the coefficients in P of the terms in 
which the degree of x is zero play no part in the definition of the derivative. 
We have indeed the following rule. 

8.1. If P is independent of x, then D,(P) = 0. 

We note two other immediate consequences of the definition. 

8.2. If D,(P) = 0 for each x E X, then P is a constant power series. 

8.3. If P is an n-homogeneous polynomial with n > 1, then D,(P) is an 
(n - l)-homogeneous polynomial. 

8.4. THE SUM RULE. Let (Y, f) be a summable collection of power 
series. Then 

Proof. Let fi be the mapping of Y into V such that fi( y) = D,( f ( y)) 
for each y. A term T can be active in D,( f( y)) only if the term XT is active 
inf(y). Thus 

K(T; YJL) c mT; Y, f>. (28) 

We deduce that the summation on the right of 8.4 is well defined. More- 



ELEMENTARY CALCULUS 115 

over, writing K = K(xT; Y, j), we find that the coefhdent of T on the 
?eft of 8.4 is 

where I’, = f(y). But this can be written as 

and this is equal to the coefficient of Ton the right of 8.4. 
For a power series P multiplied by a positive integer n the Sum 

gives 
D&P) = nD,(P). 4w 

8.5. THE PRODUCT RULE. Let P = P,P,...P, be a product of n power 
series P, * (n > 1). For each integer i satisfying 1 < i < n let us de$ine 
Pp) to be Pf if i # j, and to be D,(Pj) if i = j. Then 

ProoJ Let T be any term. Its coefficient in D,(a) is the coekiicient of 
XT in P, multiplied by the integer T(x) + 1. Let R denote any resolution 
CT1 9 T2 ,*a., T,) of XT into yz factors. Then we can write the coefhcient of 
Tin D,(P) as 

The resolutions R such that T&) # 0 (for a fixed i) are in 1-I corre- 
spondence with the resolutions S = (A’,, S, ,..‘, S,) of T into n factors, 
the rule being that Tj = & if j # i, and Tz = x& . Using 8.1 we deduce 
that the coefticient of Tin D,(P) is 

n 

4 

Coefficient of Tin fi I$’ . 
i=l j==l 1 

But this is the coefficient of T on the right of (30). The theorem follows. 
As a special case of the Product Rule we have 

D&Pm) = nP”-‘D,(P), n 3 I. (311 
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By repeated application of D, to a product PQ of power series we find 
that 

QdPQ) = P&(Q) + D,(P) - Q, (32) 

DaVQ> = PD3cYQ> + 2&V’) - D,(Q) + &W * Q, (33) 

and so on. Continuing in this way and using a familiar induction we arrive 
at the following rule. 

8.6. THE LEIFSNITZ FORMJL,A. If P and Q are power series of V, and n 
is a positive integer, then 

D,“(PQ) = j; (;) Di@‘) * D:-‘(Q). 

Applying (32) to the case in which P is a constant power series with initial 
k we find 

Da&Q) = k&(Q) (34) 

by 8.1. This is consistent with (29). 
Often differential operators with respect to two or more variables occur 

in the same formula. It may then be helpful to bear in mind the following 
rule of commutation. 

5.7. If x and z are variables of X, then 

Q.JW) = UW’) 
for each P E V. 

Proof. We may suppose x and z distinct since otherwise there is 
nothing to prove. But then the coefficient of an arbitrary term T on either 
side of the equation is the coefficient of xzT in P, multiplied by 
v(x) + ww + 1). 

8.8. THE CHAIN RULE. Let P be any power series of V, and let 0 be 
any regular substitution from X to a set x’ of variables. Let t be any member 
of X’. Then 

(35) 

Proof. Let T be any term of U. We apply the I?roduct Rule to the 
product 0(T) (see Section 6). The result can be written as 

W+‘(T)> = c WczAT)) * W(x)), (36) 
3oEX 
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where T on the right is the power series T. Hence 

The new set x’ of variables gives rise to a corresponding set U’ of 
terms and a set V’ of power series. If a term A of U’ is active in 
P(T) &D,(T)) D,(d(x)) then some factor of A is active in @(D,(T)), This 
happens for only a fmite number of terms 7’ of U, by 6.2. We may there- 
fore apply 4.6 to obtain 

by 5.5 and 6.3, 

by 6.5. The application of 8.4 now completes the proof. 
A substitution B from X to a set X’ of variables will be called ~on~~ngu~~~ 

if either it is regular or O(x) is nonzero for each x E X. In all other cases 
8 is singular. 

8.9. Let % be a nonsingular substitution from X TV X’. Let 0 be ~~rniss~b~e 
with respect to a power series P of V. Then 0 is admissible with respect 
to D,(P), for each x f X. 

ProoJ By 6.3 we may suppose 0 to be nonregular. 
Write F = D,(P). Then for any term T of U we have 

F(T) f?(T) 8(x) = (T(x) + 1) P(H) B(xT) by 6.4. cm 

By hypothesis it follows that a term T’ of u’ is active in F(T) B(T) 6(x) 
for only finitely many T E U. 

Enumerate the members of X’ as x1’, x2’,..., xm’* 
Let W’ be the set of all terms T’ of U’ such that T’ is active in 49) 6( 

for infinitely many terms T of U. Assume W’ nonnull. 
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Given any subset U,’ of U’ we can define a unique lowest term of U, 
as the term of U,’ with the least degree in x1’, subject to this condition the 
least degree in x2’, and so on. Let A’ be the lowest term of IV’, and B’ 
the lowest term of the set of terms of U’ active in O(x). The nonsingularity 
of 6 ensures the existence of B’. It is clear that the term A’B’ is active in 
F(T) w? @> f or infinitely many Y7, contrary to our earlier result. 
Accordingly IV’ is null, and 0 is admissible with respect to F. 

9. RECIPROCALS 

Let X, U and V be as in Section 2. The reciprocal P-l of a power series 
P is defined by the property 

P-lP = 1. (38) 

Such a power series P-l may not exist for a given P. It is easy to show for 
example that the power series x, where x is a variable, has no reciprocal. 
But if a reciprocal P-l of P exists it is unique; if Q were another we would 
have Q = Q(PP-I) = (QP) P-l = P-l. If P-l exists, and k is any 
positive integer, then Pk has the reciprocal (P-l)“, which we write also 
as P-“. 

9.1. If x E X then the power series 1 - x has a reciprocal, given by 
the following formula. 

(1 - x)-l = f xj. (3% 
j=O 

We verify this by multiplying the power series on the right by (1 - x). 
The familiar formula 

D,{(l - x)-“> = n(1 - x)-(“+r) (40) 

remains valid. We establish it in the case 12 = 1 by applying the product 
rule to (1 - x)(1 - x)-l, and then we extend to an arbitrary yt by applying 
the product rule to ((1 - x)-l)“. By differentiating both sides of (39) 
we can show that the power series of (25) is (1 - x)-“. 

Theorem 9.1 can be generalized as follows. 

9.2. Let P be a power series of V, with zero initial. Then the power 
series 1 - P has a reciprocal, given by the following formula. 

(1 - P)-1 = f Pi. 
j=O 

(41) 
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We obtain this result by applying the appropriate regular substitution 
to both sides of the identity 

cc 
(l-x)J+j=l. 

j=O 

The operation is justified by 6.4 and 6.5. 
If three power series P, Q, and R of V are related by the formula 

P = QR we may refer to R as the quotient of P by 
If Q is nonzero and J has no divisors of zero ther an be no other su 
quotient, for if also P = QR1 we have Q(R, - R) = 0 and therefore 
RI = R by 5.3. 

If a power series Q has a reciprocal then the qttotient P,i 
each power series P, being equal to PQ-I. But we carmo 
existence of a quotient for arbitrary power series P and Q of V, even when 

restricted to be nonzero. 
J is an integral domain then the power series of V constitute an 

integral domain. We can construct the corresponding quotient Gel 
contemplate the extension of our elementary calculus to the quotients 
of that field. We then indeed discuss quotients P/Q co~espondiug to any 
pairs (P, Q) such that Q is nonzero, but in general these quotients are not 
themselves power series, just as a rational number is not in general an 
integer. 

10. A COMBINATORIAL IDENTITY 

Let X, U, and V be as in Section 2. If W Z X we denote the number of 
members of W by p(W). 

A cyclic operator is a pair L = (W, z=) such that WC X and 7 is a 
permutation of W. We write a(L) for the number of cycles of r. If x is 
a variable we write e(L, x) = 1 or 0 according as x is or is not in FK 

Let (Y,f) be any finite collection of power series of V. Let g be any 
mapping of Y into X. If x E X we write g-“(x) for the set of all y E Y such 
that g(v) = x. Thus the sets g-‘(x), x E X, are disjoint and have Y as 
their union. Some or all of them may be null. We write s for the number of 
members of Y, and s(x) for the number of members of g-‘(x). Thus 

~x4~) = A-. 

For each x E X we now write 

(42) 

If g-‘(x) is null we interpret S(x) as the unit power series. 
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We define the application of the cyclic operator L = (IV, m) to S(x) 
as follows. If x is not in W then 

but if x is in W then 

LS(x) = S(x), 

LSW = ndcdw. 

We say that L conforms to g (L cf g) if g-‘(x) is nonnull whenever x E W. 
If L conforms to g we use the symbol Bg,L to denote the product 

of differential operators. We note that the index s(x) - e(L, x) is never 
negative. Thus if P is a power series of V then D,,,(P) is the power series 
obtained from it by applying s - B(W) differential operators, of which 
exactly s(x) - e(L, x) are identical with D, for each x E X. The order in 
which these operators are applied does not matter, by 8.7. Ifs - p( IV) = 0, 
that is if Ds,L is a null product of differential operators, we take D,,,(P) 
to be P. 

Let h be any power series of V. Then we make the following definition. 

Q(?;f, d = c (-WL) &,L 
LCfS 

(44) 

We proceed to study the power series Q(h;f, g). Sometimes we shall 
have to consider certain minor changes in f and g. Suppose for example 
that y’ is a specified element of Y, and that P’ is a power series of V. We 
can then dehne a mapping f’ of Y into V such that f’(y’) = P’ but 
f’(y) = f(y) whenever y E Y - ( y’>. Keeping Y and g fixed we may then 
construct Q(A; f ‘, g) as above. In order to convey more information by the 
symbolism we may write f’ as cf y’ --+ P’), and Q(A; f’, g) as 
Q@; (L Y’ + P’>, g>. 

We begin by noting two trivial propositions. 

10.1. Ifs = 0 then Q(h;f,g) = A. 

10.2. IfX = 0, or iff (y) = 0 for some y E Y, then 

QGM d = 0. 

In the case of 10.1 it should be noted that L can conform to g only if W 
is the null subset of X. 
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We continue with two linearity theorems, these being 
consequences of 5.5 and 8.4. 

10.3 Let (R, p) be a summable collection of power series of V. Then 

(2 (c Pkhf, s) = z: Q@<rLkh .d. 
3-R TER 

10.4. Let (R, p) be a summable collection ofpower series of V, and let 
F be its sum. Let y’ be a spe$ed member of Y. Then 

10.5. Let f (y’) be a constant power series for some spec$ed y’ E Y. 
Write B’ = Y - (y’>. Let f’ and g’ be the restrictions 5ff and g, respec- 
tively, to Y’. Then 

QGM g> = f (u’> &w,Q<k.f ‘3 ST’>. 

ProoJ We set beside S(x) the corresponding product S’(x), dehned 
in terms of f’ and g’. Thus S(x) = s’(x) if y’ is not in g-‘(x), and 
S(x) = J(y’) s’(x) otherwise. We observe that if a cyclic operator E 
conforms to g’ it conforms also to g. On the other hand if L conforms to g 
it conforms also to g’, unless g( y’) is in W and g-l(g(y’)) has no member 
other than y’. Accordingly we can rewrite (44) as 

Q&s, d = f(Y'> 1 (-lYL' R7,L x . 
LCfQ’ 

t XCX 

by (34)- But if L conforms to g’ we have 

D g,L = D,w&,L . 

The theorem follows. 

10.6. If z E X, then 

RQ(kf, g> = Q(DA;f, d + c C?(k C./C Y’ - 
Y’OY 

We obtain this result by applying D, to each side of (44), using 8.7 and 
the Product Rule. 

Let x be any member of X. We say that a power series P of V is basic 
on x if it can be written as kx, where k E J and the symbol x denotes the 
power series x. We then call k the weight of P. 
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10.7. Let s be nonzero. Let A be constant and let f (y) be basic for each 
y E Y. Let g-‘(x) have at most one member for each x E X. Then 

Q@;f, g> = 0. 

Proof. Let X1 be the set of all x E X such that s(x) = 1. Then if a 
cyclic operator L = (W, r) conforms to g we have FV_C X, . By 10.2 we 
can assume that no f (y) is zero. 

Suppose that either there exists y’ E Y such that f( y’) is basic on some 
x’ E X - X, , or there are two distinct elements y1 and y, of Y such that 
f (vd and f(yJ are basic on the same member x1 of X, . Then by the 
conditions of the theorem there exists z E X, such that no f(y) is basic 
on z. But on the right of (44) the operator D, is applied, either directly 
to some S(x) or to the product hlTLS(x). Hence the theorem holds, by 
8.1. 

In the remaining case there is a uniquely determined permutation CJ 
of X1 such that for each x E X1 the set g-‘(x) has a unique element y(x), 
and f (y(x)) is basic on U(X). Then if L = ( W, Z-) conforms to g and makes 
a nonzero contribution to the right of (44) the cycles of rr must be cycles 
of cr. Apart from the factor (- 1) G) each such operator L makes the same 
contribution H, the product of the weights of the basic power series 
f(y). So by (44) we have 

Q(A;f, g) = i (“t) (-l>jH = 0, 
J&J J 

where h is the number of cycles of cr. 
We go on to derive some successive extensions of 10.7, culminating 

in the general combinatorial identity 10.10. 

10.8. Let s be nonzero. Let h be constant and let f (y) be basic for each 
y E Y. Then 

Q(kf, d = 0. 

ProoJ: If s = 1 the theorem holds, by 10.7. Assume as an inductive 
hypothesis that the theorem is true whenever s is less than some integer 
4 > 1, and consider the case s = 4. 

By 10.7 we may assume that there is a variable x such that s(x) b 2. Let 
y1 and yZ be two distinct elements of g-“(x). We write Y1 = Y - { yl>. 
We define g, to be the restriction of g to Y1 , and we define a mapping fi 
of Y, into Y in the following way: fi( y) = f(y) unless y = y, , but 
h.(uJ = f h>f Cd. Then, by (44), 
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By alternate applications of 10.6 and 10.5 we deduce that Q(h;L g)is 
a sum of power series of the form kQ(p; f ‘, $1, where k E Jc p is constant 
andf’(y) is basic for each relevant y. Moreover each of these expressions 
corresponds to a value of s less than q. 

We deduce that the theorem holds when s -= q. It follows in general 
by indttction. 

QO;.L d = 0. 

ProoJ If possible choose A, Y, f and g so that the theorem fails, so that 
5 has the least value consistent with this condition, and so that the sum n 
of the degrees of the polynomialsf(y), y E Y, has the least value consistent 
with this. 

Let 11, denote the degree of the polynomialf(y). We may assume IZ, 3 i 
for each yI for otherwise the theorem holds by 10.5 and the choice of s. 

If 12, = 1 for each y it follows from 10.4 that Q(h;h g) is a sum of power 
series of the form Q(A;J’, g), where f’(y) is basic for each y. Then the 
theorem holds, by 10.8. 

In the remaining case n > s. Hence Q(h; f, g) is a homogeneous psly- 
nomial of degree at least 1, or is zero, by 5.1 and 8.3. However by 10.2, 
10.6 and the choice of PE we have 

for each 2 E X. Hence Q(A;f, g) is a constant power series, by 8.2. 
deduce that Q(A;f, g) = 0. 

We conclude that the proposed choice of A, Y, f, and g is impossibly. 

10.18. Lets be nonzero and let h be constant. Then 

ProojI A power series can be represented as the sum of its homog- 
enous components (21). Hence, starting with 10.9, we can use 15.4 to 
establish Theorem 10.10 for cases in which successiveely fewer of the power 
series f(y} are restricted to be homogeneous polynomials, Since Y is 
finite the theorem follows. 

Now let M be any subset of Y. Let the restrictions off and g to iM be 
denoted by fnl and g, , respectively, and let the restrictions off and g 
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to Y - M be denoted by FM and GM respectively. Let h and p be power 
series of V. We make the following definition. 

R@, P; f, d = c Q(k .f~, gw> Q&i FM, GM). (45) 
MEY 

For each z E X we have 

by the Sum and Product Rules. We apply 10.6 to evaluate D,Q(X;fM , gM) 
and D,Q(p; FM , GM). We then collect together all expressions involving 
D,( f( y’)) for the same y’ E Y. The result can be written as follows. 

10.11. For each z E X, 

We proceed to state our second major combinatorial identity in this 
section. 

10.12. W P;J; g) = Q(4-G d. 
Proof. We begin with a Lemma that establishes the theorem in one 

special case. 

LEMMA. If all the power series A, ,u, f(y) are homogeneous polynomials, 
then the theorem holcls. 

Proof of the Lemma. We denote the degrees of the polynomials A, 
I*,f (u) by nh , n, , and ny , respectively, and we write 

n = C n, + nA + n, . 
WY 

(47) 

If possible choose, A, p”, Y, f and g so that the theorem fails, s has the 
least value consistent with this condition, and n has the least value 
consistent with these requirements. 

If s = 0 the theorem is true by 10.1. We conclude that in fact s > 0. 
We can deduce from 10.2 that A, p and the f ( y) are nonzero power series. 
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If X is constant then 

by 10.1, 10.10, (45) and (34). We must therefore suppose klA > 0, and 
similarly n, > 0. 

Suppose ‘zU’ = 0 for some y’ E Ye By applying 10.5 to the right of (45), 
and then using (46), we find that 

Nt PL1; f, $9 = f(Y’) R7bvvh, Fe; J ‘3 d>T 

where f ’ and g’ are as for 10.5, 

= f(v’> &,,,QGhf', g'>s 
by the choice of s, 

= Q(hA g>, 

by 10.5. From this contradiction we deduce that in fact PI, 3 1 for each 
y E Y. 

We now have n 3 s + 2. Then R(h, p;f, g) and Q(&u;f, g) are each 
k-homogeneous polynomials, each for some k > 2, by 5.1 and 8.3. 
Moreover these two theorems enable us to deduce from IO.1 I and the 
choice of IZ that 

by 8.7, 10.3 and the Product Rule, 

Since this result holds for each z E X we deduce that R(h, p;S, g) - 
IQ&f; g) is a constant C, by 8.2. But each of R(X, p;J g) and Q(h,u;S, g) 
is a k-homogeneous polynomial for some k > 0. Hence C = 0. 

We conclude that the proposed choice of A, ,LA, Y, f and g is impossible; 
the Lemma is true. 

The rest of the proof of 10.12 resembles that of 10.10. Starting with the 
Lemma we use 10.3 and 10.4, to establish Theorem 10.12 for cases i 
which successively fewer of the power series A, ILL, f(y) are restricted to 
be homogeneous polynomials. Since Y is finite the theorem follows. 
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11. THE GOOD FORMULA 

In this section we take J to be the field of rational numbers, or one of 
its extensions. X, U, and V are as in Section 2. We enumerate the variables 
in X as x1 , x2 ,..., X, , and for each suffix j, from 1 to n, we distinguish a 
power series Fj of V. 

We use the symbols C, C’ and C” to denote n-vectors of nonnegative 
integers. These are to be written in full as (cl , c2 ,..., cm), (cl’, c2’ ,.,., c,‘), 
and (ci, cE ,..., cz), respectively. 

Let h be any power series of V. We define a power series Q(x; C) as 
follows. It is Q@;f, g), where Y and g are such that g-l(+) has exactly c, 
members, and where f(u) = Fj for each y E g-‘(xj), for each suffix j. 
As in Section 10 we have to consider cyclic operators of the form 
L = (IV, v). One of these conforming to g, that is satisfying ci > 0 for 
each xj E W, may equally well be said to conform to C. Analogously we 
replace the symbol D,,, by Dc,L . 

11.1. Let h be constant. Then Q(A; C) = X if C is a zero vector, and 
Q(h; C) = 0 in all other cases (by 10.1 and 10.10). 

11.2. 
Cj! 

Cj’ ! c;! I Q(k C’> Q(p; 0 
I 

= Q2(+; Cl, 

where the summation is over all ordered pairs (C’, C”) such that 
c’+c”=c. 

The latter result is a special case of 10.12. 
With each xj E X let us associate a second variable zj of X. The variables 

zl, z2 ,..., z, need not be all distinct. 
Let H be any power series of V. Consider the formal sum 

where 

E(H) = c x(C) QW; ‘3, (48) 
C 

(49) 

We note that the summation on the right of (48) is well defined; a term T 
of U can be active in x(C) Q(H; C) only if 

(50) 
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and this can happen for only a finite number of vectors C. ence (48) 
does indeed define a power series E(H) of V. 

11.3. rfHis constant, then E(H) = H(by 11.X) 

1 I A. Let (R, p) be a summable collection ~~~~wer series of V. Let its 
ston be H. Then 

E(H) = c E(PP)J. 
‘7-R 

ProoJ: We can write 

by 10.3. But a term T of U can be active in x(G) Q@(r); C) for only a 
finite number of vectors C, and with a fixed @ for only a te number 
of elements r of R. So, by 4.7, 

= c EtptrD 
CER 

11,5. Let H and K be power series of V. Then 

Proof. E(H) E(K) = C x(C’) x(C”) Q(& G’) Q(K, e”), by 5.6, where 
the summation is over all ordered pairs (C’, C”) of n-vectors of non- 
negative integers. By 4.6 we can insert brackets to collect together all 
such pairs with the same sum C. 

= C x(C) QWK; 0, by 11.2, 
c 

= E(HK). 

When H is the power series x, let us write E(H) = & . 
as the substitution from X to X such that 0(x,) = & for each 
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11.6. 6 is a regular substitution. 

This is because the initial of the power series & is that of 

by (48) and 11.1. 

11.7. Let H be any power series of V. Then 

E(H) = e(H). 

Proof. The theorem is true when His the power series xj , (1 < j < n), 
by the definition of 0. Hence by 11.3 and 11.5 it is true for the power 
series T, for each term T of U. Using (19) we find from 11.4 and 11.5 that 
it is true for a general power series. Theorems 6.4 and 6.5 are also needed 
to justify the argument. 

11.8. 

for each su$fix j. 

Proof. 

Here L must conform to C. The symbol Fp corresponds to S(xJ in the 
sense of (43). 

W evaluate separately the contribution to the sum on the right of those 
vectors C for which c1 = 0. For these the order of the symbols x1 and 
D C,L can be reversed, by 8.1 and (32). Equivalently we may say that, for 
each such C, 

Q(xl ; C> = xlQ(l; C>. 

Hence, by 11.1, the contribution of all such vectors C is x1 . 
We can now write 

(-lpcL’ D,,Dc,r. x,L(F,o1+‘) fi L(F,“) 
j=2 

thus arranging that the sum on the right is still taken over all n-vectors C 
of nonnegative integers. 
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We classify the cyclic operators L = (W, r) in two sets N1 and X2 s 
according as xl is or is not in W. In the first case the product D,%D,,, o 
differential operators involves Da1 to the power c, ) in the second case to 
the power c1 + 1. Using the Leibnitz Formula 8.6 and the ~ornrn~ta~v~ 
Law 8.7 we find that (if t = TT(x,)), 

where G’ is obtained from C by increasing the first component cl by 1. 
We note that 

if c1 # 0, by (31). Moreover D,(Fp) = 8 if Go = 0, by 8.1. Hence, using 
11.1, we find that 

= 3; x(C) cad;; ; c> 
= z16(Fl). 

A similar argument applies with X, replaced by any other member xg 
of X. We thus have the required result. 

We now have an explicit formula for a solution 0 of the s~bstit~t~o~a~ 
equations 

0(x$) = xj + zjO(Fj). WI 

e summarize our results so far as follows. 

11.9. There is a unique solution 6 for the sai~stitut~Q~a~ equations (51). 
It is a regular substitution, and its eflect on anypower series Nof Y is given by 
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where 

Q(H, C) = c (-1)“‘L’ Dc,r. 
L I H - fi L(Fjcj) I . (53) 

j=l 1 
As usual L must conform to C. The uniqueness of the solution is a 

consequence of 7.4. 
The next two theorems state some properties of the substitution 0 given 

by (52) and (53). 

11 .lO. Let $ be a nonsingular substitution from X to X that is admissible 
with respect to each Fj , and that is conservative with respect to each zj . 
Then if 4 is admissible with respect to some HE V it is admissible also 
with respect to 6(H). 

ProoJ Since 4 is conservative with respect to each zj we have 
+(zjP) = z&P) by 6.4 w h enever 4 is admissible with respect to the power 
series P. By repetition of this result we have 

for each n-vector C. 
Write 

+(x(c) * p> = x(C) m (54) 

& = x(C) Q(H; 0 

By (53), 6.4, and 8.9 the substitution 4 is admissible with respect to R, . 
We can write also 

Rc = c K,(T)* T 
TEU 

where K,(T) E J, by (19). We observe that x(C) is a factor of the term T 
whenever K,(T) is nonzero. 

Consider the power series K,(T) . (b(T). A term T’ of U can be active 
in it for only a finite number of vectors C. For by the preceding observations 
x(C) must be a factor of each term active in K,(T) * 4(T). But for any 
such C the term T’ is active in K,(T) * $(T) for only a finite number of 
terms T, by the admissibility of 4 with respect to R, . So T’ is active in 
K,(T) . 4(T) for only a finite number of pairs (C, T). 

We can now define a power series P by the rule 

P = c Kc(T) * SW), 

where the well-defined summation is over all ordered pairs (C, T). 
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Let NT denote the set of all n-vectors C such that K,(T) is nonzero. It is 
a finite set, since x(C) must divide T whenever C is in Nr . Then 

This summation being well defined we deduce that r#~ is admissible with 
respect to B(H). Moreover P = #l(H)). 

11.11. Let qb be as in 11.10. Then there is a substitution $ from X to 
X with the following property: if #I is admissible with respect to some H E: V9 
then # is admissible with respect to H, and moreover $(H) = 4(9(H)). 

Proof. We define # as the substitution from X to X such that 

444 = 4cw> 

for each xj E X. To justify this definition we note that 4 is admissible with 
respect to 0(x,), by 6.1 and 11.10. It is also admissible with respect to 8(S), 
where S is any term of U, by 6.1 and 11.10. 

If (b is admissible with respect to H E V, then it is admissible with respect 
to 6(H), by 11.10, and we have 

q!@(H)) = c (Coefficient of Tin 6(H)] * #(T) 
TEU 

= c (Coefficient of T in C H(S) 8(S) 1 + +(T). 
TEU SEU 

There are only finitely many S such that T is active in H(S) B(S). Let them 
constitute a subset U, of U. Then 

d(wl) = c 1 c (C ffi oe TEU sEu cient of T in H(S) S(S)] 4(T) j. 
T 

Now a term T’ of U is active in 

{Coefficient of Tin H(S) 8(S)> &Tj 
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for only a finite number of terms T, and therefore for only a finite number 
of pairs (S, T), by the admissibility of 9 with respect to e(s). Using 4.6 
we lind that 

by 6.4, applied to 8, 4 and 4. Since our summations are well defined we 
conclude that $ is admissible with respect to H, and that $(H) = $(8(H)). 

We can now assert a generalization of 11.9. 

11.12. For each xj E X let there be defined zj E X and Fi E V. Let 4 
be a nonsingular substitution from X to X which is admissible with respect 
to each Fj , and which is conservative with respect to each zj . Then the 
substitutional equations 

&d = 9(xd + z&F,), 1 <j&n, (55) 

have a unique solution for #- If 4 is admissible with respect to some HE V, 
then # is admissible with respect to H, and moreover 

(56) 

Proof. We consider the regular substitution 0 defined by(52). It satisfies 
(51). By 6.4,11.10, and 11.11 we can apply 4 to each side of (51) and obtain 
(55), with # as in 11.11. Thus the # of 11.11 is a solution of the substi- 
tutional equations (55). It is a unique solution by 7.4. To obtain (56) we 
apply 4 to each side of (52), using (54) and 11.11. 

When we are given a set of substitutional equations such as (55) it is 
convenient to classify the variables as conservative or transitional; xj is 
conservative if Fj = 0 and transitional otherwise. We assume that there is 
at least one transitional variable, and we enumerate the transitional 
variables as x1 , x2 ,..., X, . If xj is a conservative variable we have 
#txd = dtxd. Th e nature of zj is then of no importance, but for con- 
venience of exposition we may take it to be identical with one of the 
variables z, , zZ ,..., z, . 

Referring to (52) and (53) we see that if xj is conservative then the 
contribution of an n-vector C to the right of (52) is zero whenever cj is 
nonzero. We can therefore restrict the sum in (52) to efictive n-vectors C, 
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in which cj = 0 whenever j > m. We may as well replace each such 
by the corresponding m-vector S = (cl ) cz :..., c,,). The operator Do,, 
can equally well be written as Ds,L , for D,$ will always have zero index 
in it when j > m. x(S) can be defined by the product on the right of (49) 
with m replacing n. Similarly Q(H; S) can be defined by the sum on the 
right of (53)9 with D,,, written as Ds,L and with m replacing FL The state- 
ment that L = (W, r) conforms to the effective n-vector G means that IV 
consists of transitional variables only. We can express this fact by saying 
that E conforms to the corresponding S. 

Using the new notation we rewrite 11.12 as follows. 

11.13. For each xj E X with j < m let there be dejned zj E X and a 
nonzero Fj E V. Let 4 be a nonsingular substitution from X to X which 
is admissible with respect to each Fj and conservative with respect to each 
zj . (j < m). Then the equations 

K4 = Y%Q> + v7wa> (1 <j < m), (57) 

have a unique solution for the substitution 4, provided that (b and Z/J are 
required to be conservative with respect to each xj such that j > m. If #I 
is admissible with respect to some HE V, then # is admissible with respect 
to H, and moreover 

where 

Q(H; S) = I(- l)acL, D,,, 
L 

(59) 

Here L must conform to S. 
To prove this we extend the definitions trivially by putting Fi = 

and zj = z1 when m <j < n. We have already required $(xJ = xj = $(x3) 
whenj > m, and this can be regarded as extending the list of equations (57) 
to all values of j, It is now only necessary to apply 11.12 to the extended 
equations, and convert to the new notation 

To put the above result into a form resembling Good’s Theorem 12 
we must make the further assumption that each of the variables zj , j < m, 
is conservative. Thus each is some xI, with k > m. It then follsws from 
(8.1) and the Product Rule that 

whenever j < m, k < m and P E V. We are thus free to transfer variables 
zj from one side of a differential operator to the other. 
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Now a term T of U can be active in 

x(S) # (- 1)“‘L’ D,,, H * fi L(F:) 
I I j=l 

only if dT is at least equal to the sum of the components of S. This happens 
for only finitely many vectors S, and for each of these we have to consider 
only hnitely many cyclic operators L. We can therefore remove and reinsert 
brackets in our formula for $(H), given by (58) and (59), in accordance 
with 4.6 and 4.7. In this way we can collect together all expressions in 
which DsPL is the same differential operator. It is convenient to write 

We now write Z = (x1 , x2 ,..., x,,J. Applying 
formation we find that 

W’) 

the proposed trans- 

where 

by 5.5 and 8.4. But B is the determinant of the II x n matrix M for which 
the entry in the ith row andjth column is 

W, j) - zJb,(W. 

Here S(i, j) is 1 or 0 according as i andj are equal or unequal. We can now 
conclude the section with the following result, the Good Formula. 

11.14. Under the conditions of 11.13, and with the further restriction that 
each zj , (j < m), is conservative, we can replace (58) and (59) by the 
following equation. 

(61) 
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12. APPLICATIONS AND SPECIAL CASES 

We continue with the notation of Section 11. In particular J is still to 
be the field of rational numbers or one of its extensions. 

We ought to notice the special case of 11.13 in which Fj is the unit power 
series for each j < m. Then the only cyclic operator L = (JV, rr) that 
can make a nonzero contribution on the right of (59) is the one for which 
T/v is null. Equations (58) and (59) then reduce to 

3LW) = C x(s) cW,( 
S 

This is the Taylor Formula. The requirement that 4 shall be admissible 
with respect to each Fj is trivially satisfied, but the requirement that 
shall be admissible with respect to H is still effective. 

Let us next consider Theorem 11.13 in the special case m = 4. We drop 
the suffix, writing c, x, z and F for c1 , x1 , z1 and Fl , respectively. Then 
if c > 0 we have, by (59) and the Product Rule, 

Q(H; S) = D,e(HF”) - D;-‘(HD,F”) 

= D;-‘(PC . D,(H)). 

We thus arrive at the Lagrange Formula. 

12.1. If m = 1 in 11.13, then (58) and (59) can be replaced by the 
following equation. 

It seems appropriate to give one or two examples here, if only to enable 
the reader to relate the present terminology to his own. However I am 
writing this paper in the belief that the reader is familiar with the use of 
formal power series to obtain combinatorial identities in the form of 
relations between coefficients. Accordingly I have not hitherto given 
examples to illustrate the procedures. I have confined myself to showing 
that the familiar operations can be described, and the familiar theorems 
proved, in purely combinatorial terms. 

Consider however the problem of determining yn , the number of vlth 
powers of a general element x with respect to a nonassociative multi- 
plication. It is discussed for example in [4]. We readily obtain the following 
rule. 

m-1 

yo= 1, ,Co wh = yn when 12 > 0. (641 
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We introduce the power series 

(65) 

in a single variable z. We then observe that (64) is equivalent to the 
assertion that r satisfies the equation 

r = 1 + ZP. 035) 

This can be treated as a substitutional equation, with the help of 11.13 
and its specialization 12.1. We can keep to a single variable, making z 
serve for both z and x in (63). We have F = x2. The substitution 4 is 
defined by 4(x) = 1. It is admissible with respect to F by 6.1. The substi- 
tution # is defined by $(x) = r. By (63) we have 

Thus the coefficients ym are the Catalan numbers. 
In another example, encountered in [l], it is found that there are two 

power series u and 0, satisfying the equations 

u = x/(1 - V)2, 21 = u/(1 - U)2, (67) 

where x and y are in X (see Section 9). The expression 

UV(1 - U - V) 

is then a power series, depending only on x and y, and it is required to 
determine the coefficients in it. 

If we wish to quote 11.14 it is best to introduce two entirely new variables 
x, and x2 , to be the transitional ones. It is always permissible to regard 
the initial set of variables as a subset of a larger one. (See the discussion 
of direct embeddings in Section 6). We now define 4 as the substitution 
that satisfies +(x1) = 4(x2) = 0, and that is conservative for all the other 
variables, including of course x and y. We define # as the substitution that 
satisfies #(x1) = ZJ and #(x2) = 0, and that is conservative with respect 
to all the other variables. We then put 

Fl = l/(1 - x2)“, F, = l/(1 - x1)“. 
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We put also 

w = x1x,(1 - x1 - x,). 

Now C/J is a regular substitution. It is therefore admissible with respect 
to F1, Fz, and H, by 6.3. Our problem becomes that of determining the 
power series II/(H), and we can solve it by applying (61). This is done, with 
minor changes of notation, in [l]. 

Other examples of the application of the Good Formula can be foun 
in [2]. They are combinatorial, even though the formula itself is base 
on analytical argum.ents in that paper. 

We conclude with an observation about coefficients. We have restricted 
J mainly to justify our divisions by q!. But in practice we seem to be 
operating only in the region of integral coefficients. This is clarified by 
the following theorem. 

12.2. Suppose that in 11.13 the coe$icients in the power series 4;; and 
4(x& J’ < m, are all integers. Then the coeficients in the power series 
+(xJ are all integers. 

Proof. The theorem holds for terms of degree 0, for the initial of $(q) 
is the same as that of 4(q) by (55). Suppose it true for all coefficients of 
degree <n. Then the coefficients in $(FJ are integers for all terms of 
degree up to and including n, by the definitions of sum, product and 
substitution. It follows from (55) that the coefficients in the power series 
#(q) are integers for all terms of degree <cn + 1.. The theorem follows 
induction. 

This result suggests that it might be possible to rewrite Sections 11 and 
12 so as to avoid the restriction on J. However I have not yet had occasion 
to apply the Lagrange-Good theory to power series with general 
coefficient-rings. 
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