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a b s t r a c t

Lie–Yamaguti algebras (or generalized Lie triple systems) are binary–ternary algebras
intimately related to reductive homogeneous spaces. The Lie–Yamaguti algebras which are
irreducible as modules over their inner derivation algebras are the algebraic counterparts
of the isotropy irreducible homogeneous spaces.
These systems splits into three disjoint types: adjoint type, non-simple type and generic

type. The systems of the first two types were classified in a previous paper through a
generalized Tits Construction of Lie algebras. In this paper, the Lie–Yamaguti algebras
of generic type are classified by relating them to several other nonassociative algebraic
systems: Lie and Jordan algebras and triple systems, Jordan pairs or Freudenthal triple
systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a reductive decomposition g = h⊕m of a Lie algebra g, so that h is a subalgebra of g,m a subspace, and [h,m] ⊆ m,
there exist natural binary and ternary products defined in m, given by

x · y = πm

(
[x, y]

)
,

[x, y, z] =
[
πh([x, y]), z],

(1.1)

for any x, y, z ∈ m, where πh and πm denote the projections on h andm respectively, relative to the reductive decomposition
g = h⊕ m.
The vector spaces endowed with such binary and ternary products were introduced by Yamaguti in [30] under the name

of general Lie triple systems, andwere later renamed as Lie triple algebras in [18]. Here and in the previous paper [3] we follow
the notation in [19, Definition 5.1], and call these systems Lie–Yamaguti algebras:

Definition 1.1. A Lie–Yamaguti algebra (m, x ·y, [x , y , z ]) (LY-algebra for short) is a vector spacem equipped with a bilinear
operation · : m× m→ m and a trilinear operation [ , , ] : m× m× m→ m such that, for all x, y, z, u, v, w ∈ m:

(LY1) x · x = 0,
(LY2) [x, x, y] = 0,
(LY3)

∑
(x,y,z)

(
[x, y, z] + (x · y) · z

)
= 0,

(LY4)
∑

(x,y,z)[x · y, z, t] = 0,
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(LY5) [x, y, u · v] = [x, y, u] · v + u · [x, y, v],
(LY6) [x, y, [u, v, w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y, w]].

Here
∑

(x,y,z) means the cyclic sum on x, y, z.
The LY-algebras with x ·y = 0 for any x, y are exactly the Lie triple systems, closely related with symmetric spaces, while

the LY-algebras with [x, y, z] = 0 are the Lie algebras. Less known examples can be found in [2] where a detailed analysis
on the algebraic structure of LY-algebras arising from homogeneous spaces which are quotients of the compact Lie group
G2 is given.
For background and motivation on these systems one may consult [3].
Given a Lie–Yamaguti algebra (m, x · y, [x, y, z]) and any two elements x, y ∈ m, the linear map D(x, y) : m → m,

z 7→ D(x, y)(z) = [x, y, z] is, due to (LY5) and (LY6), a derivation of both the binary and ternary products. These derivations
will be called inner derivations. Moreover, let D(m,m) denote the linear span of the inner derivations. Then D(m,m) is closed
under commutation thanks to (LY6). Consider the vector space g(m) = D(m,m)⊕m, and endow itwith the anticommutative
multiplication given, for any x, y, z, t ∈ m, by:

[D(x, y),D(z, t)] = D([x, y, z], t)+ D(z, [x, y, t]),
[D(x, y), z] = D(x, y)(z) = [x, y, z],
[z, t] = D(z, t)+ z · t.

(1.2)

Note that the Lie algebra D(m,m) becomes a subalgebra of g(m).
Then it is straightforward [30] to check that g(m) is a Lie algebra, called the standard enveloping Lie algebra of the Lie–

Yamaguti algebra m. The binary and ternary products in m coincide with those given by (1.1), where h = D(m,m).
Given a Lie algebra g and a subalgebra h, the pair (g, h) will be said to be a reductive pair (see [27]) if there is a

complementary subspacem of hwith [h,m] ⊆ m. The decomposition g = h⊕mwill then be called a reductive decomposition
of the Lie algebra g and symmetric decomposition if the additional condition [m,m] ⊆ h holds. In the latter case, we shall
refer to the pair (g, h) as a symmetric pair. In particular, given a LY-algebra (m, x · y, [x, y, z]), the pair

(
g(m),D(m,m)

)
is a

reductive pair and the pair is symmetric in case x · y = 0.

Definition 1.2. A Lie–Yamaguti algebra (m, x · y, [x, y, z]) is said to be irreducible if m is an irreducible module for its Lie
algebra of inner derivations D(m,m).

The irreducible Lie–Yamaguti algebras constitute the algebraic counterpart to the isotropy irreducible homogeneous
spaces considered in [29]. Concerning these irreducible LY-algebras over algebraically closed fields of characteristic zero, it
is not difficult to prove (see [3, Proposition 1.3, Theorem 2.1]) the following basic structure results:

Theorem 1.3. Let (m, x · y, [x, y, z]) be an irreducible LY-algebra. Then D(m,m) is a semisimple and maximal subalgebra of the
standard enveloping Lie algebra g(m). Moreover, g(m) is simple in casem andD(m,m) are not isomorphic asD(m,m)-modules. �

Proposition 1.4. Let g = h⊕m be a reductive decomposition of a simple Lie algebra g, withm 6= 0. Then g and h are isomorphic,
respectively, to the standard enveloping Lie algebra and the inner derivation algebra of the Lie–Yamaguti algebra (m, x·y, [x, y, z])
given by (1.1). Moreover, in case h is semisimple and m is irreducible as a module for h, either h and m are isomorphic as
ad h-modules or m = h⊥, the orthogonal complement of h relative to the Killing form of g. �

From Theorem 1.3, in [3, Section 2] it is proved that the classification of irreducible LY-algebras splits into three non-
overlapping types:

Adjoint Type: m is the adjoint module for D(m,m),
Non-Simple Type: D(m,m) is not simple,
Generic Type: Both g(m) and D(m,m) are simple.

(1.3)

The LY-algebras of Adjoint Type are just the simple Lie algebras (see [3, Theorem 2.4]) and those of Non-Simple Type
can be described through reductive decompositionsmodeled by a Generalized Tits Construction from [4] using quaternions,
octonions and simple Jordan algebras as basic ingredients (see [3, Theorems 4.1, 4.4]).
In the Generic Type, m and D(m,m) are not isomorphic as adg(m)D(m,m)-modules, so following Proposition 1.4, the

classification of the irreducible LY-algebras of this type is equivalent to the determination of the reductive decompositions
g = h⊕ m satisfying the following conditions:

(a) g is a simple Lie algebra,
(b) h is a simple subalgebra of g,
(c) m is an irreducible ad h-module (in particular m 6= 0).

(1.4)

Note that the previous conditions imply

(d) m is h⊥ (orthogonal with respect to the Killing form of g),
(e) h is a maximal subalgebra of g,
(f) m is not the adjoint module.

(1.5)
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The purpose in this paper is the classification of the LY-algebras of Generic Type while, at the same time, their close
connections to somewell-knownnonassociative algebraic systemswill be highlighted. Itwill be shown thatmost irreducible
LY-algebras of this type appear inside simple Lie algebras as orthogonal complements of subalgebras of derivations of Lie
and Jordan algebras and triple systems, Freudenthal and orthogonal triple systems or Jordan and anti-Jordan pairs.
The paper is structured as follows. Section 2 is devoted to determine the irreducible LY-algebras inside reductive

decompositions of simple special linear Lie algebras (classical Cartan type An). The classification of these LY-algebras flows
parallel to the classification of the simple Jordan linear pairs and the so called anti-Jordan pairs. Following a similar pattern,
Sections 3 and 4 provide LY-algebras appearing inside orthogonal and symplectic simple Lie algebras (Cartan types Bn,Dn
and Cn) through the classification of simple Lie triple systems, and orthogonal and symplectic triple systems. Irreducible
LY-algebras inside exceptional Lie algebras of typesG2, F4, E6, E7 and E8 are the goal of Section 5. In this case, the classification
can be transferred from the complex field. Section 6 is an Appendix section where definitions and classifications of the
different pairs and triple systems related to irreducible LY-algebras are included. The paper ends with an epilogue section
that summarizes the classification results obtained in this paper and in the previous one [3].
Throughout this paper, all the algebraic systems considered will be assumed to be finite dimensional over an algebraically

closed ground field k of characteristic zero. The symbol ⊕ denotes the direct sum of subspaces and ⊗ the tensor product of
k-subspaces unless otherwise stated. Basic notation and terminology on representation theory of Lie algebras follows [14].
The authors are much indebted to the referee for his/her very careful analysis and comments.

2. Special linear case

As mentioned in the Introduction, the irreducible LY-algebras of Generic Type appear as orthogonal complements of
maximal simple subalgebras of simple Lie algebras. In this sectionwe classify these systems in case their standard enveloping
algebras are (simple) special linear Lie algebras sl(V ) (or sldim V (k) if a basis for V is fixed).
Any reductive decomposition sl(V ) = h⊕ m satisfying (a), (b) and (c) in (1.4) presents two elementary restrictions:

• dim V ≥ 3 (the smallest simple Lie algebra is the three-dimensional algebra sl2(k)).
• V is irreducible as a module for h. Otherwise we would have V = V1 ⊕ V2 and h ⊆ {f ∈ sl(V ) : f (Vi) ⊆ Vi, tr f |Vi= 0}
(since h = [h, h]), but this subspace is properly contained in the subalgebra {f ∈ sl(V ) : f (Vi) ⊆ Vi}. This is not possible
by the maximality of the subalgebra h, following condition (e) from (1.5).

The previous restrictions allow us to introduce trilinear products involving V and its dual h-module V ∗, in such a way
that the pair (V , V ∗) is endowed with a (linear) Jordan or anti-Jordan pair structure (see [21] and [13] for definitions or
Section 6.3 of this paper) and h can be viewed as the derived subalgebra of the inner derivation algebra of the induced pair.
Since sl(V ) is embedded in gl(V ), and this is a module for its subalgebra h, we can consider the standard isomorphism of

h-modules

V ⊗ V ∗ ∼= gl(V ) = h⊕ m⊕ kIV (2.1)

given by identifying the element x⊗ ϕ with the linear map y 7→ xϕ(y). (IV denotes the identity map of the vector space V .)
Now let dx,ϕ be the projection of x⊗ ϕ onto h and, for a fixed ξ ∈ k, let us define the h-invariant triple products

V ⊗ V ∗ ⊗ V → V
x⊗ ϕ ⊗ y 7→ {xϕy}ξ := dx,ϕ(y)− ξϕ(x)y,

(2.2)

V ∗ ⊗ V ⊗ V ∗ → V ∗
ϕ ⊗ x⊗ ψ 7→ {ϕxψ}ξ := ψ ◦ dx,ϕ − ξϕ(x)ψ.

(2.3)

Products (2.2) and (2.3) are related by

{ϕxψ}ξ (y) = ψ ◦ {xϕy}ξ , (2.4)

for all ϕ,ψ ∈ V ∗, x, y ∈ V , and the subalgebra h can be described as

h = span〈dx,ϕ : x ∈ V , ϕ ∈ V ∗〉. (2.5)

Then, we have the following result:

Lemma 2.1. For a given reductive decomposition sl(V ) = h ⊕ m which satisfies (a), (b), (c) in (1.4), consider the vector spaces
U+ = V and U− = V ∗. There exists a unique nonzero scalar ξ ∈ k such that the pairU = (U+,U−) is either a simple Jordan
pair under the triple products {xσ y−σ zσ }ξ defined in (2.2) and (2.3) for σ = ±, or a contragredient simple anti-Jordan pair with
〈xσ y−σ zσ 〉 := σ {xσ y−σ zσ }ξ as triple products. Moreover h is the linear subalgebra

h = span
〈
{xϕ.}ξ −

tr({xϕ.}ξ )
dim V

IV : x ∈ V , ϕ ∈ V ∗
〉
, (2.6)

which, up to isomorphism, turns out to be the derived subalgebra of the inner derivation Lie algebra of the corresponding pair and
m is h⊥, the orthogonal complement of h with respect to the Killing form of sl(V ).
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Proof. First we shall check that, for an arbitrary ξ , the ξ -products in (2.2) and (2.3) satisfy the identity

{xσ y−σ {uσv−σwσ }ξ }ξ = {{xσ y−σuσ }ξv−σwσ }ξ − {uσ {y−σ xσv−σ }ξwσ }ξ + {uσv−σ {xσ y−σwσ }ξ }ξ . (2.7)

For x = x+, u = u+ ∈ U+ = V and ϕ = y−, ψ = v− ∈ U− = V ∗, the map

L : V ⊗ V ∗ → End(V ), (2.8)

defined by x⊗ ϕ 7→ Lx,ϕ = {xϕ.}ξ , is an (h⊕ kIV )-module homomorphism. From (2.4) we have {ϕxψ}ξ = ψ ◦ Lx,ϕ which
easily yields

[Lx,ϕ, Lu,ψ ] = LLx,ϕ (u),ψ − Lu,ψ◦Lx,ϕ . (2.9)

But (2.9) is equivalent to (2.7) for σ = +.
In case ϕ = x−, ψ = u− ∈ U− = V ∗ and x = y+, y = v+ ∈ U∗ = V , identity (2.7) follows from the (h ⊕ kIV )-module

homomorphism

L̂ : V ∗ ⊗ V → End(V ∗) (2.10)

given by ϕ ⊗ x 7→ L̂ϕ,x = {ϕx.}ξ .
On the other hand, any product defined as in (2.2) is in Homh(V ⊗ V ∗⊗ V , V ), so we must look at the previous subspace

in order to get our result. Since h, m and kIV are irreducible and non-isomorphic h-modules,

Homh(V ⊗ V ∗ ⊗ V , V ) ∼= Homh(V ⊗ V ∗, V ⊗ V ∗)
∼= Homh(h, h)⊕ Homh(m,m)⊕ Homh(kIV , kIV ).

Then Homh(V ⊗ V ∗ ⊗ V , V ) is a three-dimensional vector space from Schur’s Lemma. Now, using the alternative
decomposition

Homh(V ⊗ V ∗ ⊗ V , V ) ∼= Homh(V ⊗ V , V ⊗ V )

∼= Homh(S2V , V ⊗ V )⊕ Homh

(
2∧
V , V ⊗ V

)
,

we get that either Homh(
∧2 V , V ⊗ V ) or Homh(S2V , V ⊗ V ) is a one-dimensional subspace (S2V and

∧2 V stand for the
second symmetric and alternating power of V respectively). Hence, two different situations appear:
(a) Homh(

∧2 V , V ⊗ V ) is one dimensional.
In this case, the vector space Homh((

∧2 V )⊗ V ∗, V ) is also one dimensional and, since dim V ≥ 3, we can take the nonzero
map

x⊗ y⊗ ϕ − y⊗ x⊗ ϕ 7→ ϕ(x)y− ϕ(y)x

as generator. So

dx,ϕ(y)− dy,ϕ(x) = ξ(ϕ(x)y− ϕ(y)x),

for some unique ξ ∈ F and therefore, for x, y ∈ V , ϕ ∈ V ∗ we have the identity

{xϕy}ξ = {yϕx}ξ . (2.11)

On the other hand, since Homh(
∧2 V , V ⊗ V ) is assumed to be one dimensional and V ⊗ V = S2V ⊕

∧2 V , we have that
Homh(

∧2 V , S2V ) = Homh(S2V ,
∧2 V ) = Homh(S2V ⊗

∧2 V ∗, k) = 0. This latter condition implies that the restriction of
the map x⊗ y⊗ ϕ ⊗ ψ 7→ ψ({xϕy}ξ ) on S2V ⊗

∧2 V ∗ is zero. So, using (2.4) and taking into account that the base field is
of characteristic zero, we get

0 = ψ({xϕy}ξ )− ϕ({xψy}ξ ) = ({ϕxψ}ξ − {ψxϕ}ξ )(y),

which implies

{ϕxψ}ξ = {ψxϕ}ξ . (2.12)

Then, from (2.7), (2.11) and (2.12), we obtain that (U, {xσ y−σ zσ }ξ ) is a Jordan pair.
(b) Homh(S2V , V ⊗ V ) is one dimensional.
In this case, analogous arguments but for symmetric powers, give us

dx,ϕ(y)+ dy,ϕ(x) = ξ(ϕ(x)y+ ϕ(y)x),

for some unique ξ ∈ k, which yields

{xϕy}ξ + {yϕx}ξ = 0, (2.13)
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and

{ϕxψ}ξ + {ψxϕ}ξ = 0, (2.14)

for x, y ∈ V , ϕ,ψ ∈ V ∗. Now for σ = ±, the products 〈xσ y−σ zσ 〉 = σ {xσ y−σ zσ }ξ satisfy

〈xσ y−σ zσ 〉 = −〈zσ y−σ xσ 〉, (2.15)

and using (2.7):

〈xσ y−σ 〈uσv−σ zσ 〉〉 = σ 2{xσ y−σ {uσv−σ zσ }ξ }ξ
= σ 2{{xσ y−σuσ }ξv−σ zσ }ξ − σ 2{uσ {y−σ xσv−σ }ξ zσ }ξ + σ 2{uσv−σ {xσ y−σ zσ }ξ }ξ
= 〈〈xσ y−σuσ 〉v−σ zσ 〉 + 〈uσ 〈y−σ xσv−σ 〉zσ 〉 + 〈uσv−σ 〈xσ y−σ zσ 〉〉.

(2.16)

Now identities (2.15) and (2.16) prove that (U, 〈xσ y−σ zσ 〉) is an anti-Jordan pair.
Following [13, Section 1], for a given Jordan or anti-Jordan pair with triple products aσ b−σ cσ = Dσ (aσ , b−σ )(cσ ),

the so called inner derivation algebra is the Lie algebra spanned by the (inner) derivations D(a+, b−) = (D+(a+, b−),
−D−(b−, a+)) in the Jordan pair case or D(a+, b−) = (D+(a+, b−), D−(b−, a+)) in the anti-Jordan pair case. In this way,
comparing inner derivation maps for the pair and anti-pair obtained from (a) or (b), we arrive at the relationship

(〈xϕ.〉, 〈ϕx.〉) = ({xϕ.}ξ ,−{ϕx.}ξ ).

Thus in both cases,

InderU = span〈({xϕ.}ξ ,−{ϕx.}ξ ) : x ∈ V , ϕ ∈ V ∗〉.

Now, the Lie algebra InderU is isomorphic to h in case ξ = 0 and to h⊕ kIV otherwise. The previous assertion follows from
the map h ⊕ kIV → Inder U, given by d 7→ (d,−d̃), where d̃(ϕ) = ϕ ◦ d. Moreover, since V and V ∗ are h-irreducible,
according to [13, Proposition 1.2],U is a simple Jordan pair or anti-Jordan pair. Attached to the anti-Jordan pair structure,
we have the nondegenerate bilinear map V ⊗ V ∗ → k defined by x⊗ ϕ 7→ ϕ(x)which, because of (2.4) satisfies

ψ(〈xϕy〉)+ 〈ϕxψ〉(y) = ψ({xϕy}ξ )− {ϕxψ}ξ (y) = 0,

for x, y ∈ V , ϕ,ψ ∈ V ∗. Then the anti-Jordan pair is contragredient following [13, Section 2]. Now, from [25, Theorem 2] and
[13, Sections 2 and 3], the inner derivation Lie algebra of either a simple Jordan pair or a simple contragredient anti-Jordan
pair is never simple (see Tables 5 and6 in theAppendix section for a complete description of these algebras). So, up to isomor-
phisms, the Lie algebra InderU is h⊕kIV which proves that ξ 6= 0. So the derived subalgebra Inder0U = [InderU, InderU]
is isomorphic to h. Moreover, using (2.5), the algebra h is spanned by the zero trace maps dx,ϕ = Lx,ϕ + ξϕ(x)IV , therefore
ξϕ(x) = − tr(Lx,ϕ )dim V (see (2.8)). The final assertion on m follows from condition (d) in (1.5). �

Now, we can establish the main result for the generic sl-case:

Theorem 2.2. Let (m, a · b, [a, b, c]) be an irreducible LY-algebra of generic type and standard enveloping Lie algebra of type sl.
Then precisely one of the following two cases occurs:

(i) There is a vector space V and an involution on the associative algebra End(V ) such thatm is, up to isomorphism, the simple Lie
triple system consisting of the zero trace symmetric elements in End(V ), with the natural triple product [a, b, c] = [[a, b], c]
(inside sl(V )). Moreover, dim V ≥ 5 if the involution is orthogonal, and dim V ≥ 4 if it is symplectic. In particular, the binary
product a · b is trivial.

(ii) There is a simple Jordan triple system J of one of the following types:
(1) the subspace of n× n symmetric matrices for n ≥ 2 with the triple product {xyz} = xytz + zytx,
(2) the subspace of n× n skew symmetric matrices for n ≥ 5 again with the triple product {xyz} = xytz + zytx,
(3) the subspace of 1× 2-matrices over the algebra of octonions O with the triple product {xyz} = x(ȳtz)+ z(ȳtx),
(4) the exceptional Jordan algebraH3(O) (multiplication denoted by juxtaposition) with its triple product {xyz} = x(zy)+
z(xy)− (zx)y,

such that, up to isomorphism, g(m) = sl(J), h = D(m,m) = L0(J) = [L(J),L(J)], where L(J) = span〈{xy.}; x, y ∈ J〉.
Here the LY-algebra m appears as the orthogonal complement to h in g(m) relative to the Killing form, with the binary and
ternary products in (1.1).

There are no isomorphisms among the LY-algebras in the different items above.
Conversely, the LY-algebras in items (i) and (ii) are indeed irreducible of generic type with standard enveloping algebra of

type sl.

Proof. According to Lemma 2.1, m = h⊥ where h is as described in (2.6) and V = U+, the (+)-component of either a
suitable simple Jordan pair or a simple contragredient anti-Jordan pair U = (U+,U−) with triple products {xσ yσ zσ } for
σ = ±. We also note that the subalgebra h is described by means of the (+)-product operators D+(x+, y−) = {x+y−.},
x+ ∈ U+ and y− ∈ U−. Moreover, for contragredient anti-Jordan pairs we must have the isomorphism (U+)∗ ∼= U−, as
modules for InderU. (From [13, Corollary 2.2] it follows that any simple Jordan pair is contragredient, that is, U+ and U−
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are dually paired by the nondegenerate bilinear form m(x+, y−) = trD+(x+, y−); the assertion is not true for anti-Jordan
pairs as shown in [13, Example 2.7].)
Conditions (b) and (c) in (1.4) and the previous initial restrictions on irreducibility and dimension of V imply that we

must look only for simple Jordan or simple contragredient anti-Jordan pairsU = (U+,U−) such that:
(1) the derived subalgebra Inder0U = [InderU, InderU] of the inner derivation algebra is simple,
(2) U+ = V (λ) is an irreducible module of dominant weight λ (recall that the notation in [14] is used throughout) for the

(+)-component of Inder0U and dimU+ ≥ 3,
(3) U+ ⊗U− = V (λ)⊗ V (λ∗) has just two nontrivial irreducible components which correspond to the module decompo-
sition for sl(U+).
Isomorphisms between either Jordan pairs or anti-Jordan pairs provide isomorphic LY-algebras. A look at the classifica-

tion of simple Jordan pairs in [21, Theorem17.12] and of simple anti-Jordan pairs in [13, Section 3 and 4] (both classifications
are outlined in the Appendix – Section 6.3 and Table 5 –) show that the possibilities for Jordan pairsU = (U+,U−) satis-
fying conditions (1) and (2) above are the following:
(Condition (3) is checked case by case from the h-module decomposition gl(U+) = U+ ⊗U− = sl(U+)⊕ V (0).)

(Mp,1(k),Mp,1(k))p≥3:
In this case, the pair (Inder0U,U+) is, up to isomorphism, the pair

(
slp(k), V (λ1)

)
(recall that we follow the no-

tations of [14]). Then, as modules for slp(k),U+ ⊗U− = V (λ1)⊗ V (λp−1) = V (λ1 + λp−1)⊕ V (0).
Therefore, this case must be discarded (see (2.1)).

(An(k),An(k))n≥5:
Here the pair (Inder0U,U+) is, up to isomorphism, (sln(k), V (λ2)) and, as modules for sln(k), U+ ⊗ U− =
V (λ2)⊗ V (λn−2) = V (λ1 + λn−1)⊕ V (λ2 + λn−2)⊕ V (0).

(Hn(k),Hn(k))n≥2:
Here the pair (Inder0U,U+) is, up to isomorphism, (sln(k), V (2λ1)) and, as modules for sln(k), U+ ⊗ U− =
V (2λ1)⊗ V (2λn−1) = V (2λ1 + 2λn−1)⊕ V (λ1 + λn−1)⊕ V (0).

(kn, kn)n≥5:
Here the pair (Inder0U,U+) is, up to isomorphism, (son(k), V (λ1)) and, as modules for son(k), U+ ⊗ U− =
V (λ1)⊗V (λ1) is equal toV (2λ1)⊕V (λ2)⊕V (0) for n ≥ 7 and for n = 5, 6 it decomposes asV (2λ1)⊕V (2λ2)⊕V (0)
and V (2λ1)⊕ V (λ2 + λ3)⊕ V (0) respectively.

(M1,2(O),M1,2(O)):
Here the pair (Inder0U,U+) is, up to isomorphism, (so10(k), V (λ4)) and, as modules for so10(k), U+ ⊗ U− =
V (λ4)⊗ V (λ5) = V (λ4 + λ5)⊕ V (λ2)⊕ V (0).

(H3(O),H3(O)):
Here the pair (Inder0U,U+) is, up to isomorphism, (E6, V (λ1)) and, as modules for E6, U+ ⊗ U− = V (λ1) ⊗
V (λ6) = V (λ1 + λ6)⊕ V (λ2)⊕ V (0).

For anti-Jordan pairs, the results in Section 6.3 and Table 6 show that the seriesU = (Mp,1(k),Mp,1(k)) for p ≥ 3 with
(slp(k), V (λ1)) andU = (k2n, k2n)with (sp2n(k), V (λ1)) for n ≥ 2 are the unique possibilities. The decompositionU+⊗U−

as slp(k)-module in the first case is analogous to the corresponding series of Jordan pairs, and hence this case must be dis-
carded. For the anti-Jordan pairsU = (k2n, k2n), the decomposition as modules for sp2n(k), is given by

(k2n, k2n)n≥2:
V (λ1)⊗ V (λ1) = V (2λ1)⊕ V (λ2)⊕ V (0).

The Jordan pairs and anti-Jordan pairs of typeU = (kn, kn) present a special common feature. Any of these structures can
be described as a pair (V , V )where V is a vector space endowed with a nondegenerate ε-symmetric form b and with triple
product {xyz} = b(x, y)z + b(y, z)x− εb(x, z)y, where ε = 1 for Jordan pairs and ε = −1 for anti-Jordan pairs (so dim V is
even in the latter case). Moreover, the operators appearing in (2.6) are of the form

dx,y = {xy.} −
tr({xy.})
dim V

= b(y, .)x− εb(x, .)y,

and hence the subalgebra h = span〈dx,y = b(y, .)x− εb(x, .)y : x, y ∈ V 〉 is the Lie algebra so(V ) in case ε = 1 and sp(V ) for
ε = −1. On the other hand, themap f 7→ f ∗, where f ∗ is the adjoint map relative to the form b, induces an involution on the
associative algebra End(V ) for which h = {f ∈ End(V ) : f ∗ = −f } = S(V , ∗) is just the Lie algebra so(V ) or sp(V ) and the
setJ = H(V , ∗) = {f ∈ End(V ) : f ∗ = f }, under the symmetrized product f ·g = fg+gf , is a central simple Jordan algebra.
In this case, the decomposition gl(V ) = S(V , ∗)⊕H(V , ∗) is symmetric and its restriction to sl(V ) provides the symmetric
decomposition sl(V ) = h⊕H(V , ∗)0, whereH(V , ∗)0 consist of the zero trace elements inJ. This symmetric decomposition
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satisfies (1.4), som = h⊥ = H(V , ∗)0 and therefore the LY-algebram has trivial binary product and the ternary one is given
by [f , g, h] = [[f , g], h] = −(f , h, g) = −(f · h) · g + f · (h · g) = (g, f , h). This provides item (i) in the Theorem.
Finally, the remaining admissible Jordan pairs above are all of the form (J, J) for a Jordan triple system J and the asser-

tion (ii) in the Theorem follows.
In all the cases considered, it has been proved that m is an irreducible module for the simple Lie algebra h and it is not

isomorphic to the adjoint module. Hence the converse is clear. �

3. Orthogonal case

In this section we classify LY-algebras of Generic Type whose standard enveloping algebra is a (simple) orthogonal Lie
algebra so(V , b), so V is a vector space of dimension ≥5 (note that so4(k) is not simple and that so3(k) is isomorphic to
sl2(k)), endowed with a nondegenerate symmetric form b.
As in the previous section, we are looking for decompositions so(V , b) = h ⊕ m in which conditions (a), (b) and (c) in

(1.4) hold. Our discussion in the so-case will be based on the following elementary facts:

• Considering both so(V ) and V as modules for h, the linear map x∧ y 7→ σx,y = b(x, .)y−b(y, .)x defines an isomorphism
of h-modules:

2∧
V ∼= so(V , b), (3.1)

from the second alternating power of V onto the Lie algebra so(V ).
• Any tensor product of irreducible modules V (λ) ⊗ V (µ) contains a (unique) copy of the irreducible module V (λ + µ).
This copy is generated by v = vλ ⊗ vµ, the only vector (up to scalars) of (highest) weight λ + µ. (Here vλ denotes a
nonzero vector of weight λ.) Moreover, in case λ = µ this copy is located inside the second symmetric power of V (λ),
that is:

V (2λ) ⊆ S2V (λ). (3.2)

• For a given dominant weight λ and any simple root α not orthogonal to λ (〈λ, α〉 6= 0), the second alternating power∧2 V (λ) contains a (unique) copy of the irreducible module V (2λ − α). This copy is generated by v = vλ ⊗ vλ−α −
vλ−α ⊗ vλ, the only vector (up to scalars) of (highest) weight 2λ− α. Hence,

V (2λ− α) ⊆
2∧
V (λ), in case 〈λ, α〉 6= 0. (3.3)

Lemma 3.1. For a given reductive decomposition so(V , b) = h⊕ m satisfying (a), (b) and (c) in (1.4) with dim V ≥ 5, one has
that, as a module for h, either:

(i) V decomposes as V = kv ⊕W, an orthogonal sum of a trivial module kv and an irreducible module W with dimW ≥ 5. In
this case, the subalgebra h is h = σW ,W = span〈σx,y : x, y ∈ W 〉, (σx,y as in (3.1)), so it is isomorphic to so(W , b) and for
the subspace m we have that m = σv,W . Moreover, the reductive decomposition

so(kv ⊕W , b) = σW ,W ⊕ σv,W (3.4)

is symmetric; or
(ii) V = V (mλi) is an irreducible module for h whose dominant weight is a multiple of the fundamental weight λi relative to
some system of simple roots∆ = {α1, . . . , αn}, and one of the following holds:
(ii-a) m = V (2mλi − αi) for some i, 1 ≤ i ≤ n.
(ii-b) h is a simple Lie algebra of type B3, V = V (λ3) and m = V (λ1)
(ii-c) h is a simple Lie algebra of type G2 and V = m = V (λ1).

Proof. If V is not irreducible as a module for h, letW be a proper and irreducible h-submodule. Assume first b(W ,W ) 6= 0,
thus the restriction of b toW is nondegenerate by irreducibility ofW , so V decomposes as the orthogonal sum V = W⊕W⊥.
Since h ⊂ so(W )⊕ so(W⊥) ⊂ so(V , b), the maximality of h (condition (e) in (1.5)) forces

h = so(W , b) = so(W )⊕ so(W⊥).

But h is a simple Lie algebra, soW⊥ must be one dimensional. So we have the orthogonal decomposition V = kv ⊕W
and we get the natural Z2-graduation in (3.4) with h = σW ,W = span〈σx,y : x, y ∈ W 〉 (the maps σx,y as in (3.1)), and
σv,W = span〈σv,x : x ∈ W 〉, which is an irreducible module for h isomorphic toW . Thus from (1.5), we havem = h⊥ = σv,W
which provides item (i) in the Lemma.
On the other hand, if V is not irreducible as a module for h, but the restriction of b to any irreducible h-submodule

is trivial, by Weyl’s theorem on complete reducibility, given an irreducible submodule W1 there is another irreducible
submodule W2 with b(W1,W2) 6= 0. So, W1 and W2 are isotropic, that is b(Wi,Wi) = 0, and contragredient modules,
and V = W1⊕W2⊕ (W1⊕W2)⊥. Arguing as before, we may assume that V = W1⊕W2. Then our subalgebra h lies inside
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the subalgebra {f ∈ so(V , b) : f (Wi) ⊆ Wi} = σW1,W2 and this contradicts the maximality of h, since σW1,W2 is contained
properly in the subalgebra σW1,W2 ⊕ σW1,W1 .
Now, in case V = V (λ) remains irreducible as a module for h, its dominant weight λ relative to a Cartan subalgebra of h

and a choice of a system ∆ = {α1, . . . , αn} of simple roots, decomposes as λ =
∑n
i=1miλi, where as in [14], λ1, . . . , λn

denote the fundamental weights. Note that mi = 〈λ, αi〉 ≥ 0 is a non-negative integer for any i. Let αi be a simple
root which is not orthogonal to λ, that is mi 6= 0. From (3.3), a copy of the irreducible module V (2λ − αi) appears in∧2 V (λ) ∼= so(V ) = h⊕m. In case h ∼= V (2λ−αi), we have that 2λ−αi is the highest rootω of h, and henceω+αi is twice
a dominant weight λ (while h being a proper subspace of

∧2 V (λ)). A quick look at the Dynkin diagrams (see [14]) shows
that the only possibilities are the ones that appear in items (ii-b) and (ii-c).
Otherwise we must assume that the highest root of h is not of the form 2λ − αi for some simple root αi such that

〈λ, αi〉 6= 0. As so(V ) has exactly two irreducible components as a module for h, there exists exactly one simple root αi
not orthogonal to λ. Hence λ = miλi withmi ≥ 1 and m = V (2miλi − αi)which provides item (ii-a). �

Following Lemma 3.1, for any reductive and nonsymmetric decomposition so(V , b) = h⊕m satisfying (a), (b) and (c) in
(1.4), the vector space V , considered as a module for h must be (nontrivial) irreducible with dominant weight of the form
mλi, λi being a fundamental weight relative to some system of simple roots∆ of h. The irreducibility of V allows us to endow
this space with a structure of either a Lie triple system or an orthogonal triple system (see [26, Section V], [7, Definition 4.1]
or Section 6.2 of the Appendix in this paper for the definition of the latter systems), in such a way that the subalgebra h

becomes its inner derivation Lie algebra. In this way, the classification in the so-case will follow from known results on
these triple systems.
For an arbitrary reductive decomposition so(V , b) = h⊕ m, by using the isomorphism as modules for h in (3.1), we can

define the map
V ⊗ V → so(V , b) → h

x⊗ y 7→ σx,y 7→ dx,y,
(3.5)

where dx,y denotes the projection of the operator σx,y onto h, so the subalgebra h can be written as h = span〈dx,y : x, y ∈ V 〉.
Now, let us define the triple product on V given by

xyz := dx,yz. (3.6)

This product satisfies the identities:

xxz = 0, (3.7)
xy(uvw) = (xyu)vw + u(xyv)w + uv(xyw), (3.8)
b(xyu, v)+ b(u, xyv) = 0, (3.9)

for any x, y, z, u, v ∈ V .
Note that (3.7) is equivalent to dx,y being skew symmetric as a function of x and y. Identity (3.8) tells us that the map

given in (3.5) is a homomorphism of modules for h and (3.9) follows from h being a subalgebra of so(V , b). Since dx,yz = xyz,
the subalgebra h is the inner derivation Lie algebra of the triple V :

h = span〈dx,y : x, y ∈ V 〉 = Inder V , (3.10)

and we get the following result:

Lemma 3.2. Given a reductive decomposition so(V , b) = h ⊕ m satisfying (a), (b), (c) in (1.4), such that the vector space V is
irreducible as a module for h, the vector space V endowed with the triple product xyz = dx,yz defined in (3.6) is either a simple Lie
triple system or a simple orthogonal triple system with associated bilinear form ξb for some unique nonzero scalar ξ . Moreover,
the subalgebra h satisfies the equation

h = span〈dx,y : x, y ∈ V 〉, (3.11)

and therefore coincides with the inner derivation Lie algebra of the corresponding triple system, and the subspace m is the
orthogonal complement h⊥ to h relative to the Killing form of so(V , b).

Proof. Firstwe shall check that the vector spaceHomh((
∧2 V )⊗V , V ) is two dimensional. Since V ∼= V ∗ and

∧2 V ∼= so(V ),

Homh

((
2∧
V
)
⊗ V , V

)
∼= Homh

(
2∧
V , V ⊗ V

)
∼= Homh(h, V ⊗ V )⊕ Homh(m, V ⊗ V ).

(3.12)

Moreover, the irreducibility of h as a module for itself gives

dimHomh(h, V ⊗ V ) = dimHomh(V ⊗ V ∗, h). (3.13)

Lemma 3.1 shows that V = V (mλi) (the irreducible module of dominant weightmλi) as a module for h, so [11, Theorem 1]
proves that Homh(h, V⊗V ) is a one-dimensional vector space. From the different possibilities form described in (ii-a), (ii-b)
and (ii-c) of Lemma 3.1, the same assertion holds for Homh(m, V ⊗ V ):
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(ii-a) m = V (mλi − αi).
The assertion follows from (3.3) and comments therein.

(ii-b) h ∼= B3, V = V (λ3) and m = V (λ1).
The assertion follows since the tensor product decomposition

V (λ3)⊗ V (λ3) ∼= V (2λ3)⊕ V (λ2)⊕ V (λ1)⊕ V (0), (3.14)

contains only one copy of m.
(ii-c) h ∼= G2, V = m = V (λ1).

Again the tensor product decomposition

V (λ1)⊗ V (λ1) ∼= V (2λ1)⊕ V (λ2)⊕ V (λ1)⊕ V (0), (3.15)

contains only one copy of m.

On the other hand, in a easy way we can get the following h-module decomposition for the tensor product (
∧2 V )⊗ V :(

2∧
V

)
⊗ V =

3∧
V ⊕ S, (3.16)

where
∧3 V embeds in (

∧2 V ) ⊗ V by means of x ∧ y ∧ z 7→ (x ∧ y) ⊗ z + (y ∧ z) ⊗ x + (z ∧ x) ⊗ y, and
S = span〈(x ∧ y)⊗ z + (z ∧ y)⊗ x : x, y, z ∈ V 〉. The nonzero h-homomorphism ϕ : S → V given by:

ϕ((x ∧ y)⊗ z + (z ∧ y)⊗ x) = σx,y(z)+ σz,y(x) = 2b(x, z)y− b(y, z)x− b(y, x)z,

with σx,y as in (3.1), provides the alternative decomposition(
2∧
V

)
⊗ V =

3∧
V ⊕ Kerϕ ⊕ V , (3.17)

and therefore

Homh

((
2∧
V

)
⊗ V , V

)
= Homh

(
3∧
V , V

)
⊕ Homh(Kerϕ, V )⊕ Homh(V , V ). (3.18)

Since the dimension of the vector spaces Homh((
∧2 V ) ⊗ V , V ) and Homh(V , V ) is 2 and 1 respectively, either

Homh(
∧3 V , V ) = 0 or Homh(S, V ) = kϕ. In the first case, we have that the triple product xyz defined in (3.6) must be

trivial when restricted to
∧3 V . Therefore this triple product satisfies the additional identity

xyz + yzx+ zxy = 0, (3.19)

for any x, y, z ∈ V . Hence, from (3.7), (3.8) and (3.19) we get that (V , xyz) is a Lie triple system (see Section 6.1 in the
Appendix for the definition). Moreover, as h = Inder V and V = V (mλi) is h-irreducible, this triple system is simple.
Otherwise Homh(S, V ) = kϕ holds, so the restriction of the triple product xyz to S give us the relationship

xyz + zyx = ξϕ(x ∧ y⊗ z + z ∧ y⊗ x) = 2ξb(x, z)y− ξb(y, z)x− ξb(y, x)z, (3.20)

for some ξ ∈ k and any x, y, z ∈ V . Moreover, let us show that ξ must be nonzero. Assume on the contrary that ξ = 0, from
(3.20) we get

xyz + zyx = 0, (3.21)

for all x, y, z ∈ V and the triple product is totally antisymmetric. Then the triple products 〈xσ y−σ zσ 〉 = σ xσ y−σ zσ defined
on the vector space pairU = (U+,U−)with Uσ = V and σ = ± satisfy:

〈xσ y−σ zσ 〉 = σ xσ y−σ zσ = −σ zσ y−σ xσ = −〈zσ y−σ xσ 〉,

and using (3.7) and (3.8),

〈xσ y−σ 〈uσv−σwσ 〉〉 = σ 2xσ y−σ (uσv−σwσ )
= σ 2((xσ y−σuσ )v−σwσ )− uσ (y−σ xσv−σ )wσ + uσv−σ (xσ y−σwσ ))
= 〈〈xσ y−σuσ 〉v−σwσ 〉 + 〈uσ 〈y−σ xσv−σ 〉wσ 〉 + 〈uσv−σ 〈xσ y−σwσ 〉〉.

Hence,U is an anti-Jordan pair for which the inner derivation operators are of the form

(D+(x+, y−),D−(y−, x+)) = (〈x+y−.〉, 〈y−x+.〉)
= (x+y−.,−y−x+.).

(3.22)

We note that the linearization xyz = −yxz of (3.7) is equivalent to Dx,y = −Dy,x, thus (D+(x+, y−),D−(y−, x+)) =
(Dx+,y− ,Dx+,y−). This shows that the Lie algebra InderU is isomorphic to h and therefore it is a simple Lie algebra. Moreover,
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since V is an irreducible module for h, U is a simple anti-Jordan pair [13, Proposition 1.2]. But according to Table 6 in the
Appendix , the inner derivation algebras of simple anti-Jordan pairs such thatU+ = U− are not simple. Hence ξ 6= 0.
Now Eq. (3.20) with z = y and (3.7) give the identity

xyy = ξb(x, y)y− ξb(y, y)x, (3.23)

for any x, y ∈ V , which together with (3.7)–(3.9) (see Section 6.2 in the Appendix ) prove that the vector space V is
an orthogonal triple system under the triple product xyz and the symmetric bilinear form ξb(x, y). Since the form is
nondegenerate, V is a simple orthogonal triple system ([7, Proposition 4.4]) and the subalgebra h is its inner derivation
Lie algebra. The last assertion (m = h⊥) follows from condition (d) in (1.5). �

Now we can formulate the main result for the generic so-case:

Theorem 3.3. Let (m, a · b, [a, b, c]) be an irreducible LY-algebra of generic type and standard enveloping Lie algebra of type so.
Then precisely one of the following cases occurs:

(i) There is a vector space V of dimension ≥5, endowed with a nondegenerate symmetric bilinear form b such that m is, up to
isomorphism, the simple Lie triple system defined on V with triple product [u, v, w] = b(u, w)v − b(v,w)u. In particular,
the binary product u · v is trivial.

(ii) Up to isomorphism,m coincides with the spaceO0 of trace zero octonions with binary and ternary products a ·b = ab−ba =
[a, b] and [a, b, c] = 2

(
[[a, b], c] − 3

(
(ac)b− a(cb)

))
for any a, b, c ∈ O0, where ab denotes the multiplication in O.

(iii) There is a simple Lie triple system T endowed with a nondegenerate symmetric bilinear form b of one of the following types:
(iii.a) a simple Lie algebra of type different from A with its natural triple product dx,yz = [xyz] = [[x, y], z] endowed with

its Killing form,
(iii.b) the subspace of trace zero elements of a simple Jordan algebra of degree≥3, not isomorphic either toMatn(k)+ (n ≥ 3)

or to H4(k), with its triple product dx,yz = [xyz] = (x, z, y) = (x ◦ z) ◦ y − x ◦ (y ◦ z) (where x ◦ y denotes the
multiplication in the Jordan algebra), endowed with the nondegenerate bilinear form given by its generic trace,

(iii.c) the Lie triple systems attached to the exceptional symmetric pairs (F4, B4), (E6, C4), (E7, A7) or (E8,D8), endowed with
the nondegenerate bilinear form given by the restriction of the Killing form of the ambient Lie algebra,

such that, up to isomorphism, g(m) = so(T , b), h = D(m,m) = Inder T = dT ,T = span〈dx,y : x, y ∈ T 〉. Here the
LY-algebra m appears as the orthogonal complement to h in g(m) relative to the Killing form, with the binary and ternary
products in (1.1).

There are no isomorphisms among the LY-algebras in the different items above.
Conversely, the LY-algebras in items (i)–(iii) are irreducible of generic type with standard enveloping algebra of type so.

Proof. From Lemmas 3.1 and 3.2 we know that either m = σv,W = span〈σv,x : x ∈ W 〉, where σv,x = b(v, .)x − b(x, .)v,
inside the symmetric decomposition so(kv ⊕ W , b) = σW ,W ⊕ σv,W where b is a nondegenerate symmetric form with
b(v,W ) = 0 or m = h⊥ where h is the linear Lie algebra of inner derivations related to either a simple Lie triple system or
a simple orthogonal triple system which is irreducible as a module for its inner derivation algebra.
In the first case, since [σx,y, σa,b] = σσx,y(a),b + σa,σx,y(b) for any x, y, a, b ∈ V , it follows that

[[σv,x, σv,y], σv,z] = b(v, v)σv,σx,y(z), (3.24)

for any x, y, z ∈ W . Besides, since the ground field k is assumed to be algebraically closed, one may take v with b(v, v) = 1.
Hencem = σv,W can be identified toW with trivial binary product and triple product given by [xyz] = σx,y(z), thus obtaining
the situation in item (i).
Otherwise, we must look for either simple Lie triple systems or simple orthogonal triple systems (V , xyz) such that:

(1) the inner derivation algebra Inder V is simple,
(2) V = V (mλi) is an irreducible module for Inder V with dominant weight m-times a fundamental weight λi, and
dim V ≥ 5,

(3)
∧2 V decomposes as a sum of two irreducible modules.

Since isomorphic irreducible orthogonal or Lie triple systems provide isomorphic LY-algebras, we need to check the
previous conditions in the classifications, up to isomorphisms, of such systems given in [7, Theorem 4.7], [10, Table I] and
[11, Table III], which are outlined in the Appendix of this paper: Tables 1 and 4. Then, using Table 4 in the Appendix , and
restrictions (1)–(2)–(3), we get the following possibilities for the triple (V , Inder V , V (mλi)) for orthogonal triple systems:
the G-type triple system defined on the seven-dimensional spaceO0 of trace zero octonions with triple (O0,G2, V (λ1)) and
the F-type triple systems defined on an eight-dimensional vector space V having a 3-fold vector cross product with ternary
description (V , so7(k), V (λ3)). The respective decompositions of

∧2 V as a module for h = Inder V are the following:
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(In both cases condition (3) holds.)

(O0,G2, V (λ1)):∧2 V (λ1) = V (λ1)⊕ V (λ2) as a module for InderO0 = G2.

(V , so7(k), V (λ3)):∧2 V (λ3) = V (λ1)⊕ V (λ2) as a module for Inder V ' so7(k).
Following [7], the orthogonal triple system of G-type satisfies that h = Inder V is the simple Lie algebra of type G2 given

by the Lie algebra of derivations of O, considered as a subalgebra of so(O0, n), where n denotes the norm of the octonion
algebra. Thenm is the orthogonal complement of h relative to the Killing form of g = so(O0, n). But so(O0, n) decomposes as

so(O0, n) = Der(O)⊕ adO0 ,

(see [28, Chapter III, §8] or [9]), where adx(y) = [x, y] = xy − yx. Since adO0 is irreducible as a module for Der(O) it turns
out that adO0 is necessarily the orthogonal complement to h = Der(O) relative to the Killing form of so(O0, n). Besides for
any x, y ∈ O0 we have:

[adx, ady] = [Lx − Rx, Ly − Ry]
= [Lx, Ly] + [Rx, Ry] − [Rx, Ly] − [Lx, Ry]
= Dx,y − 3[Lx, Ry],

where Lx and Rx denote the left and right multiplications by x in O, and where Dx,y = [Lx, Ly] + [Lx, Ry] + [Rx, Ry] =
ad[x,y] − 3[Lx, Ry] is the inner derivation of O generated by the elements x and y. Therefore

[adx, ady] = −ad[x,y] + 2Dx,y,
and hence, if we identifym = adO0 withO0 bymeans of x 7→ −adx, the binary and ternary multiplications in (1.1) are given
by:

x · y = [x, y],
[xyz] = 2Dx,y(z),

for any x, y, z ∈ O0 and we obtain item (ii).
For F-type orthogonal triple systems (see [7] and [8]), we have that V = O with bilinear form b(x, y) = αn(x, y) where

n(x, y) is as in the previous paragraph, the triple product is given by dx,yz = xyz = (xȳ)z+4b(x, z)y−4b(y, z)x−b(x, y)z and
Inder V = span〈dx,y〉. In this case Inder V is a Lie algebra of type B3 that can be described as Inder V = span〈Dx,y, Lx + 2Rx :
x, y ∈ O0〉. Moreover, the automorphism θ of so(O, n) ∼= so8(k) given by Lx 7→ Lx + Rx and Rx 7→ −Rx (see [28, Chapter III,
Section 8] makes θ(Inder V ) = span〈Dx,y, Lx − Rx = adx : x, y ∈ O0〉 = {f ∈ so(V ) : f (1) = 0} = so(O0, n), a Lie algebra
for which O0 is irreducible and orthogonal to k1 which is a one dimensional and θ(Inder V )-invariant subspace. Hence, the
LY-algebram = (Inder V )⊥ is isomorphic to σ1,O0 = span〈σ1,x = n(1, .)x− n(x, .)1 : x ∈ O0〉 obtained as in item (i). Hence
nothing new appears here.
For simple Lie triple systems, [10, Table I] presents the complete classification of such triple systems encoded through

affineDynkin diagrams. Using this classification, in [11, Table III] a complete list of all simple Lie triple systemswhich are irre-
ducible for Inder V is given. Table III also provides the inner derivation algebra Inder V , and the structure for each irreducible
Lie triple V as amodule for Inder V . The results in [10] and [11] are displayed on Table 1 in the Appendix. Table 1 provides the
dominant weights for the different irreducible Lie triple systems V as well as the

∧2 V -decomposition of those triples with
simple inner derivation Lie algebra. So using Table 1 under the restrictions (1)–(2)–(3),we arrive at the possibilities described
below. We also note that in all the cases, V is a contragredient and irreducible module for Inder V , and hence there exists a
unique Inder V -invariant form b on V up to scalars, which is either symmetric or skew symmetric. The

∧2 V -decomposition
in Table 1 proves that the form b is always symmetric for irreducible triple systems with simple inner derivation algebra.

(L×L,L):
HereL represents a Lie algebra of type different from An, n ≥ 1, but considered as a triple system by means of the
product dx,yz = [xyz] = [[x, y], z], endowed with the Killing form. These triple systems are called adjoint in [3].

(A2n, Bn)n≥1, (A2n−1, Cn)n≥3, (A2n−1,Dn)n≥3:
Following Theorem 2.2, these triple systems correspond to the space of trace zero elements in a simple Jordan
algebra J of type B or C and degree n ≥ 3 with triple product given by the associator. Then, since dx,yz =
[xyz] = (y, z, x) = [Lx, Ly](z) (Lx denotes the multiplication by x in the Jordan algebra), we have that InderJ0 =
span〈[Lx, Ly] : x, y ∈ J0〉 = DerJ and b is the generic trace.

(F4, B4), (E6, F4), (E6, C4), (E7, A7), (E8,D8):
Table 1 shows that all the simple Lie triple systems with exceptional simple standard enveloping Lie algebra and
simple inner derivation Lie algebra work. The triple system related to the pair (E6, F4) consists of the trace zero
elements of the exceptional simple Jordan algebra (Albert algebra) with associator as triple product (see [15]).
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On the other hand, Table 1 shows that the only symmetric decompositions with standard enveloping Lie algebra of type
so are given by symmetric pairs of type (son(k), son−1(k)), up to isomorphisms. It is easy to check that none of the reductive
pairs related with the LY-algebras described in items (ii) and (iii) are of this form. So the binary and ternary products of the
corresponding LY-algebras are not trivial.
Finally, the restriction on item (iii.b) on the Jordan algebra not being isomorphic toH4(k) is due to the fact that for this

Jordan algebra, the associated subalgebra h is so4(k)which is not simple.
The converse is clear from the arguments above. �

Remark 3.4. The case in item (iii.b) of the previous Theorem corresponding to the Jordan algebra H3(k) satisfies that its
enveloping algebra is so5(k), which is isomorphic to sp4(k). Hence this case will appear too in the next section (Item (i) of
Theorem 4.4). Therefore, we may assume that the Jordan algebra in item (iii.b) above is not isomorphic toH3(k). This will
be done in our final Table 9.

4. Symplectic case

For LY-algebras of Generic Type and standard enveloping Lie algebra a (simple) symplectic Lie algebra sp(V , b), we will
follow a similar procedure to that used in the special and orthogonal cases. In the symplectic case, V is an even-dimensional
vector space endowed with a nondegenerate skew symmetric form b.
Given a suitable reductive decomposition sp(V ) = h⊕m, we may view V and sp(V ) as modules for h. The map (x, y) 7→

γx,y = b(x, .)y+ b(y, .)x provides an isomorphism of h-modules:

S2V ∼= sp(V ), (4.1)

where S2V is the second symmetric power of V . This isomorphism and the following easy Lemma on representations of Lie
algebras are used in an essential way throughout this section:

Lemma 4.1. Let µ1 and µ2 be two dominant weights of a simple Lie algebra (relative to a fixed system of simple roots). Then the
modules

∧2 V (µ1) and S2V (µ2) are isomorphic if and only if one of the following holds:

(i) h is a simple Lie algebra of type A1, µ1 = kλ1 and µ2 = (k− 1)λ1 with k ≥ 1,
(ii) h is a simple Lie algebra of type B2, µ1 = λ1 and µ2 = λ2.

Proof. For a given simple root αi non-orthogonal toµ1, the weight 2µ1− αi is maximal in the set of weights of the module∧2 V (µ1) relative to the usual partial order where λ > µ if λ− µ is a sum of positive roots. Since 2µ2 is the only maximal
weight for S2V (µ2), we have 2µ1 − αi = 2µ2 and there is a unique simple root αi not orthogonal to µ1. The last assertion
implies µ1 = kλi, k ≥ 1 and αi = 2(µ1 − µ2). Now it is easy to check that the only possibilities are the following
(see [14, Chapter III, Section 11]):

• A1 with αi = α1 = 2λ1, which implies item (i) in the Lemma.
• B2 and αi = α1 = 2(λ1 − λ2):
In this case,µ1 = kλ1 andµ2 = (k− 1)λ1+λ2. But computing the dimension of the corresponding irreducible modules
V (kλ1) and V ((k− 1)λ1 + λ2), we get k = 1 as the only possibility, thus item (ii) in Lemma follows.
• h = Cn, n ≥ 3 and αi = αn = 2(−λn−1 + λn):
Then µ1 = kλn and µ2 = λn−1 + (k− 1)λn. But the formula

dim V (kλn)
dim V ((k− 1)λn + λn−1)

=
2k+ n+ 1
2kn

,

implies that dim V (kλn) < dim V ((k−1)λn+λn−1) except for n = 3 and k = 1. So, the only possibility for bothmodules
to be isomorphic is µ1 = λ3 and µ2 = λ2. But then dim

∧2 V (λ3) = 91 < dim S2V (λ2) = 105 and therefore this
situation does not hold.

The converse is easily checked by using the Clebsch–Gordan formula and the isomorphism between the B2-type Lie algebra
so5(k) and the C2-type sp4(k). �

Recall that given an irreducible module V (λ) for a dominant weight λ of a simple Lie algebra, the dual module V (λ)∗ is
isomorphic to V (−σλ), where σ is the element of the Weyl group sending the given system of simple roots to its opposite
(see [14, Section 21, Exercise 6]). We will write −σλ = λ∗ and will say that the dominant weight λ is self-dual in case
λ = λ∗, that is, in case V (λ) is a self-dual module.

Lemma 4.2. Let sp(V ) = h⊕m be a reductive decomposition satisfying (a), (b) and (c) in (1.4). Then dim V ≥ 4 and as a module
for h, V = V (λ) is irreducible and either its dominant weight λ is a fundamental and self-dual weight or h = A1, dim V = 4 and
λ = 3λ1. In any case, m is an irreducible module for h whose dominant weight is 2λ.



120 P. Benito et al. / Journal of Pure and Applied Algebra 215 (2011) 108–130

Proof. In case V is reducible as a module for h, the arguments in the proof of Lemma 3.1 show that the vector space V can
be decomposed as an orthogonal sum, V = W ⊕W⊥ withW irreducible and nontrivial and h = sp(W ) ⊕ sp(W⊥) which
is not a simple Lie algebra. Hence V must be irreducible and the assertion on its dimension is clear. In what follows let λ be
the dominant weight of the irreducible self-dual module V .
On the other hand, (3.2) and (4.1) show that V (2λ) appears as a submodule in S2V ∼= sp(V ) = h ⊕ m, thus as modules

over h either h or m is isomorphic to V (2λ). In the first case the only possibility is that 2λ = 2λ1 for the simple Lie algebra
of type Cn. This implies sp(V ) = sp(V (λ1)) = h, which is not possible. Hence m is irreducible with 2λ as dominant weight.
Now letλ =

∑
miλi be the decomposition ofλ as a sumof fundamentalweightsλi, and assume thatλ is not fundamental.

Then λ can be decomposed in two different ways:

(a) λ = λi + λ
∗

i ,
with λi fundamental and nonself-dual.

(b) λ = λ′ + λ′′,
with λ′, λ′′ nonzero and self-dual dominant weights.

(4.2)

Suppose λ = λi + λ∗i and note that
∏
(λ∗i ) = {−µ : µ ∈

∏
(λi)} is the set of weights for the module V (λi)∗ = V (λ∗i ).

(As in [14],
∏
(λ)denotes the set ofweights ofV (λ).) Since fµ(v−µ) 6= 0 in case v−µ ∈ V (λi) and fµ ∈ V (λ∗i ) are (±µ)-weight

vectors, the symmetric h-invariant form

b : (V (λi)⊗ V (λi)∗)⊗ (V (λi)⊗ V (λi)∗)→ F
(v1 ⊗ f1)⊗ (v2 ⊗ f2) 7→ f1(v2)f2(v1),

(4.3)

satisfies b(vλi ⊗ fλ∗i , v−λ∗i ⊗ f−λi) 6= 0. As the copy of V (λ) generated by vλi ⊗ fλ∗i that appears in V (λi) ⊗ V (λi)
∗ contains

too the element v−λ∗i ⊗ f−λi , the symmetric form b induces a symmetric and nonzero h-invariant form on V (λ), but this is
not possible: because of the irreducibility of V , up to scalars there is exactly one h-invariant form on V , which must be skew
symmetric.
Hence from (4.2) λ decomposes as λ = λ′ + λ′′. Then, the self-dual modules V (λ′) and V (λ′′) are endowed with

nondegenerate and h-invariant forms b1(x′, y′) and b2(x′′, y′′). From b1 and b2, we can define on the tensor product
V (λ′)⊗ V (λ′′) the h-invariant form

b̂ : V (λ′)⊗ V (λ′′)⊗ V (λ′)⊗ V (λ′′)→ F
v′1 ⊗ v

′′

1 ⊗ v
′

2 ⊗ v
′′

2 7→ b1(v′1, v
′

2)b2(v
′′

1 , v
′′

2 ),
(4.4)

which satisfies b̂(vλ′⊗vλ′′ , v−λ′⊗v−λ′′) 6= 0. Now, a copy of V (λ)⊗
2
appears in (V (λ′)⊗V (λ′′))⊗

2
so b̂ defines a nonzero and

h-invariant form on V (λ)⊗
2
which must be skew symmetric. Consequently and without loss of generality, we can assume

that b1 is symmetric and b2 is skew symmetric. Now let c ′ and c ′′ be the module homomorphisms given by

c ′ : V (λ′)⊗ V (λ′′)⊗ V (λ′)⊗ V (λ′′)→ V (λ′′)⊗ V (λ′′)
v′1 ⊗ v

′′

1 ⊗ v
′

2 ⊗ v
′′

2 7→ b1(v′1, v
′

2)v
′′

1 ⊗ v
′′

2 ,
(4.5)

and

c ′′ : V (λ′)⊗ V (λ′′)⊗ V (λ′)⊗ V (λ′′)→ V (λ′)⊗ V (λ′)
v′1 ⊗ v

′′

1 ⊗ v
′

2 ⊗ v
′′

2 7→ b2(v′′1 , v
′′

2 )v
′

1 ⊗ v
′

2.
(4.6)

Since b1 is symmetric, we have

c ′(vλ′ ⊗ vλ′′ ⊗ v−λ′ ⊗ v−λ′′ + v−λ′ ⊗ v−λ′′ ⊗ vλ′ ⊗ vλ′′) = b1(vλ′ , v−λ′)(vλ′′ ⊗ v−λ′′ + v−λ′′ ⊗ vλ′′) 6= 0.

Hence, as the symmetric modules S2V (λ) and S2V (λ′′) are generated by the vectors vλ′⊗vλ′′⊗v−λ′⊗v−λ′′ +v−λ′⊗v−λ′′⊗
vλ′ ⊗ vλ′′ and vλ′′ ⊗ v−λ′′ + v−λ′′ ⊗ vλ′′ respectively, we get a copy of the second symmetric power S2V (λ′′) inside S2V (λ).
Moreover, since dim V (λ) > dim V (λ′′), we have S2V (λ′′) 6= S2V (λ). In this way using (4.1), S2V (λ′′) appears as a proper
submodule inside sp(V ) = h⊕ m. Similar arguments for c ′′ and the skew symmetric b2 yield

c ′′(vλ′ ⊗ vλ′′ ⊗ v−λ′ ⊗ v−λ′′ + v−λ′ ⊗ v−λ′′ ⊗ vλ′ ⊗ vλ′′) = b2(vλ′′ , v−λ′′)(vλ′ ⊗ v−λ′ − v−λ′ ⊗ vλ′) 6= 0,

and therefore the second alternating power
∧2 V (λ′) also appears properly in themodule decomposition of S2V (λ) ∼= h⊕m.

Since h is contained in both so(V (λ′), b1) '
∧2 V (λ′) and in sp(V (λ′′), b2) ' S2V (λ′′), and m is irreducible, we get

so(V (λ′)) ∼=
2∧
V (λ′) ∼= h ∼= S2V (λ′′) ∼= sp(V (λ′′)). (4.7)

Then Lemma 4.1 shows that either h is a simple Lie algebra of type A1, λ′ = 2λ1 and λ′′ = λ1; or h is simple of type
B2 and therefore λ′ = λ1 and λ′′ = λ2. The latter possibility does not work from the dimensionality of the different
modules involved: dim V = dim V (λ1 + λ2) = 16, dim h = dim B2 = 10 and dimm = dim V (2λ1 + 2λ2) = 81, but
dim sp(V ) = 136 > dim h+ dimm = 91. Hence, in case λ is not fundamental, h is of type A1 with λ = λ′ + λ′′ = 3λ1 and
this completes the proof. �
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Lemma 4.2 shows that the irreducible LY-algebras which appear inside reductive decompositions sp(V ) = h ⊕ m

satisfying (a), (b) and (c) in (1.4) are given by simple and maximal linear subalgebras h with natural action on V given
by a fundamental and self-dual dominant weight except for sp4(k) ∼= so5(k). This allows us to endow V with a structure of
either a symplectic triple system (see [31] and [7, Definition 2.1] for a definition) or an anti-Lie triple system (see [13]), such
that h becomes its inner derivation algebra. In this way, the classification in the sp-case will follow from known results on
these triple systems.
For an arbitrary reductive decomposition sp(V , b) = h ⊕ m, the h-module isomorphism in (4.1) allows us to define the

map

V ⊗ V → sp(V , b)→ h

x⊗ y 7→ γx,y 7→ dx,y,
(4.8)

where dx,y denotes the projection of γx,y = b(x, .)y+b(y, .)x onto h, so the subalgebra h appears as h = span〈dx,y : x, y ∈ V 〉.
Using these projections dx,y, we define the triple product on V

xyz := dx,yz, (4.9)

which satisfies the following identities:

xyz = yxz, (4.10)
xy(uvw) = (xyu)vw + u(xyv)w + uv(xyw), (4.11)
b(xyu, v)+ b(u, xyv) = 0, (4.12)

for x, y, z ∈ V . Identity (4.10) is equivalent to the operator dx,y being symmetric as a function of x and y. Identity (4.11)
states that (4.8) is an h-module homomorphism and (4.12) follows because h is a subalgebra of sp(V , b). Moreover, since
dx,yz = xyz, the subalgebra h becomes the inner derivation algebra of the triple (V , xyz), so that

h = span〈dx,y : x, y ∈ V 〉 = Inder V . (4.13)

Then, we have the following result, which is parallel to Lemma 3.2:

Lemma 4.3. Given a reductive decomposition sp(V , b) = h⊕m satisfying (a), (b), (c) in (1.4), the vector space V endowed with
the triple product dx,yz = xyz defined in (4.9) is either a simple anti-Lie triple system of classical type or a simple symplectic triple
system with associated symmetric form ξb for some nonzero scalar ξ . Moreover, the subalgebra h satisfies the equation

h = span〈dx,y : x, y ∈ V 〉, (4.14)

and therefore coincides with the inner derivation algebra of the corresponding triple system, and the subspacem is the orthogonal
complement h⊥ to h relative to the Killing form of sp(V , b).

Proof. Since the triple product (4.9) belongs to Homh(S2V ⊗ V , V ), we will describe the previous vector space in order to
get the different possible products. Following Lemma 4.2, V is an irreducible and self-dual module for h. Also (4.1) gives
S2V ∼= sp(V ) = h⊕ m, so

Homh(S2V ⊗ V , V ) ∼= Homh(S2V , V ⊗ V )
∼= Homh(h, V ⊗ V )⊕ Homh(m, V ⊗ V ).

(4.15)

Then, using [10, Theorem 1] and the dimension equality

dimHomh(h, V ⊗ V ) = dimHomh(V ⊗ V , h),

the first summand in (4.15) is one dimensional. The same is deduced from the Clebsch–Gordan formula for the second
summand in case h is of type A1 and V = V (3λ1), as then we have V (3λ1)⊗ V (3λ1) ∼= V (6λ1)⊕ V (4λ1)⊕ V (2λ1)⊕ V (0).
Otherwise by Lemma 4.2, V = V (λi) with λi fundamental and m = V (2λi), so the result follows from (3.2). Hence, Homh

(S2V ⊗ V , V ) is always a two-dimensional vector space.
On the other hand, S2V ⊗ V can be decomposed as the module sum:

S2V ⊗ V = S3V ⊕ span〈(x⊗ y+ y⊗ x)⊗ z − (z ⊗ y+ y⊗ z)⊗ x〉. (4.16)

Write S = span〈(x ⊗ y + y ⊗ x) ⊗ z − (z ⊗ y + y ⊗ z) ⊗ x : x, y, z,∈ V 〉, then we can consider the nonzero h-module
homomorphism ϕ : S → V given by

ϕ((x⊗ y+ y⊗ x)⊗ z − (z ⊗ y+ y⊗ z)⊗ x) = γx,y(z)− γz,y(x) = 2b(x, z)y+ b(y, z)x− b(y, x)z,

where γx,y is given in (4.1). We have the alternative decomposition

S2V ⊗ V = S3V ⊕ Kerϕ ⊕ V , (4.17)

and therefore we can display Homh(S2V ⊗ V , V ) as

Homh(S2V ⊗ V , V ) = Homh(S3V , V )⊕ Homh(Kerϕ, V )⊕ Homh(V , V ). (4.18)
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Since Homh(S2V ⊗V , V ) is two dimensional and V is irreducible as an h-module, Eq. (4.18) shows that either Homh(S3V , V )
is a trivial vector space or Homh(S, V ) is a one-dimensional vector space spanned by ϕ. In case Homh(S3V , V ) = 0, the triple
product xyz defined in (4.9) restricted to S3V must be trivial. Then this product satisfies the additional identity

xyz + zxy+ yzx = 0, (4.19)

for all x, y, z ∈ V . Hence, using (4.10), (4.11) and (4.19) we have that (V , xyz) is an anti-Lie triple system with h as inner
derivation algebra. Moreover, the triple system is simple and of classical type by the h-irreducibility of V .
Otherwise, Homh(S, V ) = kϕ, and the restriction of the triple product to S gives us the relationship

xyz − zyx = ξ(2b(x, z)y+ b(y, z)x− b(y, x)z), (4.20)

for some ξ ∈ k. Moreover ξ must be nonzero: otherwise, for all x, y, z ∈ V we have xyz = zyx and the triple products
〈xσ y−σ zσ 〉 = σ xσ y−σ zσ defined on the vector space pairU = (V+, V−)with V σ = V and σ = ±, satisfy

〈xσ y−σ zσ 〉 = σ xσ y−σ zσ = σ zσ y−σ xσ = 〈zσ y−σ xσ 〉,

and from (4.10) and (4.11)

〈xσ y−σ 〈uσv−σwσ 〉〉 = σ 2xσ y−σ (uσv−σwσ )
= σ 2((xσ y−σuσ )v−σwσ )+ uσ (y−σ xσv−σ )wσ + uσv−σ (xσ y−σwσ ))
= 〈〈xσ y−σuσ 〉v−σwσ 〉 − 〈uσ 〈y−σ xσv−σ 〉wσ 〉 + 〈uσv−σ 〈xσ y−σwσ 〉〉.

ThereforeU is a Jordan pair for which the inner derivation operators are of the form

(D+(x+, y−),D−(y−, x+)) = (〈x+y−., 〉,−〈y−x+.〉)
= (x+y−., y−x+.).

(4.21)

Now from (4.10) we have dx,yz = xyz = dy,xz, thus (D+(x+, y−),D−(y−, x+)) = (Dx+,y− ,Dx+,y−), which shows that the Lie
algebra InderU is isomorphic to h. Since V is h-irreducible,U is a simple Jordan pair ([13, Proposition 1.2]). But from Table 5
we deduce that the inner derivation Lie algebras of the simple Jordan pairs are not simple. Hence ξ 6= 0. Now, from (4.20)
we get xyz − zyx = ξ(2b(x, z)y+ b(y, z)x− b(y, x)z) for any x, y, z and using (4.10) we obtain

yxz − yzx = xyz − zyx = ξb(y, z)x− ξb(y, x)z + 2ξb(x, z)y.

The previous identity, together with (4.10)–(4.12), shows that (V , xyz) is a symplectic triple system with associated skew
symmetric bilinear form ξb(x, y). Moreover, as b(x, y) is nondegenerate, V is a simple triple system ([7, Proposition 2.4])
with h as its inner derivation algebra. �

Now we have all the ingredients in order to state the main result of this section:

Theorem 4.4. Let (m, a · b, [a, b, c]) be an irreducible LY-algebra of generic type and standard enveloping Lie algebra of type sp.
Then there is a simple symplectic triple system (T , [. . .], b) of one of the following forms:

(i) Tk, the symplectic triple system associated to the Jordan algebra J = k with cubic form n(α) = α3,
(ii) TH3(C), the symplectic triple system associated to the Jordan algebra J = H3(C), where C is either k, k × k,Mat2(k) or the
algebra of octonions O,

such that, up to isomorphism, g(m) = sp(T , b) and h = Inder T . The LY-algebram appears as the orthogonal complement to h in
g(m) relative to the Killing form, with the binary and ternary products in (1.1).
Conversely, these LY-algebras are irreducible of generic type and standard enveloping algebra of type sp.

Proof. Lemmas 4.2 and 4.3 show that m = h⊥, the orthogonal complement of the inner derivation algebra h of a simple
anti-Lie or symplectic triple system (V , xyz)with the following extra features:

(1) the inner derivation algebra Inder V is a simple Lie algebra,
(2) V = V (mλi) is the Inder V -irreducible module with dominant weightm-times a fundamental weight λi and dim V ≥ 4
(actually, either dim V = 4, h = A1 and λ = 3λ1 or λ is a fundamental dominant weight),

(3) S2V decomposes as a sum of two irreducible modules.

Since isomorphic irreducible anti-Lie or symplectic triple systems provide isomorphic LY-algebras, we just have to check
which triple systems satisfy these extra conditions. Following [13], the simple anti-Lie triple systems are the odd parts
of the simple Lie superalgebras and therefore the classification of such triple systems is reduced to that of the simple
Lie superalgebras in [16]. For simple symplectic triple systems we will follow the classification and comments given in
[7, Section 2]. Both classifications are outlined in the Appendix of the paper. Table 2 shows that there are no simple anti-Lie
triple systems satisfying (1)–(3) simultaneously. For simple symplectic triple systems, following Table 3 and applying the
restrictions (1)–(2)–(3), we get that the only possibilities are given by the simple symplectic triple systems Tk, associated to
the one-dimensional Jordan algebra k in item (i), and the simple symplectic triple systems TJ associated to a simple Jordan
algebra J = H3(C) of degree 3 with C = k, k× k, the algebra of quaternions or the algebra of octonions, which proves the
theorem. �
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5. Exceptional case

In this section we deal with the irreducible LY-algebras of Generic Type and exceptional standard enveloping Lie algebra.
These systems appear in reductive decompositions g = h ⊕ m for which (a), (b) and (c) in (1.4) hold, g being a simple Lie
algebra of type G2, F4, E6, E7, or E8. The classification in this case is given in the next result:
Theorem 5.1. Let (m, x · y, [x, y, z]) be an irreducible LY-algebra of generic type and exceptional standard enveloping algebra.
Then one of the following holds:
(i) m is the Lie triple system associated to one of the symmetric pairs (F4, B4), (E6, F4), (E6, C4), (E7, A7) or (E8,D8).
(ii) m = h⊥ is the orthogonal complement with respect to the Killing form in g associated to one of the reductive pairs (g, h) =

(G2, A1), (E6,G2) or (E7, A2). Moreover, for the previous pairs, as a module for h, m is isomorphic to V (10λ1), V (λ1 ⊕ λ2)
and V (4λ1 ⊕ 4λ2) respectively.

Conversely, the listed cases in (i) and (ii) are indeed irreducible LY-algebras of generic type and exceptional standard enveloping
algebras.
Proof. Letm be a LY-algebra of generic type and exceptional standard enveloping Lie algebra g = h⊕m as in (1.4). Lemma4.2
in [3] shows that for each such reductive decomposition there exists an analogous decomposition g̃ = h̃⊕m̃ over the complex
numbers. In particular, the highest weight of m as a module for h coincides with the highest weight of m̃ as a module for h̃.
Then, because of [3, Lemma 4.3], either m is a Lie triple system and we obtain (i), or h is a simple S-subalgebra of g and the
different possibilities for the pair (g, h) can be read from [6, Theorem 14.1], where a complete list of the complex maximal
and simple S-subalgebras of the exceptional Lie algebras is given: (g, h) = (G2, A1), (F4, A1), (E6, A1), (E7, A1), (E8, A1),
(E6,G2), (E6, C4), (E6, F4), or (E7, A2).
The cases (E6, C4) and (E6, F4) correspond to symmetric pairs already considered in (i). In case h = A1, the irreducibility

restriction on m forces m = V (nλ1) for some n ≥ 1. Now, given a Cartan subalgebra, spanned by an element h, of A1 we can
pick up a Cartan subalgebra H of g with h ∈ H . Then, [H, h] = 0, so H ⊆ Cg(h) = k · h ⊕ V (nλ1)0, where V (nλ1)0 is the
0-weight subspace of V (nλ1). Since dim V (nλ1)0 is 0 or 1, depending on the parity of n, we get that gmust be a Lie algebra
of rank 2. Hence, (G2, A1) is the unique possibility that works. A dimension count shows that n = 10 in this case.
A dimension count for the other cases (E6,G2) and (E7, A2) completes the proof. �

Remark 5.2. The reductive pair (G2, A1) can be constructed by using transvections. A construction of G2 from A1 = sl2(k)
and an 11-dimensional module is given in Dixmier [5] (see also [2]). The symmetric pairs (F4, B4) and (E6, F4) are strongly
related to theAlbert algebra (the exceptional simple Jordan algebra, see [15]). Nice constructions of the pairs (E8,D8), (E7, A7)
and (E6, C4) can be read from constructions in [1].

6. Appendix

6.1. Lie and anti-Lie triple systems

Following [20, Theorem 1.1] Lie triple systems are nothing else but skew symmetric elements relative to involutive
automorphisms in Lie algebras. That is, these systems can be viewed as the odd part of Z2-graded Lie algebras. Anti-Lie
triple systems appear in the same vein by using the odd part of Lie superalgebras. Since Lie triple systems are LY-algebras
with trivial binary product, because of Definition 1.1 of this paper and [13, Section 5], it is possible to introduce both triple
systems in an axiomatically unifiedway by using a vector space V endowedwith a triple product xyz satisfying the identities

xyz = ε yxz,
xyz + yzx+ zxy = 0,
xy(uvw) = (xyu)vw + u(xyv)w + uv(xyw),

(6.1)

where ε = −1 for Lie triple systems and ε = 1 for anti-Lie triple systems.
Given a Lie or anti-Lie triple system (V , xyz), the standard enveloping construction g(V ) = D(V , V )⊕ V in (1.2), where

D(V , V ) = Inder V = span〈dx,y : x, y ∈ V 〉, dx,yz = xyz, is the inner derivation Lie algebra of the corresponding triple
system, provides either a Z2-graded Lie algebra or a Lie superalgebra according to V being a Lie or and anti-Lie triple system.
Moreover, it is not difficult to prove that the Lie algebra (respectively superalgebra) g(V ) is graded simple (respectively
simple) if and only if the Lie (respectively anti-Lie) triple system V is simple.
Over algebraically closed fields of characteristic zero, simple Lie triple systems were classified in [20] through involutive

automorphisms. Table I in [10] presents an alternative classification of these systems by means of (reductive) symmetric
pairs (g(V ), Inder V ) obtained from affine Dynkin diagrams (see [17, Chapter 4]) that encode the Cartan type of the standard
enveloping Lie algebra g(V ) and the inner derivation Lie algebra Inder V of the Lie triple system V . These diagrams are
equipped with some numerical labels which describe the lowest weight of V as a module for Inder V (the highest weight
also is easily checked since simple Lie triple systems are self-dual modules). Using the latter classification, in [11, Table III]
all simple and Inder V -irreducible Lie triple systems are listed. Combining the results in [10] and [11] we arrive at Table 1,
that displays the irreducible Lie triple systems whose inner derivation algebra is simple.
On the other hand, as simple anti-Lie triple systems are the odd part of simple Lie superalgebras, the classification of

these systems can be obtained from that of the simple Lie superalgebras in [16]. Of special interest for our purposes are the
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Table 1
Irreducible L.t.s. with simple inner derivation Lie algebra.

(g(V ), Inder V ) Inder V V = V (kλi) V (2kλi − αi) so(V ) ∼=
∧2 V

(A1 × A1, A1) V (2λ1) V (2λ1) V (2λ1) V (2λ1)
(An × An, An)n≥2 V (λ1+λn) V (λ1+λn)
(B3 × B3, B3) V (λ2) V (λ2) V (λ1 + 2λ3) V (λ2)⊕ V (λ1 + 2λ3)
(Bn × Bn, Bn)n≥4 V (λ2) V (λ2) V (λ1 + λ3) V (λ2)⊕ V (λ1 + 2λ3)
(Cn × Cn, Cn)n≥2 V (2λ1) V (2λ1) V (2λ1 + λ2) V (2λ1)⊕ V (2λ1 + λ2)
(D4 × D4,D4) V (λ2) V (λ2) V (λ1+λ3+λ4) V (λ2)⊕ V (λ1+λ3+λ4)
(Dn × Dn,Dn)n≥5 V (λ2) V (λ2) V (λ1 + λ3) V (λ2)⊕ V (λ1 + 2λ3)
(G2 × G2,G2) V (λ2) V (λ2) V (3λ1) V (λ2)⊕ V (3λ1)
(F4 × F4, F4) V (λ1) V (λ1) V (λ2) V (λ1)⊕ V (λ2)
(E6 × E6, E6) V (λ2) V (λ2) V (λ4) V (λ2)⊕ V (λ4)
(E7 × E7, E7) V (λ1) V (λ1) V (λ3) V (λ1)⊕ V (λ3)
(E8 × E8, E8) V (λ8) V (λ8) V (λ7) V (λ8)⊕ V (λ7)

(D3, B2) V (2λ2) V (λ1) V (2λ2) V (2λ2)
(B3,D3) V (λ2+λ3) V (λ1) V (λ2 + λ3) V (λ2 + λ3)
(Bn,Dn)n≥4 V (λ2) V (λ1) V (λ2) V (λ2)
(Dn+1, Bn)n≥3 V (λ2) V (λ1) V (λ2) V (λ2)

(A2, A1) V (2λ1) V (4λ1) V (6λ1) V (2λ1)⊕ V (6λ1)
(A4, B2) V (2λ2) V (2λ1) V (2λ1 + 2λ2) V (2λ2)⊕ V (2λ1 + 2λ2)
(A2n, Bn)n≥3 V (λ2) V (2λ1) V (2λ1 + λ2) V (λ2)⊕ V (2λ1 + λ2)
(A2n−1, Cn)n≥3 V (2λ1) V (λ2) V (λ1 + λ3) V (2λ1)⊕ V (λ1 + λ3)
(A5,D3)n≥4 V (λ2+λ3) V (2λ1) V (2λ1+λ2+λ3) V (λ2+λ3)⊕ V (2λ1+λ2+λ3)
(A2n−1,Dn)n≥4 V (λ2) V (2λ1) V (2λ1 + λ2) V (λ2)⊕ V (2λ1 + λ2)

(E6, F4) V (λ1) V (λ4) V (λ3) V (λ1)⊕ V (λ3)
(F4, B4) V (λ2) V (λ4) V (λ3) V (λ2)⊕ V (λ3)
(E6, C4) V (2λ1) V (λ4) V (2λ3) V (2λ1)⊕ V (2λ3)
(E7, A7) V (λ1+λ7) V (λ4) V (λ3 + λ5) V (λ1 + λ7)⊕ V (λ3 + λ5)
(E8,D8) V (λ2) V (λ8) V (λ6) V (λ2)⊕ V (λ6)

simple anti-Lie triple systems V which are completely reducible as modules for Inder V . This class of systems appears from
the odd parts of the simple classical Lie superalgebras listed in Table 2. We shall refer to them as anti-Lie triple systems of
classical type. Structural module information on Table 2 follows from [16, Proposition 2.1.2].

6.2. Symplectic and orthogonal triple systems

Symplectic triple systems were introduced in [31] and orthogonal triple systems were defined in [26, Section V]. They
are basic ingredients in the construction of some 5-graded Lie algebras and Lie superalgebras respectively (see [7]), and
hence they are strongly related to Z2-graded Lie algebras and to a specific class of Lie superalgebras. These triple systems
consist of a vector space V endowed with a trilinear product xyz and a ε-bilinear form b, with ε = −1 (skew symmetric) for
symplectic triple systems and ε = 1 (symmetric) for orthogonal ones, satisfying the relations

xyz = −ε yxz,
xyz + εxzy = ε b(x, y)z + b(x, z)y− ε 2b(y, z)x,
xy(uvw) = (xyu)vw + u(xyv)w + uv(xyw).

(6.2)

We note that the second relation in the orthogonal case (ε = 1) is just the linearization of the identity

xyy = b(x, y)y− b(y, y)x, (6.3)

and, from the third relation, we can introduce for these systems in the usual way the inner derivation Lie algebra Inder V =
span〈dx,y : x, y ∈ V 〉.
Symplectic and orthogonal triple systems are related to the so called (−ε,−ε) balanced Freudenthal–Kantor triple

systems introduced in [32]. In [7, Theorems 2.16 and 2.18] it is also shown that symplectic triple systems are closely related
to Freudenthal triple systems and a class of ternary algebras defined in [12]: the balanced symplectic Lie algebras. Moreover,
following [7, Theorems 2.4 and 4.4], the simplicity of both types of triple systems (fields of characteristic different from 2
and 3) is equivalent to the nondegeneracy of the associated bilinear form b.
The relationship between symplectic triple systems, Freudenthal triple systems and ternary algebras leads to the

classification of simple symplectic triple systems over algebraically closed fields of characteristic different from2 and 3 given
in [7, Theorem 2.21] (the classification is based on previous classifications of Freudenthal triple systems in [23] and simple
ternary algebras from [12, Theorem 4.1]). For simple orthogonal triple systems, Theorem 4.7 in [7] displays the classification
over algebraically closed fields of characteristic zero, by means of a previous classification of the simple (−1,−1) balanced
Freudenthal–Kantor triple systems in [8, Theorem 4.3]. The classifications and comments therein [7] provide Tables 3 and 4,
where the Cartan type of the Lie algebra Inder V and the Inder V -module structure of V is given for the different types of
simple symplectic and orthogonal triple systems.
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Table 2
Simple classical Lie superalgebras.

L-Type L0̄ L1̄ asL0̄-module

A(m, 0)m≥1 Am × Za V (λ1)⊕ V (λm)
A(m, n)m>n≥1 Am × An × Z V (λ1)⊗ V (λ′1)⊕ V (λm)⊗ V (λ

′
n)

A(n, n)n≥1 An × An V (λ1)⊗ V (λ′1)⊕ V (λn)⊗ V (λ
′
n)

B(0, n)n≥1 Cn V (λ1)
B(m, n)m,n≥1 Bm × Cn V (λ1)⊗ V (λ′1)

D(2, n)n≥2 A1 × A1 × Cn V (λ1)⊗ V (λ′1)⊗ V (λ
′′

1)

D(m, n)m≥3,n≥1 Dm × Cn V (λ1)⊗ V (λ′1)

C(n)n≥2 Cn−1 × Z V (λ1)⊕ V (λ1)

Q (n)n≥2 An V (λ1 + λn)

P(n)n≥2 An V (λn−1)⊕ V (2λ1)

D(2, 1;α)α 6=0,−1 A1 × A1 × A1 V (λ1)⊗ V (λ′1)⊗ V (λ
′′

1)

F(4) B3 × A1 V (λ3)⊗ V (λ′1)

G(3) G2 × A1 V (λ1)⊗ V (λ′1)
a Z stands for a one-dimensional center of L0̄ . In case L0̄ = [L0̄,L0̄] × Z , the highest weight of L1̄ as a module for [L0̄,L0̄] is considered. For these
cases, L1̄ decomposes as sum of two irreducible modules. The elements of the center act as α · Id in one of the two summands, α being a nonzero scalar,
and as−α · Id on the other summand. The same remark applies to the remaining tables.

Table 3
Simple symplectic triple systems.

V -Type dim V Inder V V as Inder V -module sp(V ) ∼= S2V

Orthogonal type 8 A1×A1×A1 V (λ1)⊗V (λ′1)⊗V (λ
′′

1)

4n, n ≥ 3 A1×Dn V (λ1)⊗V (λ′1)
6 A1×A1 V (λ1)⊗V (2λ′1)
4n+ 2, n ≥ 2 A1×Bn V (λ1)⊗V (λ′1)

Special type 2 Z k× k
2n, n ≥ 2 An−1 × Z V (λ1)⊗ V (λn−1)

Symplectic type 2 A1 V (λ1) V (2λ1)
2n, n ≥ 2 Cn V (λ1) V (2λ1)

Tk 4 A1 V (3λ1) V (6λ1)⊕ V (2λ1)
TH3(k) 14 C3 V (λ3) V (2λ1)⊕ V (2λ3)
TH3(k×k) 20 A5 V (λ3) V (λ1 + λ5)⊕ V (2λ3)
TH3(Q) 32 D6 V (λ6) V (λ2)⊕ V (2λ6)
TH3(O) 56 E7 V (λ7) V (λ1)⊕ V (2λ7)

Table 4
Simple orthogonal triple systems.

V -Type dim V Inder V V as Inder V -module so(V ) ∼=
∧2 V

Orthogonal type 3, 5 A1, B2 V (2λ1), V (λ1) V (2λ1), V (2λ2)
2n+ 1, n ≥ 3 Bn V (λ1) V (λ2)
2, 4 Z, A1 × A1 k× k, V (λ1)⊗ V (λ′1)
6 D3 V (λ1) V (λ2 + λ3)
2n, n ≥ 4 Dn V (λ1) V (λ2)

Unitarian type 2n, n ≥ 3 An−1 × Z V (λ1)⊕ V (λn−1)

Symplectic type 4n, n ≥ 2 A1 × Cn V (λ1)⊗ V (λ′1)

Dµ-type 4 A1 × A1 V (λ1)⊕ V (λ′1)

G-type 7 G2 V (λ1) V (λ1)⊕ V (λ2)

F-type 8 B3 V (λ3) V (λ1)⊕ V (λ2)

Among the simple symplectic triple systems a special use of the following ones will be made:

TJ =

{(
α a
b β

)
: α, β ∈ k, a, b ∈ J

}
, (6.4)

whereJ = Jordan(n, c) is the Jordan algebra of a nondegenerate cubic form nwith basepoint (see [22, II.4.3] for a definition)
of one of the following types: J = k, n(α) = α3 and t(α, β) = 3αβ or J = H3(C) for a unital composition algebra C.
Theorem 2.21 in [7] displays the product and bilinear form for the triple systems TJ by using the trace form t(a, b) and the
cross product a× b attached to the Jordan algebra J.



126 P. Benito et al. / Journal of Pure and Applied Algebra 215 (2011) 108–130

Table 5
Simple Jordan pairs.

U-Type (U+,U−)-description InderU U+ U−

Ip,qa U+ =Mp,q(k) Ap−1×Aq−1×Z V (λ1)⊗V (λ′1) V (λp−1)⊗V (λ′q−1)
p≥q≥1 U− =Mp,q(k)

{xyz} = xyt z + zytx

IIn U+ = U− = An(k) An−1 × Z V (λ2) V (λn−2)
n ≥ 5 {xyz} = xyt z + zytx

IIIn U+ = U− = Hn(k) An−1 × Z V (2λ1) V (2λn−1)
n ≥ 2 {xyz} = xyt z + zytx

IV2n U+ = U− = k2n Dn × Z V (λ1) V (λ1)
n ≥ 3 {xyz}=b(x,y)z+bx,y(z)

b(x, y) = b(y, x)

IV2n+1 U+ = U− = k2n+1 Bn × Z V (λ1) V (λ1)
n ≥ 2 {xyz}=b(x,y)z+bx,y(z)

b(x, y) = b(y, x)

V U+ = U− =M1,2(O) D5 × Z V (λ4) V (λ5)
{xyz} = x(ȳt z)+ z(ȳtx)

VI U+ = U− = H3(O) E6 × Z V (λ1) V (λ6)
{xyz}=x(zy)+z(xy)−(zx)y

a The isomorphism I2,2 ∼= IV4 has been omitted in the classification given in [21].

Table 6
Simple anti-Jordan pairs.

U-Type (U+,U−)-description InderU U+ U−

GLp,q U+ =Mp,q(k) Ap−1×Aq−1×Z p 6= q V (λ1)⊗V (λ′1) V (λp−1)⊗V (λ′q−1)
p≥q≥1 U− =Mp,q(k) Ap−1×Aq−1 p = q
pq > 1 {xyz} = xyt z − zytx

Sps(2n) U+ = U− = k2n Cn × Z V (λ1) V (λ1)
n ≥ 1 {xyz} = b(x,y)z+bx,y(z)

b(x, y) = −b(y, x)

Sym(n)a U+ = Hn(k) An−1 V (2λ1) V (λn−2)
n ≥ 3 U− = An(k)

{xyz} = xyz − zyx
a In [12, Proposition 2.8] the anti-Jordan pair Sym(2) is erroneously included as simple: {A2(k)H2(k)A2(k)} = 0, so (H2(k), 0) is a proper ideal.

Table 7
Irreducible LY-algebras of Adjoint Type.

g(m) h m-description

k[t]/(t2 − 1)⊗L DerL ∼= L La

a · b = 0
[a, b, c] = [[a, b], c]

k[t]/(t2 − t − β)⊗L DerL ∼= L L
β 6= −1/4 a · b = [a, b]

[a, b, c] = β[[a, b], c]

k[t]/(t2)⊗L DerL ∼= L L
a · b = [a, b]
[a, b, c] = −1/4[[a, b], c]

a L stands for a simple Lie algebra with product [a, b], soL is either a classical linear algebra sln(k), n ≥ 1 (Cartan type An−1), son(k), n ≥ 5 (Cartan type
Bk or Dk according to n = 2k+ 1 or n = 2k), sp2n, n ≥ 3 (Cartan type Cn) or an exceptional algebra of type G2, F4, E6, E7, E8 .

6.3. Jordan and anti-Jordan pairs

Jordan pairs, axiomatically introduced (for arbitrary fields and dimension) in [21] are basic ingredients in the construction
of Lie algebras with 3-gradings. In the context of Lie superalgebras endowed with a consistent 3-grading, the anti-Jordan
pairs introduced in [13] constitute the corresponding concept. Following [13] (see also [24, Chapter XI]), over fields of
characteristic different from 2 and 3 both types of pairs can be defined by means of a pair of vector spacesU = (U+,U−)
with trilinear products {xσ y−σ zσ } for σ = ± satisfying the identities:

{xσ y−σ zσ } = ε{zσ y−σ xσ }
{xσ y−σ {uσv−σwσ }} = {{xσ y−σuσ }v−σwσ } − ε{uσ {y−σ xσv−σ }wσ } + {uσv−σ {xσ y−σwσ }},

(6.5)

with ε = 1 for Jordan pairs and ε = −1 for anti-Jordan pairs.
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Table 8
Irreducible LY-algebras of Non-simple Type.

g(m) h m-description

slpq(k) slp(k)⊕ slq(k) slp(k)⊗ slq(k)
2 ≤ p ≤ q (a⊗ f ) · (b⊗ g) = 1

2 [a, b] ⊗ (fg + gf −
2
q tr(fg)Iq)+

(p, q) 6= (2, 2) 1
2 (ab+ ba−

2
p tr(ab)Ip)⊗ [f , g]

[a⊗ f , b⊗ g, c ⊗ h] = 1
q [[a, b], c] ⊗ tr(fg)h+

1
p tr(ab)c ⊗ [[f , g], h]

sop+q(k) sop(k)⊕ soq(k) kp ⊗ kq
3 ≤ p ≤ q (u⊗ x) · (v ⊗ y) = 0

[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+
ψ(u, v)(w ⊗ ϕx,y(z))
b = ϕ,ψ : b(x, y) = b(y, x) and bx,y(z) = b(x, z)y− b(y, z)x

so4q(k) sp2(k)⊕ spq(k) sp2(k)⊗Hq(Q)0
3 ≤ q (a⊗ f ) · (b⊗ g) = 1

2 [a, b] ⊗ (fg + gf −
2
q tr(fg)Iq)

[a⊗ f , b⊗ g, c ⊗ h] = 1
q [[a, b], c] ⊗ tr(fg)h+

1
2 tr(ab)c ⊗ [[f , g], h]

spp+q(k) spp(k)⊕ spq(k) kp ⊗ kq
2 ≤ p ≤ q (u⊗ x) · (v ⊗ y) = 0

[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+
ψ(u, v)(w ⊗ ϕx,y(z))
b = ϕ,ψ : b(x, y) = −b(y, x) and bx,y(z) = b(x, z)y+ b(y, z)x

sp2q(k) sp2(k)⊕ soq(k) sp2(k)⊗Hq(k)0
3 ≤ q (a⊗ f ) · (b⊗ g) = 1

2 [a, b] ⊗ (fg + gf −
2
q tr(fg)Iq)

[a⊗ f , b⊗ g, c ⊗ h] = 1
q [[a, b], c] ⊗ tr(fg)h+

1
2 tr(ab)c ⊗ [[f , g], h]

G2 sp2(k)⊕ sl2(k) k2 ⊗ Tk
(u⊗ x) · (v ⊗ y) = 0
[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+ ψ(u, v)w ⊗ xyz
b = ϕ,ψ : b(x, y) = −b(y, x) and bx,y(z) = b(x, z)y+ b(y, z)x

F4 sp2(k)⊕ sp6(k) k2 ⊗ TH3(k)
(u⊗ x) · (v ⊗ y) = 0
[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+ ψ(u, v)w ⊗ xyz
b = ϕ,ψ : b(x, y) = −b(y, x) and bx,y(z) = b(x, z)y+ b(y, z)x

F4 G2 ⊕ sl2(k) O0 ⊗H3(k)0
(a⊗ x) · (b⊗ y) = 1

2 [a, b] ⊗ (x • y− t(x • y)1)
[a⊗ x, b⊗ y, c ⊗ z] = Da,b(c)⊗ t(x • y)z + t(ab)c ⊗ dx,y(z)
x • y = 1

2 (xy+ yx) and dx,y(z) = x • (y • z)− y • (x • z)
Da,b(c) = 1

4 ([[a, b], c] + 3((ac)b− a(cb))
t(ab) and t(x • y) the normalized traces

E6 sp2(k)⊕ sl6(k) k2 ⊗ TH3(K)

(u⊗ x) · (v ⊗ y) = 0
[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+ ψ(u, v)w ⊗ xyz
b = ϕ,ψ : b(x, y) = −b(y, x) and bx,y(z) = b(x, z)y+ b(y, z)x

E6 G2 ⊕ sl3(k) O0 ⊗H3(k× k)0
(a⊗ x) · (b⊗ y) = 1

2 [a, b] ⊗ (x • y− t(x • y)1)
[a⊗ x, b⊗ y, c ⊗ z] = Da,b(c)⊗ t(x • y)z + t(ab)c ⊗ dx,y(z)
x • y = 1

2 (xy+ yx) and dx,y(z) = x • (y • z)− y • (x • z)
Da,b(c) = 1

4 ([[a, b], c] + 3((ac)b− a(cb))
t(ab) and t(x • y) the normalized traces

E7 sp2(k)⊕ so12(k) k2 ⊗ TH3(Q)

(u⊗ x) · (v ⊗ y) = 0
[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+ ψ(u, v)w ⊗ xyz
b = ϕ,ψ : b(x, y) = −b(y, x) and bx,y(z) = b(x, z)y+ b(y, z)x

E7 G2 ⊕ sp6(k) O0 ⊗H3(Q)0
(a⊗ x) · (b⊗ y) = 1

2 [a, b] ⊗ (x • y− t(x • y)1)
[a⊗ x, b⊗ y, c ⊗ z] = Da,b(c)⊗ t(x • y)z + t(ab)c ⊗ dx,y(z)
x • y = 1

2 (xy+ yx) and dx,y(z) = x • (y • z)− y • (x • z)
Da,b(c) = 1

4 ([[a, b], c] + 3((ac)b− a(cb))
t(ab) and t(x • y) the normalized traces

E7 sl2(k)⊕ F4 Q0 ⊗H3(Q)0
(a⊗ x) · (b⊗ y) = 1

2 [a, b] ⊗ (x • y− t(x • y)1)
[a⊗ x, b⊗ y, c ⊗ z] = Da,b(c)⊗ t(x • y)z + t(ab)c ⊗ dx,y(z)
x • y = 1

2 (xy+ yx) and dx,y(z) = x • (y • z)− y • (x • z)
Da,b(c) = 1

4 [[a, b], c]
t(ab) and t(x • y) the normalized traces

Continued on next page
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Table 8
(Continued.)

g(m) h m-description

E8 sp2(k)⊕ E7 k2 ⊗ TH3(O)

(u⊗ x) · (v ⊗ y) = 0
[u⊗ x, v ⊗ y, w ⊗ z] = ϕ(x, y)(ψu,v(w)⊗ z)+ ψ(u, v)w ⊗ xyz
b = ϕ,ψ : b(x, y) = −b(y, x) and bx,y(z) = b(x, z)y+ b(y, z)x

E8 G2 ⊕ F4 O0 ⊗H3(O)0
(a⊗ x) · (b⊗ y) = 1

2 [a, b] ⊗ (x • y− t(x • y)1)
[a⊗ x, b⊗ y, c ⊗ z] = Da,b(c)⊗ t(x • y)z + t(ab)c ⊗ dx,y(z)
x • y = 1

2 (xy+ yx) and dx,y(z) = x • (y • z)− y • (x • z)
Da,b(c) = 1

4 ([[a, b], c] + 3((ac)b− a(cb))
t(ab) and t(x • y) the normalized traces

The simplicity of such a system can be characterized through its inner derivation algebra:

InderU = span〈({x+y−·},−ε{y−x+·}) : x+ ∈ U+, y− ∈ U−〉 (6.6)

which is a Lie subalgebra of gl(U+) × gl(U−). According to [13, Proposition 1.2], U is a simple pair if and only if
{UσU−σUσ

} 6= 0 andUσ is an irreducible InderU-module (via the action of the σ -component). Over algebraically closed
fields of characteristic zero, the simple finite-dimensional Jordan and anti-Jordan pairswere classified in [21, Theorem17.12]
and [13, Sections 3 and 4]. In Tables 5 and 6 below a complete description of both classifications is given. The tables
include the inner derivation algebra InderU, the Cartan type of its derived subalgebra Inder0U = [InderU, InderU] and
the highest weight of Uσ as a module for Inder0U for the different simple Jordan and anti-Jordan pairs U. We follow
the matricial description of the original classifications, although alternative descriptions could be displayed. In this way,
rectangular p × q matrices, n × n symmetric or alternating matrices are represented in the tables byMp,q(k), Hn(k) and
An(k), whileM1,2(O) represents the space of 1× 2matrices over the octonionsO. We use the standard notationH3(O) for
the 27-dimensional exceptional Jordan algebra (or Albert algebra, see [15] or [28] for a complete description). For a given
matrix y, its transpose is denoted by yt and in case y ∈ M1,2(O), ȳ represents the standard involution induced inM1,2(O)
by the involution ofO. Triple products for Jordan pairs and anti-Jordan pairs of the formU = (kn, kn) are defined by means
of the operators

bx,y = b(y, ·)x− εb(x, ·)y, (6.7)

for a nondegenerate ε-symmetric form b (ε = 1 for b symmetric and ε = −1 in case b is skew symmetric).
The structural module information given on these tables can be obtained from a direct computation for the

different Jordan and anti-Jordan pairs. Alternatively, the relationship among Z2-graded simple Lie algebras (respectively
superalgebras) having a consistent 3-grading and Jordan pairs (resp. anti-Jordan pairs) allows us to obtain the complete
information from the classification of simple and nonirreducible Lie triple systems (using the corresponding affine Dynkin
diagrams in [10, Table I]) and simple superalgebras of type A(m, n), C(n) and P(n) (from [16, Proposition 2.1.2]).

7. Epilogue

The aim of this final section is to summarize the complete classification of irreducible LY-algebras while emphasizing
their connections to other algebraic systems. Following [3, Theorem 2.4] we arrive at the irreducible LY-algebras of Adjoint
Type. They are nothing else but simple Lie algebras with binary and ternary products given by the Lie bracket as Table 7
shows. From [3, Theorems 4.1 and 4.4] we get the information given in Table 8. In this table, the irreducible LY-algebras
of non-simple type and exceptional enveloping algebra appear related to the Classical Tits Construction and symplectic
(equivalently Freudenthal) triple systems TJ attached to a simple Jordan algebra J of degree 3 or equal to the base field
k. In the classical enveloping algebra case, the non-simple classification follows from a slight generalization of the Tits
Construction due to Benkart and Zelmanov and given in [4]. Along this paper we have seen that in the generic case, apart
from the Lie triple systems and the exceptional cases (G2, sl2(k)), (E7,G2) and (E7, sl3(k)), the irreducible LY-algebras are
related to reductive pairs (sl(V ) or so(V ) or sp(V ),Der? V ) for a suitable triple system V with Der? V closely related to
the (inner) derivation algebra of the system. In this way, either Jordan or anti-Jordan pairs (triple system) appear in the
sl-case, Lie or orthogonal triple systems in the so-case and symplectic or anti-Lie triple systems in the sp-case. This yields
our final Table 9 according to Theorems 2.2, 3.3 and 4.4. Note that, apart from simple Lie algebras, the basic ingredients in
the classification are the composition algebras (k, k× k,Q andO), and simple Jordan algebras and their trace zero elements
(Hn(k)),Hn(k× k),Hn(Q),Hn(O) and J(kn) = k1⊕ kn the Jordan algebra of a nondegenerate symmetric bilinear form, so
J(kn)0 = kn).
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Table 9
Irreducible LY-algebras of Generic Type.

g(m) h (g(m), h)-pair description m-description

sln(k) son(k) (Lie0 (Hn(k)),DerHn(k))
∗ Hn(k)0

5 ≤ n a · b = 0
[a, b, c] = (bc)a− b(ac)

sl2n(k) sp2n(k) (Lie0 (Hn(Q)),DerHn(Q)) Hn(Q)0
2 ≤ n a · b = 0

[a, b, c] = (bc)a− b(ac)

sl n(n+1)
2
(k) sln(k) (sl(Hn(k)),L0 (Hn(k)))

∗ h⊥

2 ≤ n

sl n(n−1)
2
(k) sln(k) (sl(An(k)),L0 (An(k))) h⊥

5 ≤ n

sl16(k) so10(k) (sl(M1,2(O)),L0 (M1,2(O))) h⊥

sl27(k) E6 (sl(H3(O)),L0 (H3(O))) h⊥

son+1(k) son(k) (Lie0 (J(k
n)),DerJ(kn))a kn

5 ≤ n x · y = 0
[x, y, z] = b(x, z)y− b(y, z)x
b(x, y) = b(y, x)

sodimL(k) DerL (so(L),DerL)b h⊥

so n2+n−2
2

(k) son(k) (so(Hn(k)0 ),DerHn(k)) h⊥

5 ≤ n
so2n2−n−1(k) sp2n(k) (so(Hn(Q)0 ),DerHn(Q)) h⊥

3 ≤ n

so26(k) F4 (so(H3(O)0 ),DerH3(O)) h⊥

so7(k) G2 (so(O0),DerO) O0
a · b = ab− ba
[a, b, c] = 2

(
[[a, b], c] − 3

(
(ac)b− a(cb)

))
so16(k) so9(k) (so(T

(F4 ,B4)
), Inder T

(F4 ,B4)
)c h⊥

so42(k) sp8(k) (so(T
(E6 ,C4)

), Inder T
(E6 ,C4)

) h⊥

so70(k) sl8(k) (so(T
(E7 ,A7)

), Inder T
(E7 ,A7)

) h⊥

so128(k) so16(k) (so(T
(E8 ,D8)

), Inder T
(E8 ,D8)

) h⊥

sp4(k) sl2(k) (sp(Tk), Inder Tk)d h⊥

sp14(k) sp6(k) (sp(TH3(k))), Inder TH3(k)) h⊥

sp20(k) sl6(k) (sp(TH3(k×k))), Inder TH3(k×k)) h⊥

sp32(k) so12(k) (sp(TH3(Q))), Inder TH3(Q)) h⊥

sp56(k) E7 (sp(TH3(O))), Inder TH3(O)) h⊥

G2 sl2(k) h⊥

F4 so9(k) T
(F4 ,B4)

E6 sp4(k) T
(E6 ,C4)

E6 G2 h⊥

E6 F4 (Lie0 (H3(O)),DerH3(O)) H3(O)0
a · b = 0
[a, b, c] = (bc)a− b(ac)

E7 sl8(k) T
(E7 ,A7)

E7 sl3(k) h⊥

E8 so16(k) T
(E8 ,D8)

a Lie0 (J) stands for the derived algebra of the Lie multiplication algebra attached to the Jordan algebra J and L0 (T ) is as defined in Theorem 2.2 for
the Jordan triple T .
b L stands for a simple Lie algebra different from sln(k).
c T(g,s) stands for a simple Lie triple system attached to one of the exceptional symmetric pairs (g, s) = (F4, B4), (E6, C4), (E7, A7) or (E8,D8).
d TJ stands for a simple symplectic Lie triple attached to a Jordan simple algebra J = k,H3(k),H3(k× k),H3(Q) orH3(O).
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