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INTRODUCTION

The paper deals with almost split sequences. Introduced in [2] for the
category mod A of finitely generated modules over an artin algebra A,
almost split sequences were later found in the category of lattices over an
order [1,4], as well as in certain subcategories of mod 4 [6, 18, 3]. It is
generally recognized that if almost split sequences exist, the subcategory
has nice properties. We are concerned with the subcategory of relatively
projective modules.

Let R be a field or a Dedekind domain with the field of quotients k, and
let A and A be finite-dimensional R-algebras or R-orders, respectively, with
A mapped into A via an R-algebra mapi: 4 — 4. Here we understand
orders and lattices in the sense of [ 1, p. 85, Example (b)]. Namely, A4 is an
R-order if it is a noetherian R-algebra projective as an R-module, and
2=k ® A is a self-injective ring. A-mod denotes the category of finitely
generated left 4-modules if R is a field, or the category of left A-lattices if
R is a Dedekind domain, where a left 4-module M is a lattice if it is a
finitely generated projective R-module such that k ® . M is a projective
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20 BAUTISTA AND KLEINER

> -module. As pointed out in [1], the classical orders and lattices fit into
this more general scheme. Denote by p(4, A) the full subcategory of A-mod
determined by the relatively projective A-modules, ie., by the induced
modules, isomorphic to 4 ® , X with XeAd-mod, and their direct
summands. The question is whether almost split sequences exist in p(A4, A4).
To explain what it means we have to recall some notions introduced in
[31.

Let € be a full subcategory of A-mod closed under direct sums, nonzero
direct summands, and such that if a module Xe % is isomorphic to a
module Ye A-mod, then Y e%. An exact sequence in ¥ is an exact sequen-
ce---X;,_{—>X,—>X;,,---of modules in 4-mod in which the nonzero X/s
are all in #. A module N e ¥ is called Ext-projective if every exact sequence
0-X—->Y->N-0in & splits. A module Le® is called Ext-injective if
every exact sequence 0>L—->Y—>Z—-0 in ¥ splits. A morphism
g: M — N in % is said to be right almost split in € if (i) g is not a splittable
epimorphism and (ii) for every morphism A: W — N, where We ¥ and 4 is
not a splittable epimorphism, there exists a morphism j: W — M satisfying
h=gj. A morphism f: L - M in ¥ is said to be left almost split in ¥ if (i)
fis not a splittable monomorphism and (ii) for every morphism 4: L - W,
where We% and h is not a splittable monomorphism, there exists a
morphism j: M — W satisfying h= jf. € is said to have right almost split
morphisms if for each indecomposable Ne% there is an Me® and a
morphism g: M — N which is right almost split in €. Dually, € is said to
have left almost split morphisms if for each indecomposable L € & there is
an Me% and a morphism f: L — M which is left almost split in €. Finally,
% has almost split morphisms if it has both left and right almost split
morphisms.

An exact sequence 0 » L -/ M —£ N -0 in € is called almost split if f
is a left almost split morphism in ¢, and g is a right almost split morphism
in €. € is said to have almost split sequences if it satisfies the following
conditions:

(a) ¢ has almost split morphisms.

(b) If N is indecomposable non-Ext-projective in ¥, then there is an
almost split sequence 0 > L > M —> N—->0in 4.

(c) If L is indecomposable non-Ext-injective in %, then there is an
almost split sequence 0> L M > N—-0in .

Coming back to relatively projective modules, we are interested in
almost split sequences in the special case when € is p(A4, 4). Auslander and
Smalg proved in [3] that almost split sequences exist in % if € is a
dualizing R-variety closed under extensions. However, it is well known that
the category p(4, A) generally is not closed under extensions. Accordingly,
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to deal with relatively projective modules, we prove the following existence
theorem (Theorem 1.2).

Suppose that the direct sum of every two Ext-projective modules in € is
Ext-projective, and the direct sum of every two Ext-injective modules in ¥
is Ext-injective. Then % has almost split sequences if and only if it satisfies
the following conditions:

(i) % has almost split morphisms.
(i1} If N is indecomposable non-Ext-projective in %, then there is an
exact sequence 0 » L - M —»* N -0 in ¢ with g right almost split in ¢.
(iit) If L is indecomposable non-Ext-injective in ¥, then there is an
exact sequence 0 » L -/ M — N >0 in € with f left almost split in &.

This existence theorem replaces the assumption of Auslander and Smalg
that & is closed under extensions by a weaker technical assumption that
the Ext-projectives and the Ext-injectives in 4 are closed under direct sums.
We use the theorem to prove the existence of almost split sequences in
p(A, A) under certain restrictions on A and 4. We do not know whether
those restrictions imply that p(A4, A4) is closed under extensions, but we
prove they imply that the Ext-projectives and the Ext-injectives are closed
under direct sums so that the existence theorem works.

We now explain what the difficulties are in proving the existence of
almost split sequences in € =p(4, 4). Since right almost split morphisms
exist in A-mod [1, 2, 4], it is easy to prove the existence of right almost
split morphisms in p(A4, 4) (Proposition 2.3(a)). {In the terminology of
[4], the cxistence of right almost split morphisms in p(A4, A} is a conse-
quence of the casily verified fact that the subcategory p(A, A) is con-
travariantly finite in 4-mod.) Thus we get half of the condition (i) of the
existence theorem, and, for each indecomposable non-Ext-projective
Nep(4, A), an exact sequence 0 > Ker g+ M > N0, where g: M > N
is a right almost split morphism in p(4, A) with Ker ge A-mod. To satisfy
condition (ii) of the existence theorem, it would suffice to prove
Ker gep(A4, A). We show in Section 2 that the latter condition is satisfied
when the map i: 4 — A4 is injective, and Coker i, as a A-bimodule, is
isomorphic to @7, Is ® x Ps, where I is injective in 4-mod, and Py is
projective in mod-A for all 5. These restrictions on the map i: 4 — 4 con-
stitute the hypothesis of the main theorem of the present paper. Having
satisfied the conditions of the existence theorem concerning right almost
split morphisms, we note that the category p(4, A) generally is not well-
behaved with respect to left almost split morphisms. So we construct an
exact duality, whose domain is p(A, A), which in our context plays the role
similar to that of the well-known duality D=Homg(—, R): A-mod —
A°"-mod [1, 2], where A°P is the opposite ring of 4. The construction is
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based on the fact that the opposite category of p(A4, A) is equivalent to
p(A4,, A°?), where the R-algebra A; has the same properties as the
R-algebra A, and there exists an R-algebra map i,: A°® — A, satisfying the
same conditions as the map i: 4 - 4. Thus the conditions of the existence
theorem concerning right almost split morphisms are satisfied for
p(A4,, A°?), whence we conclude that the conditions of the existence
theorem concerning left .almost split morphisms are satisfied for the
opposite category p(4, A). Finally, we show that in p(4, 4) the Ext-projec-
tives are the projectives in 4-mod (Section 2), and the Ext-injectives are the
direct summands of the modules of the form 4 ® , I, where I is injective in
A-mod (Section 4). Therefore the Ext-projectives and the Ext-injectives are
closed under direct sums, and almost split sequences exist in p(4, 4) under
the above hypothesis on i: 4 — 4. The latter is the main theorem of the
present paper. To construct A4,, we first construct the A°P-coring
C=Hom ,(4, A), where the homomorphisms are those of right A-modules,
with counit &: C— A°P. Then A4, =Hom ,,(C, A°?) is the set of left A4°P-
module homomorphisms from C into A°® with i;=Hom (e, A°P)
[21,13]. Wefix R, 4, 4, C, and 4, throughout the paper, and assume that
the action of R on all R-bimodules is central.

We now give examples of R-algebra maps i: A — A satisfying the
hypothesis of the main theorem, claiming the existence of almost split
sequences in p(4, 4). Let G be a Frobenius group, H its proper subgroup
whose intersection with gHg™! is trivial whenever ge G — H, and i the
natural inclusion of the group algebra A= RH into the group algebra
A=RG. It is shown in Section 6 that Coker i satisfies the hypothesis. Or
let 4 be the path algebra of the quiver (oriented graph) 1 «“2 «%3 over
the ring R, and 4 the R-subalgebra of 4 generated by a, ab, and the empty
paths e, e,, e; at the vertices 1, 2, 3, respectively. Then it is easy to check
that the cokernel of the natural inclusion i: A — A satisfies the hypothesis
of the main theorem.

"The latter example is a very special case of the large class of R-algebra
maps i:4— A which are related to BOCSes [19]. Representations of
BOCSes, used in [7] to obtain important properties of tame finite-dimen-
sional algebras, are our main motivating example; they are connected with
relatively projective modules as follows. It is shown in [13] that the
hypothesis on i: 4 > 4 implies the existence of a duality between p(4, 4)
and i(C, 4°P) (where i(C, A°®) is the category of relatively injective C-co-
modules consisting of the induced C-comodules, isomorphic to C ® 4o X
with X'e A°P-mod, and their direct summands) and that the category of
induced C-comodules for an arbitrary C is equivalent to the category of
representations of the corresponding BOCS. Using that, we show that the
hypothesis of the main theorem on the map i: 4 — A4 is satisfied if and only
if the counit & C — A°° of the A°P-coring C is surjective, and Ker ¢ is
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isomorphic as a A°P-bimodule to @7_, @, ®z P, where Q (P,) is projec-
tive in A°P-mod (mod-A°P) for all s. In other words, the hypothesis is
satisfied if and only if the BOCS corresponding to C is free in the language
of [7], and if the latter is the case, then the opposite category of the
category p(A4, A) of relatively projective 4A-modules is equivalent to the
category i(C, A°P) of relatively injective C-comodules. Thus the main
theorem relates to the existence of almost split sequences for matrix
problems, originally introduced in [20, 15] as representations of differen-
tial graded categories, and later described in [19] as representations of
BOCSes. More precisely, we describe in Section S a class of corings, called
left triangular tensor corings, for which every direct summand of an
induced comodule is induced; ie., every relatively injective comodule
is relatively cofree. The class contains all triangular BOCSes in the
terminology of [19, 7], hence, in particular, the BOCSes occurring in the
reduction of representations of finite-dimensional algebras to representa-
tions of BOCSes. For the dual rings, it means that every direct summand
of an induced module is induced; i.e., every relatively projective module is
relatively free. Thus in this case almost split sequences exist in the category
of induced modules, hence—for representations of triangular BOCSes.

We now set the notation. Let /" be a ring (associative with identity),
I'-Mod (Mod-I') the category of left (right) /-modules, and /-mod
(mod-I") the category of finitely generated left (right) /-modules. Given
U, Ve I-'Mod, Hom, _(U, V) stands for the set of homomorphisms of U
into V. For X, YeMod-I', Hom ,(X, Y) is the corresponding notation.
Suppose S is a I-ring, i.c., a ring homomorphism I"— S is given. Denote
by Induc S (induc S) the full subcategory of S-mod determined by the
induced modules, i.c., by the modules isomorphic to S ® - M with Mel-
Mod (M e I'mod). Let P(S, I') (p(S, I')) be the full subcategory of S-Mod
consisting of the direct summands of all modules in Induc S (induc S). The
induced modules and their direct summands are called relatively projective,
or (S, I')-projective, modules. Likewise, if K is a I-coring [21], Induc K
(induc X) is the full subcategory of the category K-Comod of left
K-comodules which is determined by the induced comodules, ie., by the
comodules isomorphic to K ® - M with M e [-Mod (M e I"mod). I(K, I')
(i(K, I'})) stands for the full subcategory of K-Comod consisting of
the direct summands of all comodules in Induc K (induc K). The induced
comodules and their direct summands are called relatively injective, or
(K, I')-injective, comodules.

The paper utilizes categorical machinery. Namely, the above mentioned
duality between p(A4, A) and p(A4,, A°P) (Section 4) is obtained from an
equivalence of categories i(C, A°P) and p(A4,, A°?). That equivalence is a
consequence of the following very general fact we prove. If a monad
F = (F, u, v) in a category X is a right adjoint of a comonad G = (G, 4. ¢)
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in X, then the Kleisli categories X, and X arc isomorphic. (The statement
is a counterpart of the well-known fact [10] that the Eilenberg-Moore
categories X© and X¢ are isomorphic if F is a left adjoint of G.) In par-
ticular, if a /™-coring K is finitely generated projective as a left I-module,
then S=Hom,_(K, I") is a /-ring, and the monad in /-Mod determined
by the endofunctor S ®, — is a right adjoint of the comonad determined
by K ® —, as follows from the natural isomorphisms

Hom, (K®, M, N)~Hom,_(M,Hom, (K, N))~Hom,_(M,S®, N)

with M, Nel-Mod. Since the Kleisli categorics here are equivalent to
the categories of induced modules or induced comodules, we get an
equivalence between I(K, I') and P(S, I'). To come back to the original
setting, we may put /'=A°" and K= C because C is finitely generated
projective as a left A°P-module. All categorical arguments are presented in
Section 3.

The results of this paper generalize those of [8, 6].

The first author was informed by W. W. Crawley-Boevey that M. C. R.
Butler had worked on similar problems.

The authors are grateful to Mauricc Auslander, who suggested the
approach to the problem; to Jacques Lewin, who brought Frobenius
groups to their attention; and to the referee for the helpful suggestions.

1. ALMOST SPLIT SEQUENCES IN SUBCATEGORIES

The results of this section were presented at the International Conference
on Represcntations of Algebras in Warsaw, Poland, in May 1988 [5].
Throughout the section, we assume that 4 is an artin algebra or an order
over a commutative noetherian equidimensional Gorenstein ring and that
4-mod is the category of finitely generated left 4-modules or of 4-lattices
[4]. Throughout the section we fix % as a full subcategory of 4-mod closed
under direct sums, nonzero dircct summands, and such that if a module
X €€ is isomorphic to a module Y € 4-mod, then Ye%. When A is an artin
algebra, the general theory of almost split sequences in € was developed by
Auslander and Smale in [3]. We need to recall some notions they have
introduced.

An exact sequence in % is an cxact sequence --- X, | > X; > X,,,--- of
modules in 4-mod in which the nonzero X/s are all in 4. A module Ne %
is called Ext-projective if every exact sequence 0 > X > Y —>N—-0 in ¢
splits. A module Le® is called Ext-injective if every exact sequence
0-L—->Y—>Z-0in ¥ splits.

A morphism g: M - N in ¢ is said to be right almost split in € if (i) g
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is not a splittable epimorphism and (ii) for every morphism A: W — N,
where We% and h is not a splittable epimorphism, there exists a
morphism j: W — M satisfying h = gj. A morphism f: L » M in ¥ is said to
be left almost split in & if (i) f is not a splittable monomorphism and (ii)
for every morphism h: L — W, where We% and h is not a splittable
monomorphism, there exists a morphism j: M — W satisfying A= jf. € is
said to have right almost split morphisms if for cach indecomposable Ne €
there is an M €% and a morphism g: M — N which is right almost split in
%. Dually, ¥ is said to have left almost split morphisms if for cach
indecomposable L€ % there is an M e % and a morphism f: L - M which
is left almost split in €. Finally, ¢ has almost split morphisms if it has both
left and right almost split morphisms.

An exact sequence 0 —» L -/ M —% N -0 in ¥ is called almost split if /'
is a left almost split morphism in %, and g is a right almost split morphism
in 4. € is said to have almost split sequences if it satisfies the following
conditions:

(a) ¥ has almost split morphisms.

(b) If N is indecomposable non-Ext-projective in ¢, then there is an
almost split sequence 0 > L > M > N—0in 4.

(c) If L is indecomposable non-Ext-injective in %, then there is an
almost split sequence 0 > L>M > N—-0in 4.

DermNITION 1.1, We say that the Ext-projective (Ext-injective) modules
in ¢ are closed under direct sums if whenever X and Y are Ext-projective
(Ext-injective) in €, X@® Y is Ext-projective (Ext-injective) in %.

THEOREM 1.2. Suppose that both the Ext-projective and the Ext-injective
modules in € are closed under direct sums. Then € has almost split sequences
if and only if it satisfies the following conditions:

(1) € has almost split morphisms.
(ii) If N is indecomposable non-Ext-projective in €, then there is an
exact sequence 0 - L — M —8 N —>Q in € with g right almost split in €.
(iit) If L is indecomposable non-Ext-injective in €, then there is an
exact sequence 0 — I -/ M — N —0 in € with { left almost split in €.

Proof. The necessity is obvious. Prove the sufficiency. Let N be
indecomposable non-Ext-projective in %. Consider an exact sequence
0> X->°Y—>'"N->0, where 1 is a minimal morphism corresponding to
the right almost split morphism g given by condition (ii). Then X is a direct
summand of L, so that X e %, and ¢ is minimal right almost split in 4. We
only have to show that s is left almost split in 4. Let X, .., X, be the



26 BAUTISTA AND KLEINER

indecomposable direct summands of X. They are not all Ext-injective
because ¢ is not a splittable epimorphism, and the Ext-injective modules in
% are closed under direct sums. For j=1, .., r consider an exact sequence

0— X,—5 V,—% W,— 0 (1.1)

in €, where if X; is not Ext-injective, then 4; is minimal left almost split in
% (use condition (iii)); and if X, is Ext-injective, then V,=X;, W,=0,
h;=1. Note that A, is a minimal morphism in both cases. Let
0> X >"V %W -0 be the direct sum of the exact sequences (1.1) for
all j; it does not split because some of the sequences (1.1) do not split
(remember, not all X’s are Ext-injective). For each j=1,..,r we have a
commutative diagram

0 Xj > Vj Wj 0
0 X—sv—L5 N 0,

where u;: X; —> X is the natural inclusion. Really, this is obvious if X; is
Ext-injective, because ts=0. If X, is not Ext-injective, then note that su; is
not a splittable monomorphism because of the minimality of ¢, and use the
fact that A; is left almost split in 4. Hence we get the commutative diagram

h k

0 > X > V w >0
0 > X—— YL N >0,

where v is induced by the v/’s, and w by the w/s. If w is not a splittable
epimorphism, there exists a morphism f: W — Y satisfying w = ¢f, whence
the top sequence splits by [16, Chap. ITI, Lemma 3.3, p. 74], a contradic-
tion. Hence w is a splittable epimorphism, and wg =1 for some q: N » W.
We now arrive at the following commutative diagram of 4-modules

0 > X VA > N >0
|

0 >X—t L y—E w 0

0 X—sy—t LN 0.
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Since wg = 1, vp is an isomorphism, whence Ze ¥, V=1Im p ® Ker v, and
Im A< Im p. If v is not an isomorphism, then # is not a minimal morphism,
which contradicts the minimality of all 4’s because a direct sum of minimal
morphisms is a minimal morphism. Thus ¢ is an isomorphism, w is an
isomorphism, and W is indecomposable. Since ¢ is a minimal morphism, so
is k, whence none of the X’s is Ext-injective. Therefore r =1, X is indecom-
posable, and s is left almost split.

If L is indecomposable non-Ext-injective in %, an exact sequence
0- L >"V %W -0, where h is a minimal morphism corresponding to
the left almost split morphism f given by condition (iii), is almost split in
%. The proof is similar to the preceding argument. |

Recall that when 4 is an artin algebra, the basic existence theorem of
[3] states that if € is a dualizing R-variety closed under extensions, then
% has almost split sequences. Since Ext is an additive bifunctor, if a sub-
category is closed under extensions, then both the Ext-projective and the
Ext-injective modules in it are closed under direct sums. Thus our theorem
may be viewed as an extension of the abovementioned result of Auslander
and Smalg.

2. Ext-PROJECTIVE MODULES AND RIGHT ALMOST SPLIT MORPHISMS IN
p(4, 1)

We describe the Ext-projective modules in p(A4, A), show they are closed
under direct sums, and prove p(A4, A) satisfies conditions (i) and (ii) of
Theorem 1.2 for right almost split morphisms.

For a left A-module N, consider a short relative projective resolution

0—> QIN)— A® N N— 0, (2.1)
where m is the multiplication map, and (N)=Kerm.

LEMMA 2.1. For any Ne A-mod, Q2(N) is injective in A-mod.
Proof. We note first that the exact sequence
0—> A— A —> Coker i — 0

of A-bimodules splits as a sequence of right A-modules because, as a right
A-module, Coker i is projective. Tensoring with N, we obtain the exact
sequence of left A-modules

0— N5 4®, N5 (Coker i) ® , N— 0, (2.2)
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where j is the map N~ A4 ® , N -'®' 4 ® , N. Since mj =1, the sequence
(2.2) splits. Denote by 4: (Coker i) ® , N— 4 ® 4, N a unique morphism of
left A-modules satisfying ph=1 and jm + hp=1. Then we get the exact
sequence

0— (Coker) ) ® ;N5 4 ® N> N—s 0,

which, as a sequence of left A-modules, is isomorphic to (2.1). To
show Q(N) is injective as a left A-module, it suffices to prove
so is (Cokeri)@ , N~@P7"_,I,Q®rP,®,N. But P,®, N is finitely
generated projective as an R-module because N can be viewed as a 4 — R
bimodulc which is finitely generated projective as an R-module, and P, is
a finitely generated projective right A-module. Therefore P, ® ;N is a
direct summand of a free R-module of finite rank, whence I/, ® , P, ® , N
is injective in A-mod. |

LEMMA 22. Let 0— L -/ M —% N0 be an exact sequence in A-mod
with Nep(A4, A). Then:
(a) Q(N) is an Ext-injective module in p(A, A).
(b) There exists an exact sequence 0—->AQ ,L®Q(N)-"
AR, M -*" N0 of A-modules, where m: A ® , M - M is the multi-

plication map, and the restriction of h to A® , L coincides with 1Q f:
AR, L-oAR®, M.

Proof. (a) Tt is well known that sequence (2.1) splits as a sequence
of left A-modules. Since N is relatively projective, it splits as a sequence
of A-modules. Hence Q(N)ep(4, A), and Lemma 2.1 implies Q(N) is
Ext-injective.

(b) Consider the following commutative diagram in 4-mod.
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Since the columns and the two bottom rows are exact (remember, A4 is
projective as a right 4-module), the top row is exact. It is split exact in
A-mod by Lemma 2.1, hence it is split in A-mod because Q(N)ep(4, 1).
We have Q(M)=(1® fNL(L))® N,, where N, ~ Q(N). It is casy to see
that Ker (gm)=(1® /N4 @, L)+ QM) =(1@/NAQ,L)YDON. |

PROPOSITION 2.3. Let N be an indecomposable module in p(A, A), and
M — £ N a right almost split morphism in A-mod. Then:

(a) gm: A ® M- N is right almost split in p(4, A).

(b) Suppose N is not projective in A-mod, so that g is onto and we
have an exact sequence 0 — L -/ M —& N—0 of A-modules. Then there
exists an exact sequence 0> X —»° Y ' N0, where Y is a direct sum-
mand of A ® 4, M; t is a minimal right almost split morphism in p(A, A); X
belongs to p(A, A) and has no direct summands which are injective in A-mod.
In fact, X is a direct summand of A ® , L.

(c) A right almost split morphism Y — N in p(A4, A) is surjective if and
only if N is not Ext-projective.

(d) N is projective in A-mod if and only if it is Ext-projective in
p(4, A4).

(¢) The Ext-projective modules in p(A, A) are closed under direct
sums.

Proof. (a) Since g is not a splittable epimorphism, neither is gm. We
show that if Ue p(4, 4) and &: U — N is not a splittable epimorphism, then
there exists a morphism j: U » 4 ® , M satisfying £ = (gm) j. Really, since
g is right almost split, A= gk for some k: U —> M. Since m: A @, M- M
has a right inverse in A-mod, and U is relatively projective, & = mj for some
Jj: U— A ® , M. Substituting, we get h=(gm) j.

(b) Let £:Y—> N be a minimal right almost split morphism in
p(A, A) corresponding to gm [2]. Then we get an cxact sequence
0->X-5"Y>"N-0 with X a dircct summand of Ker(gm), and Y a
direct summand of 4 ® , M. By Lemma 2.2(b), Ker(gm)~A4A®@ ,L D
Q(N) so that Xep(A4, A). Show X has no direct summands injective in
A-mod.

Assume, to the contrary, that U is such a summand. Let U -4 X -7 U
be morphisms in 4-mod satisfying pg=1. Then we have a commutative
diagram

00— X—— 5 Y—L 3 N— 0

Pl
0— s Ut Ve s N— 0
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of A-modules, where the bottom row splits over A4 because U is injective.
Since N is relatively projective, the bottom row splits over 4; ie., there
cxists a morphism k: V- U in A-mod satisfying kA=1. Then krsq=
khpg=1, so that U is a direct summand of Y, contradicting the fact that
¢ is minimal.

Since 2(N) is injective in A-mod by Lemma 2.1, X has no summands of
Q(N); ie., X is a direct summand of 4 ® , L.

(c) Follows from (a) and (b).
(d) The necessity is clear. The sufficiency follows from (b).
(e) Follows from (d). |

3. DuALITIES, ADJOINT MONADS, AND KLEISLI CATEGORIES

This section contains certain facts on category theory and categorics of
modules which will be used in Section 4 to prove the existence of almost
split sequences. Some of them, i.e., the theorem that if a monad is a right
adjoint of a comonad, then their Kleisli categories are isomorphic [14],
seem to be interesting on their own.

We begin with the following, apparently well-known, statement.

LEMMA 3.1. Let U, be a preadditive category in which the idempotents
split, B, a full subcategory of W,, and §, the full subcategory of N, deter-
mined by the direct summands of all objects of B,, i=1, 2. If &: 8, > B,
is an additive equivalence of categories, then it can be extended to an additive
equivalence of categories ¥: €, - Q,.

Proof. For each object Ce@,, choose a pair of morphisms
C -7B ->”C, where Be®B, and pg=1,. If CeB,, we put B=C and
p=q=1¢. Then choose an object C' € €, and morphisms C' »% B —* C’
satisfying p’'q'=1.. and gp +¢'p’ = 1. Since the idempotents split in 2,,
@(gp)=rvu and @(g'p’')=v'v’ for some morphisms N -°®B —-“N and
N’ >V @B >* N' in U, satisfying uv =1, and u'v' =1,.. If &(gp) =144,
we choose N=®B, u=v=1, and N'=0. Since & is an additive functor,
vu+v'u' = P(gp)+ P(q'p') =10p.

Define now ¥C= N for Ce€,, and for each f: C, - C, in €, put

Yf=u,d(q,/p,)v,. (3.1)

Here the morphisms p,, g, for C;, as well as u,, v, for N,, are chosen as
described above, i=1, 2. Note that ¥C=@C if CeB,, and ¥f =Pf if fis
in B,.



ALMOST SPLIT SEQUENCES 31

Since
D(q2/p1) = P(q: p2) P(q./p1) P(g, py) =v,u, (g2 /p)) 114,
and, likewise,
D(q5 fp\) = v2u>sD(qs fpy) vy Uy,
we get

u, d(q,fp,) =0, P(q./p) v =0,

(3.2)
u, P(q5 fp1) =0, D(qyfpy) v, =0.

This implies immediately that ¥ is a functor. Using (3.2) again, we see that
if ¥f =0, then &(q, fp,) =0, whence ¢, fp, =0 because @ is faithful. Multi-
plying by p, on the left and by ¢, on the right, we get f=0; i.e., ¥ is faith-
ful. To show ¥ is full, note that if /2 N, - N, is a morphism in €,, then
Y(p,® '(v,hu,)q,)=h. The verification is straightforward. Finally, show
¥ is dense. If M e@,, then there is a pair of morphisms M —' @B —* M,
where Be B, and sz = 1, because @ is dense. Since the idempotents split in
W, & '(t5)=gp for some C -9 B —7 C, where pg=1 and Ce€,. Since
¥ extends @, we have ¥q¥p=¥(qp)=P(qp)=1ts and ¥Yp¥g=1, ic., the
pair of morphisms ¥YC — ¥4 @B —¥? ¥C provides another splitting for the
idempotent ts in U,. Clearly, M is isomorphic to ¥C in A,. Thus ¥ is an
equivalence of categorics.
The additivity of ¥ is obvious. |

Recall [2] that the contravariant additive functor D=Homg(—, R)is a
duality between 4-mod and A4°°-mod, as well as between 4-mod and
C-comod. Then [13, Theorem 4.4, p.181], together with Lemma 3.1,
implies

THEOREM 3.2.  The contravariant functor D is an additive duality between
p(A4, A) and i(C, A°®).

We now describe the A-rings A4 for which the 4°P-coring C corresponds
to a free BOCS [7].

LEMMA 3.3. Let B be a A-bimodule.

(a) If B=~1I®gP with I injective in A-mod and P projective in
mod-A, then B¥* =Hom _ (B, A)~ W ®  Q with W projective in A°°-mod
and Q projective in mod-A°P.

(b) If B~W ®,Q with W projective in A-mod and Q projective in
mod-A, then:

481-13571-3
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(i) B*~1®yP with I injective in A°®-mod and P projective in
mod-A°F.

(i) *B=Hom, (B, A)~I, ® P, with I, injective in A-mod and P,
projective in mod-A.

Proof. Since B is finitely generated projective as a right 4-module in
both (a) and (b), [13, Lemma 4.3, p. 181] gives an isomorphism of right
A-modules D(B® 4, M)~ DM ® , B*, functorial in M€ A-mod. Putting
B=I®iyP and M=DA, we have B*~D(DA)® ,B*~D(B® ,DA)
~DUIRRP®, DA)Y~DIR®rD(P®,DA), the Ilatter isomorphism
being based on [13, Proposition 4.1, p.179]. Here DI is projective in
A°P-mod, and D(P ® , DA) is projective in mod-A°P because P is a direct
summand of a frec module, and DA is injective. (a) is proved.

To prove (b), note that (i) = (ii). The proof of (i) is similar to the proof
of (a). |

CoOROLLARY 3.4. The following are equivalent:

(a) The sequence

0—s A——> A — Cokeri— 0

is exact (ie., the map i is injective), and Coker i~ @P"_, I, ®p P, with I,
injective in A-mod and P, projective in mod-A.

(b) The sequence
0— Kere—» C— A" — 0

is exact (i.e., the map ¢ is surjective), and Kere~ @7_ | W, ® O, with W
projective in A°P-mod and Q, projective in mod-A°P.

Proof. 1If the first or second sequence is exact, it is split as a sequence
of right A- or A°"-modules, respectively. Therefore, applying to the
sequences the contravariant additive functors Hom_,(—, 4) or
Hom _ ,oo(—, A°P), we obtain exact sequences of A°P°- or A-bimodules,
respectively. It remains to use Lemma 3.3, [13, Corollary 4.2, pp. 179-180],
and the fact that e=Hom _ ,(i, 4). 1

Prove now that i(C, A°P) is equivalent to p(A4,, A°P) if condition (b) of
Corollary 3.4 is satisfied. We have to turn to general category theory; the
notions used here are defined, for example, in Chapters IV and VI of [17].

Let U be a category, F=(F, 1, n) a monad in A with multiplication
u: F? » F and unit 4: 1> F, G= (G, §,¢) a comonad in A with comulti-
plication 6: G —» G? and counit ¢ G — 1. Supposc that the monad F is a
right adjoint of the comonad G; ie., the functor F is a right adjoint of
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the functor G under an adjunction a: W(GX, ¥) - A(X, FY), and the
following two diagrams commute for all X, Ye 2.

AGX, Y) —— A(X, FY)
AeX. Y)I Lﬂ(«"-ﬂ” (3.3}

AWY,Y) = UAX,Y)

A(GX, Y) —>— U(X, FY)

A(sX, Y]I WX, uY)

A(G2X, Y)—2 A(X, F2Y).

(3.4)

We prove that under these circumstances the Kleisli categories U and A
are isomorphic [14]. For the convenience of the reader, we give a full
treatment. Note that the diagrams (3.3) and (3.4) are obtained by reversing
the arrows in the diagrams from [ 10, p. 390, top], defining 2 monad which
is a left adjoint of a comonad. If F is a left adjoint of G, then [ 10, Proposi-
tion 3.3, p. 389] shows that the Eilenberg-Moore categories A* and A are
isomorphic. '

In the remaining part of this section, we fix the monad F and its left
adjoint comonad G which make the diagrams (3.3) and (3.4) commute.

Define a map &: A, — U, as follows. For each Xe U put OX=X. For
each morphism f: GX - Y in A, put

Of =a(f): X - FY. (3.5)

THEOREM 3.5. @: U, - U, is an isomorphism of categories.

Proof. Show first that @ is a functor. For each identity morphism
eX: GX - X in A, we have O(eX)=a(eX)=nX, using the diagram (3.3).
Hence @ preserves identity morphisms. Given g: GY —» Z and /. GX - Y,
the composite morphism in U is gGfOX: GX — Z. Then

O(gGfoX) = 2(gGfoX) = pZa’*(gGf ) = pZa(x(gGf )
= uZa(a(g) f) = uZF(a(g)) 2(f),

using the diagram (3.4). But uZF(a(g)) 2(f) is the composite of «(g) and
2(f) in U,. '

To finish the proof, we note that the functor U — U given by X+— X
for all Xe U, and g 2" '(g) for each g: X — FY, is an inverse of ©. |
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Let AL be the full subcategory of AUF consisting of the free F-algebras,
ie., of the algebras of the form (FX, uX) with X e U. Likewise, denote by
A the full subcategory of A consisting of the cofree G-coalgebras, i.e., of
the coalgebras of the form (GX, 6X) with XeU. Consider the following
commutative diagram of categories and functors whose rows are canonical
adjunctions for the Eilenberg-Moore and Kleisli categories involved, with
S; a left adjoint of T, i=1, 2, 3, 4.

N NI S TC LN ) LN (4
| H T T
A2 91, A, g —T 590

Here U and V are the unique functors making the diagrams commute. It
is well known [17, Exercises 1, 2, p. 144] that U, V are fully faithful, and
UA) =AU, V(Ug)=A; in other words, the restriction of U (which we
still denote by U) A, — AL is an equivalence, and so is V: WU, - AF.
Explicitly,

UX=(FX,pX),  Uf=uYFf

_ | (3.6)
U (FX,uX)=X, U 'g=gnX,

for all X, YeUA, f:X—>FY in U, and all morphisms g: (FX, uX)—
(FY, uY) of free F-algebras. V and V! are defined dually. We obtain

COROLLARY 3.6. In the setting of Theorem 3.5, ®=VO~'U™"
AL — AS is an equivalence of categories.

PROPOSITION 3.7. Suppose W is an abelian category, F preserves cokernels,
and G preserves kernels. Then

(@) F and G are additive functors.

(b) U and NC are abelian categories.

(c) The equivalence ® =VO~'U . UL - WS, described in Corollary
3.6, is additive.

(d) Denote by add UL (add AS) the full subcategory of W(AC)
determined by the direct summands of objects in WL (AG). Let ¥: add AL —
add U be the equivalence of categories constructed from @ according to
Lemma3.1. If C, -7 C, 28 C;—0 is an exact sequence in MW" with C,e
add NS, i=1, 2, 3, then ¥C, >*¥ YC, »¥* YC, -0 is an exact sequence
in A,

(e) Iff: XY is monic in N, then (Ff): GX > GY is monic in U
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Proof. (a) Follows from [9, Proposition 1.4, p. 14].
(b) This is just [10, Proposition 5.3, p. 395].
(c) 1t follows from (3.5), using [17, Chap. IV, Theorem 3, p. 83],

that @ is an additive isomorphism; then so is @~'. ¥ and U~ are also
additive, as follows from (3.6).

(d) Here, as in the proof of Lemma 3.1, we have C, % B, -7 C,,
where B, = FX, for some X;e W and p,;q,= 1. It follows from the formulae
(3.1), (3.5), and (3.6) that

D(q./p1)= G(J_l(qu.bxﬂXx)) 0X,, Yf=u,®(q,/p)) v,

(3.7
D(q38p,)=G(x "'(g:8P:nX2))0X,,  Pg=uD(q:8p,) vy,

where YC, »" @B, »* ¥C,;, PB,=GX,, and w;v;=1, i=1, 2, 3. Remem-

’

ber that we also have morphisms p;, ¢;, u;, v, satisfying p/g/=1,
qg:p;+qipi=1, uix;=1, v,u,+viu;=1 for all i.

Assume now that g is a cokernel of fin 20*, and show ¥g is a cokernel
of ¥fin AC. As follows from [10, Proposition 5.2, pp. 394-395], it suffices
to prove that Yg is a cokernel of ¥fin U. Let h: ¥C, - Y be a morphism
in A satisfying h¥f= hu, ®(q, fp,) v, =0. Multiplying by u, on the right
and using (3.2), we get 0= hu,D(q, fp,) = hu,G(e~ (g, fp,nX,)) 8X,. The
latter expression is the composite of Au, and a '(¢,fp,nX,) in U;. By
Theorem 3.5, the composite of a(hu,) and g, fp,nX, in A, is zero, ie.,
uYF(a(huy)) g, fpynX,=0. Using the equivalence U: U, — AL given by
(3.6), we get uYF(a(hu,))q,fp,=0, which yields uYF(x(hu,))qg,f =0,
after the multiplication by ¢, on the right. Since g is a cokernel of fin A~

pYF(a(huy)) g, =kg (3.8)
for a unique k: C; - FY in A*. We claim that

uYF(x(huy)) g5 p5 =0. (3.9)

To prove this, it suffices to show that uYF(a(hu,)) q; ponX,=0, using U.
Theorem 3.5 implies that the latter equality is equivalent to

hu;G(a™ (g p51X,)) 0X, = huy D(q ph) = huy P(g3 15, p3) =0,

which holds because of (3.7) and (3.2). Multiplying (3.8) by p, on the right
and adding to (3.9), we get

wYF(x(huy)) = kgp,. (3.10)

Multiplying by #X, on the right and using properties of the natural



36 BAUTISTA AND KLEINER

transformations n and u, we obtain o(hu,)=kgp,nX,, so that hu,=
a”~(kp3q:8p21X2). _
Since kp; is a morphism in A, (3.6) implies kp; = pYF(kp3nX;). Using
the diagram (3.4), we obtain
huy=o~ Y (uYF(kpinXs) q; gp2nX;)

=a " 'fa" (F(kpsnX;) g5 gp2nX2)] 60X,

=oa~'[kpsnX;a~'(g; gpanX2)] 60X,

=a '(kpsnX;) G(x '(q;8p2nX,)) 6X,

=~ (kpsnX;) vsu;G(a " '(g; gp2nXs)) 8Xo,

the last step being based on (3.2) and (3.7). Multiplying by v, on the right,
we obtain A= o "}(kp;nX;) v; Pg, using (3.1) and (3.7). To finish the proof,
it remains to show that 4= j¥g, for some morphism j: ¥C, - Y in U,
implies

j=a" (kpsnXs)vs. (3.11)
Multiplying by u, on the right, we get

hu, = j¥Pgu; = juy D(g5 gp2) vau, = ju; P(q3 8p2)
= ju;Gla '(9:8p21X3)) 6X,
using (3.2) and (3.7). Then, using (3.4), we get

a(huy)=2(ju; G(a '(q:8p2nX2)) 6X;) = uYo’(jusG(a ™' (q5 gpanX,)) 6X,)
=pYa[a(ju;G(a '(q:gp,1X>)) 6X,))]
= pYala(jus) a~'(q3 8pr1X,)]
=pYF(a(jus)) 43 8p2nX,.
Passing to X via U, we obtain pYF(a(hu,)) = pYF(a(ju4)) 95 gp,. Com-
paring with (3.10), we get x = uYF(a(ju;)) q; because g and p, are epi in
A*. Multiplying by p; on the right, we obtain kp; = uYF(a(jus)) ¢4, p5. But
uYF(a(juy)) ¢5p5=0 by (3.9), whence kp,=uYF(a(ju;)). To obtain

(3.11), it suffices to multiply the latter equality by #X; on the right, then
use properties of the natural transformations n, 4, and u;v,=1.

(e) We have

D(Ff)=G(x '(FnX))dX=G(a '(nYf))oX
= G(feX) 6X = GfGe XX = Gf,
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using (3.3). Since f'is monic in A, fis a kernel because A is abelian. Hence
Gf is a kernel, by assumption, therefore monic in U. Then Gf is monic in
€A

PrROPOSITION 3.8. Let K be a I'-coring which, as a left I'-module, is
finitely generated projective. Then:

(a) *K=Hom, _(K, I'} is a -ring.

(b) There exists an additive equivalence of categories @: Induc *K —
Induc K whose restriction @|induc *K: induc *K —>induc K is an
equivalence. The equivalence ® can be extended to an additive equivalence
¥:P(*K, I') > I(K, I'"), whose restriction ¥|p(*K, I'): p(*K, I'Y > i(K, T) is
an a equivalence of categories.

(c) Let K be flat as a right I'-module. Then:

(1) If Lo M- N—O0isan exact sequence of left *K-modules with
L, M, NeP(*K, I'), then YL - WM — PN > 0 is an exact sequence of left
K-comodules.
(it} For each injective module I in I'-Mod, *K ® I is injective as
a left I'-module, hence Ext-injective in P(*K, I').
(iii) Arn induced module *K ® - M is Ext-injective in P(*K, I') if
and only if it is a direct summand of *K ® ;- I, where I is injective in I'-Mod.

Proof. (a) Let : K-> K® K and & K- I' be the comultiplication
and counit, respectively, of K. For f, ge *K, define the product gf as the
composite of the maps K »* K ®, K>'®*K®, =K -’/I, and the
structure map I — *K as the map sending each y e I” to the morphism ;¢
(remember, *K is a I-bimodule). *K is the opposite ring of the one defined
in [21, 3.2. Proposition (a)(c), p. 398].

(b) For M, Ne I'"Mod we have the following natural isomorphisms
of abelian groups

Hom, (K ®, M, N)~Hom, (M,Hom,_(K, N))
~ Hom, (M,*K ®rN) (3.12)

because K is finitely generated projective as a left /~module. Hence the
monad in /-Mod induced by the functor *K ® ,-_ is a right adjoint of the
comonad in /-Mod induced by the functor K ® - _. Really, the com-
mutativity of the diagrams (3.3) and (3.4) is obtained by applying the
isomorphism (3.12), which is functorial in the I-bimodule K, to the
morphisms ¢: K — I" and u: K— K ® - K of I'-bimodules. ®=V® U~ is
an additive equivalence Induc *K — Induc K by Proposition 3.7(c), and
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the properties of @, as defined by (3.5), ensure that @|induc *K is an
equivalence. The rest follows from Lemma 3.1.

(¢) The endofunctor K ®, .. of I'-Mod preserves kernels, hence
Proposition 3.7(d) implies (i).

(ii) Let0— X —> Y —> Z -0 be an exact sequence in /-Mod. Since

K is flat and 7 injective, the following two sequences are exact in /-Mod:

0-K®, X->K®,Y-K®,Z-0,
0->Hom, (K®,Z I)>Hom, (K®,Y,I)>Hom, (K®rX,I)-0.

Using the natural isomorphism (3.12), we conclude that the latter exact
sequence is isomorphic to the sequence

0—-Hom, (Z,*K®,I)->Hom, (Y,*K® I)
—Hom, _(X,*kK®, 1)-0.

Therefore *K ® ,- I is injective in -Mod. The rest is clear.

(ii1) The sufficiency follows from (ii). For the necessity, consider an
exact sequence 0 > M —1—> N -0 in I-Mod with [ injective. Tensoring
with *K, which is projective as a right I'-module, we obtain the exact
scquence

0-*K®, M>*KQ® [-*K®, N->0

of *K-modules. It splits because *K ® ;- M is Ext-injective in P(*K, I'). |}

COROLLARY 39. (a) Let ¥:p(A,, A®)—>i(C, A°®) be the additive
equivalence of categories given by Proposition 3.8(b). Then DW:p(A4,, A°") -
p(A4, A) is an additive duality.

(b) If X—> Y —>Z -0 is an exact sequence of left A,-modules with X,
Y, Zep(A,, A°P), then 0 > D¥YZ - DWYY — D¥X is an exact sequence of
left A-modules.

(c) The structure map i,: A°°® - A, of the A°P-ring is injective, and
Coker iy, as a A°P-bimodule, is isomorphic to @"_, I, ®  P,, where I is
injective in A°P-mod and P, is projective in mod-A°P.

Proof. (a) follows from Thcorem 3.2. (b) follows from Proposition
3.8(c)(1) and the fact that D is exact. The proof of (¢) is almost the samc
as that of (b)=>(a) in Corollary 3.4: one only has to use Lemma 3.3(b)(ii)
instead of Lemma 3.3(b)(i). |
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4. Ext-INJECTIVE MODULES AND LEFT ALMOST SPLIT MORPHISMS IN p(A4, A4);
EXISTENCE OF ALMOST SPLIT SEQUENCES

PrOPOSITION 4.1. Let L be an indecomposable module in p(A, A),
D¥:p(A,, A°®) > p(A, A) the duality given by Corollary 3.9(b), and
(DY)~ ! an inverse duality.

(a) Let fM (DY) 'L be a right almost split morphism in
p(A,, A°P), then D¥f: L - D¥M is a left almost split morphism in p(A, A).
Thus left almost split morphisms exist in p(A, A).

(b) If (D¥)~'L is not projective in A,-mod, then there exists an
exact sequence O — L "V —* W — 0 in p(A, A) with h left almost split in
p(4, 4).

(c) The following are equivalent:
(1} L is Ext-injective.
(ii) (DY) 'L is projective in A,-mod.
(iil) L is a direct summand of A Q .1, where [ is injective in
A-mod.

(iv) L is injective in A-mod.

(d) A left almost split morphism L — X in p(A, A) is injective if and
only if L is not Ext-injective.

{e) The Ext-injective modules in p(A, A) are closed under direct sums.

Proof. (a) Note that (D¥) 'L is indecomposable and use Proposi-
tion 2.3(a).

(b) By Proposition 2.3(b), there exists an exact sequence of A4,-
modules 0 - X —* V -/ (D¥) 'L -0 with X, Yep(4,, 4°°) and ¢ right
almost split in p(4,, A°°). Then the sequence 0L —»"V %W of
A-modules, where V=DYWY, W=DW¥X, h=DW¥t, and k= DW¥s, is exact
by Corollary 3.9(b), and 4 is left almost split by part (a). It remains to
show k is onto. Using Lemma 2.2 and Proposition 2.3(a)(b), it suffices to
show that if ¢:U,—- U, is a monomorphism in A°°-mod, and
1®q: 4, ® 40p Uy - A; ® 4, Usis the induced monomorphism in 4,-mod,
then ¥(1®gq) is injective. This relation follows from Proposition 3.7(e)
(remember, both 4, and C are projective as right 4°"-modules).

(c) (1)=(ii) follows from (b).

To prove (ii)=>(iii), note that L=DW¥(D¥) 'L, and D¥(A,)=
D¥Y(A; ® g0 A°") = D(C ® 4op A°?) ~ A ® , DA according to [13,
Lemma 4.3, p. 181]. Since DA is injective in A-mod, and D, ¥ are additive
functors, the statement follows.
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(iii) = (iv). Since A is finitely generated projective as a right
A-module, we have 4 ® , I ~Hom ,_(C, I), where C=Hom _ (A4, A) is a
A-bimodule projective (hence flat) as a right 4-module by Corollary 3.4. It
remains to use the well-known consequence of the adjoint associativity
stating that if J is an injective left S-module, and B is an S — 7-bimodule
flat as a T-module, then Homg (B, J) is an injective left T-module.

(ivy=(). If0-»L->Y—>Z-0is an exact sequence in p(4, 1),
then it splits over A because L is A-injective, hence splits over 4 because
Z is relatively projective.

(d) Follows from (b) and (c).
(e) Follows from (c). ||

THEOREM 4.2. (a) Let N be an indecomposable non-Ext-projective
module in p(A, A), and 0> L+ M - N—>0 an almost split sequence in
A-mod. There exists an almost split sequence 0 > X —Y > N—-0 in
p(A, A), where X (Y) is a direct summand of A ® , L (4 ® 4 M).

(b)Y Let L be an indecomposable non-Ext-injective module in p(A, A).
There exists an almost split sequence 0 > L -V — W — 0 in p(4, A1).

Proof. Follows from Proposition 2.3, Proposition4.1, and Theo-
rem 1.2. |

S. RELATIVELY PROJECTIVE AND INDUCED MODULES

In view of the recent applications of representations of BOCSes to
representations of finite-dimensional algebras [ 7], the question of whether
almost split sequences exist for representations of BOCSes is important. As
shown in [6], they do exist in the special case of representations of par-
tially ordered sets. Since the problem of classifying the representations of a
BOCS can be viewed as the problem of finding a canonical form for a
certain collection of matrices [20, 15, 19], the indicated question is also
important for linear algebra. If K is a /-coring, then, in the algebraic
language of [13], the category of representations of a BOCS is just the
Kleisli category of the comonad in /-mod induced by the endofunctor
K ®,-_; the category is equivalent to the category induc K of induced
K-comodules. However, the existence theorem of Section 4 does not apply
immediately because relatively injective comodules, which are direct
summands of induced comodules, are not, in gcneral, representations of
BOCSes. In this connection, it is natural to ask whether a I'-coring K has
the property that every direct summand of an induced comodule is induced;
i.e., every relatively injective comodule is relatively cofree. The question is



ALMOST SPLIT SEQUENCES 41

equivalent to asking whether idempotents split in Induc K. If the answer is
“yes,” almost split sequences exist in induc K. The question seems also
interesting on its own because one wants to have a class of corings well-
behaved with respect to induced comodules. Although it was known that
idempotents split in the category of representations of a partially ordered
set, as well as in some other cases, the general answer was missing. In this
section we describe a large class of corings with the desired property:
the class contains all known special cases. In particular, it contains ail
triangular BOCSes in the terminology of [19, 7]. The dualities of Section 3
yield a class of I'°P-rings for which every direct summand of an induced
module is induced, i.e., every relatively projective module is relatively free.
For these rings, almost split sequences exist in the category of induced
modules.

Let I” be an R-algebra (for the moment, R can be replaced by any com-
mutative ring), and K a [-coring with comultiplication u: K-> K ® (K,
counit ¢: K— I, and a grouplike g. Recall that p(g)=g® g and e(g)=1.
Following [19], for U=Kere¢ consider two R-linear maps I — U and
U—- U ®, U which are denoted by the same letter D and given by the
formulae

Dy=vg—gv (5.1)
and
Du=puu)—u®g—g®u (5.2)

for all yer, ue U.

Then D extends uniquely to an R-differential D of degree 1 on the graded
tensor ring 7(U) of the I'-bimodule U. Here the elements of I” are assigned
degree 0, and the elements of U are assigned degree 1; D satisfies the
Leibniz formula

D(ow) = (Dv) w+ (—1)%€* (Dw) (5.3)
for all homogeneous v, we T(U), and
D2=0. (5.4)

Thus T(U) is a differential graded algebra (DG-algebra) [16, p. 190],
except that the differential D is of degree 1 rather than — 1.

We now describe in the language of [13] a category which, in fact,
coincides with the category of representations of the differential graded
category (DGC) corresponding to the coring K [20, 15, 19].

For every M, Ne I-Mod, define an R-linear map

F:Hom,_ (K® M, N)—» Homy(M, Ny®Hom, (U®,M,N)



42 BAUTISTA AND KLEINER

as follows. For each ¢: K® M — N put F¢=(¢0,(§), where ¢o: M > N
and ¢:U®,M—> N are given by @o(x)=¢(g®x) for all xe M and
P=¢1UR M.

PrROPOSITION 5.1. (a) The map F is well-defined and injective.

(b) Im F consists of all pairs (Y, ¥) satisfying
Wolx) = ¥o(yx) + (D7 ® x) (5.5)

for all xeM, yel, where Yyo:M—-N is an R-linear map, and
V:U®prM— N is a I'-linear map.

(C) 1f¢€H0mr (K®[M,N)’ lpel—loml'—(l<®1'l« M)9 and ¢°¢
is the composite of ¢ and § in the Kleisli category I"Mody g, of the
comonad in I'-Mod determined by the endofunctor K@ ,_, then

F(poy) = (X0, 1) where
Xo=®o¥o (5.6)

and
H®x)= o (u®x) + fu@Yo(x) + L Ha;@P(b,®x))  (57)

forall xeL,ueU, Du=3,a,®b,.
(d) The image of the identity morphism ¢®1,, of M in I"Mody .

Fe®14)=(14,0). (5.8)

() F is an isomorphism between I-Modyq _ and the category
B(K, I') whose objects are those of I'-Mod, and whose morphisms are all
pairs (Yo, W) satisfving (5.5), with the composition defined by (5.6), (5.7).

() If an R-linear map 4 and a I'-linear map ¥ satisfy (5.5) for v
equal to y, and v, in I' and all x e M, then they satisfy (5.5) for y=7,v, and
all x. Thus (Yo, ) elm F if (5.5) holds for any set of generators of T as an
R-algebra.

Proof. (a) Since ¢(g)=1, then K=gI'® U is a direct sum of right
I'mmodules, and the restriction of ¢ to g/  is an isomorphism g/' > I in
Mod-I. Then K M~ gR®M®PU ®,-M is a direct sum of R-modules
for each M in I'-Mod, and the map g ® M — M sending g ® x to x for each
x€ M is an isomorphism of R-modules. Therefore F is well-defined and
injective.

(b) If (Yo,y) is of the form Fy for some [-linear map
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Y:K®,L-> M, then (55) holds; the verification is straightforward.
Suppose now that the pair (y,, ) satisfies (5.5), and show that the
R-linear map Yy:K®,L—->M defined by Y(gy®x)=y,(yx) and
Y(u®x)=p(u®x) for all xeM, vel, ueU, is I-linear. Since ¥ is
I-linear, we only have to show that ¥(yg ® x) = »W(g ® x). Using (5.5), we
have Y(38®x) = yY((g7+ D7) ®x) = Y(g7®x) + Y(Dy @ x) = Yo(7x) +
Y(Dy @ x)=pho(x) = 7¥(g ® x).

(c) Since u(g)=g® g, we have

Xolx)=1(g®x)=d(g@VY(g® x)) = (g ® (X)) = do(Yolx))

for all xe L. Hence (5.6) holds. Also, using (5.2), we get j{(u®x)=
H(u@x)=p(g@Y(uRx))+du@Y(g®x))+ 2, ¢(a;@Y(b,®x)) for all
ue U, xe L. This is precisely (5.7).

(d) Obvious.

(¢) Follows from (a), (b), (c), and (d).

(f)  Suppose y,¥o(x)=9(y,X) +¢(D7, ® x) and "/2'//9(x)=‘//0('7'2x)
+( D,2®x)for all xe M. Then /1/2¢0( x) =7y [¥ol /2x)+w Dy, ®x)]=
71¥oly2X) +lﬂ (71 Dy, ® x) = Yo 11/2V)+¢(D/1®r2x +¢(/1DV7®’C) =
Yol172%) +¢{[D/1 72+ 7Dy ]®x) = Yol 72%) +¥(D(7,72) ® x). |

For the rest of this section suppose that the identity 1 € I” can be written
as a sum of pairwise othogonal idempotents 1 =¢,+ --- + ¢, in such a way
that, as a I-bimodule, U is isomorphic to @7_, I'e, ® pe; I'. (This is the
case, for instancc, when the [-coring K satisfies condition (b} of
Corollary 3.4.) If u, corresponds to e, ®e; under the abovementioned
isomorphism, then

U=® I'ud’ {5.9)

s=1
and
U®, U~ @ Mul ®,Tu,r. (5.10)

sr=1

We often consider the isomorphism U~ @7 | l'e;, ® p¢; 1" as identifica-
tion.

Remark 5.2. As follows from Proposition 5.1(b), a pair (¥, 0), where
W, is an R-linear map, is a morphism in B(K, ') if and only if ¢, is a
homomorphism of I-modules. Then Proposition 5.1(c)(d)(e) implies that
there exists an embedding of the category I'-Mod into B(K, I') sending
every /-module M to itself, and every homomorphism 6: M - N in I-Mod
to the morphism (0,0): M — N in B(K, I'). Generally, the embedding is
not full.
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LemMMma 53. Let I’ and A be R-algebras, 1=e + --- +e, and
L=f,+ --- + [, representations of the identities of I' and A, respectively, as
sums of pairwise orthogonal idempotents. Let M e I'"Mod, N e 4-Mod, and

U=@.., 4, ®re,l.
(a) For each A-linear map 6: U ® r M - N and s=1, .., n, consider
the R-linear map o,:e; M — f, N given by
o (x)=6(/f,®e,®x)

for all xee; M. The map 6+ (0, .., 0,) is an R-isomorphism

Hom,_(U® M, N)x @ Homg(e, M, f, N).

s—1

In particular, if A=T, v=1t, and f,=e; for i=1, ., t, then the map
66— (o,,..,0,), where

0(x)=d(u,®x), (5.11)

is an R-isomorphism

Hom, (U ®r M, N}y P Homg(e, M, e, N).

s—1
(b) For each A-bimodule V, the evaluation at f;® f, map Hom, ,
(4f; ®r f;4, V) >V, sending every homomorphism ¢eHom, ,(4f ®
f;4, V) to #(f,® f;), is an isomorphism Hom, ,(Af, @ f;4,V)~ [V},
natural in V.

Proof. (a) Wec have the following natural isomorphisms for P, = Af,
and Q =¢, I

Hom, (U ® ; M, N)~ Hom,,_ (@ P, ®:0,®, M, N)

s=1

:63 Homd (P.V®RQ.\‘®I'M’N)

s=1

~ @ Homy(Q,® M, Hom ,_(P,, N))

s=1

= @ Homgl(e,I' ® - M, Hom ,_(4f,, N))

s=1

~ @ Homg(e, M, f, N).

s=1
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(b) In a similar way, we get

Hom, _,(4f; ® f;4, V)~Hom, ,(4f; @z R®x f;4,V)
~Homy_ (R ® f;4, Hom ,_(4f,, V))
~Homy, (R®/f4, V)
~Homg_ (R, Hom _,(f;4. f;V))
~Homg_x(R, fiV};)~ f,V];
because we assume that R acts centrally on all A-bimodules. |

Remark 5.4. Since 6(u,® x)=0if xee,M with p#j,, (5.11) allows us
to view g, as an R-linear map M — N whose image is contained in ¢, N and
whose kernel contains e, M whenever p # j,. At our convenience, we will
treat g either as a map from e, M into e, N, or as a map from M into N.

In the remaining part of this section we assume that

De,=0forp=1,..,1, (5.12)

ie., e,g=ge, for all p.

LemMa 55. (a) If yee,le,, then Dy=3 rayu,, b, where ase

epFe,-M', bfeej_mfeq, andp, g=1, .., 1.

(b) Du,=3%, au,u ®byu,uc,, where a,ce Te, b,ee;, Te,;

ipth)? Ipthy gt
ch€e,le, ands=1,.. n

(¢) If (¢o, ¢): M > N is a morphism in B(K, I'), then ¢po(e,M)ce,N
forallp=1,..,¢

Proof. (a) and (b) Sincc y=e,ve, and u,=e,u.e;, (53) and (5.12)
imply Dy =e,(Dy)e, and Du,=e,(Du,)e,.
(c) For any xeM, we have ¢(,(e,,x)=ep¢0(x)+(5(Dep®,r)=
e, $o(x), using (5.5) and (5.12). |

For every morphism (ég, ¢): M — N in B(KX, I') consider a (¢ + n)-tuple

of R-linear maps G(¢0’ ¢)= (¢013 ¢ ¢On ¢1v e ¢n)7 where ¢l’ s @p AIC
obtained from ¢ according to (5.11), and @o, =¢,le,M:e,M — e, N. The
latter makes sense because of Lemma 5.5(c).

PROPOSITION 5.6. (a) The map G is injective.

(b)Y Im G consists of all (t+n)-tuples (Yor, .o Wor Wiy ¥,) 0f
R-linear maps satisfying

Wog(X)=Wo,(3X)+ Y asy ,\(brx) (5.13)
I
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for all xee,M and yee Te,, where Dy=3 ra,u, b, as explained in
Lemma 5. S(a) p,g=1,
(c) If( ¢0,¢ M—+N (tﬁo,w ): L - M are morphisms in B(K, I'), and
(¢0,¢ l//O’l// ) /(01: o Kors L1s - ,Xn) then

70p:¢0pw0p (5]4)
for all p and

xs(x) = ¢0f,l//.s~(x) + ¢:¢0/x(x) + Z ah¢p(h)(bhl//q(h)(('hx)) (5.15)
h

Jor all xece L, where s=1,.,n and Du;=3%, @ty ®byu,uc, as
explained in Lemima 5.5(b).

(d) The image of the identity morphism is
G(1,,0)=(1,, 475 s L2150, ..., 0).

(¢) G is an isomorphism between B(K, I') and the category D(K, 1)
whose objects are those of I'-Mod, and whose morphisms are all (t+ n)-
tuples (Wogs oo Wors W1y o W) satisfying (5.13), with the composition defined
by (5.14), (5.15).

() If a (t+n)wple (Woys s Yo Wiy W,,) satisfies (5.13) for all
xee, M and a fixed y,ee,le,, as well as for all xee,M and a fixed
y1€e,le,, then it satisfies (5.13) for all xee, M and y=7,7,. Thus if S'is
a set of generators of the form e,ye, for the R-algebra I, then (Yo, ..., Yo,
Uiy W,)EIM G if (5.13) holds for every pair y and x, where y=epyequ
and x€ e, M.

Proof. (a) Follows from Lemma 5.5(c) and Lemma 5.3(a).

(b) If
G(l/’(h lp) = ('7001’ Rt lr//On lpla oeey '//n)s (516)

then (o, /) satisfies (5.5), so that, using Lemma 5.5(c), we have PWoglx) =
Wolx) = Yo(3xX) + Y (Dy ® x) = Yo(7x) +Z/af‘//(u,(/)®bfx Yoo(yx) +
> ranpr(bex). Thus (5.13) holds.

Suppose now that a (¢4 n)-tuple (Vgrs s Yors Y15 .o ¥,,) Of R-linear
maps satisfics (5.13). Construct a pair (., §/), where Yo: M > N is an
R-linear map, and ¢: U ® ;, M — N is a I'-lincar map satisfying (5.16). We
put o=@, , ¥y, and choose Y to be a unique /-linear map which
corresponds to the n-tuple (¢, ..., ¥, ) according to Lemma 5.3(a). Check
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(Yo, Y1) satisfies (5.5). Using Proposition 5.1(f), we may assume vee,le,.
Since (5.13) holds, we get

}VWO(X)=7l//O(elx+ +€IX)=')' Z l//l:)r(erx)=ﬂl)l//0q(eqx)

r=1

= ‘pop("/'(’qx) + Z af‘//s(_/‘)(b/‘eqx) =1o(yx)
S
+ Y ap ) (brx) = o(7x) + (D7 @ x).
i

Here we have used the orthogonality of the idempotents e, .., ¢,
Lemma 5.5(a), the I-linearity of ¢, and (5.11). Thus (5.5) holds, whence
(Yo, ¥): M— N is a morphism in B(K, I"). It is obvious that (Yo, /)
satisfies (5.16).

(c) The formulae (5.14) and (5.15) are immediate consequences of
(5.6) and (5.7) in view of Lemma 5.5(c) and (5.11).

(d) Obvious.
(e) Follows from (a), (b), (c), and (d).
(f)  Similar to the proof of Proposition 5.1(f). |

Remark 5.77. 1f R is a field, I' is a finitely generated R-algebra, and we
consider only finite-dimensional over R modules in /-Mod, the problem of
classifying the objects of D(K, I} is the problem of finding a canonical
form for a finite collection of matrices under a given set of admissible trans-
formations, as follows from (5.13), (5.14), (5.15). D(K, I') is the category
introduced in [20, 15].

DEeFINITION 5.8. Suppose I, as an R-algebra, has a set of generators
Z which admits a filtration Z,cZ,c --- cZ,=2Z such that ¢,eZ,
for p=1,..,1 Let I'y=R[Z,] be the R-subalgebra of I" generated by
Z,. Suppose also that the set E = {u,.,u,} admits a filtration
Eyc E,c --- E,= E such that:

(i) DZ,=0and DZ,c=T, |EI forall h> 1.
(i) DE,=0and DE,cIm(TE,. \IF'®,U-U®, U)forall h>1.
Then the I'-coring K 1s called left triangular.
The 7I-coring K is called a left triangular tensor coring if the set of

generators Z of the R-algebra I satisfies the following conditions for
h=2,.,m:

(ii) ForallzeZ—Z,, we have z=¢,ze, for some p, g=1, .., 1.

(iv) A unique map I',_,e,®ze, 0} _— 1, z[., of I, -
bimodules sending e,® e, to z is an isomorphism (see Lemma 5.3(b)).

481/135/1-4
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V) Wo=%.ca_z w12l ., is a direct sum of the I', |-sub-
bimodules I, _,z[, ., of I.

(vi) Let T(W,) be the tensor ring of the I, ,-bimodule W,. A
unique map of I', . ,-rings T(W,) —» I', sending z to z for all ze Z, - Z,_,
is an isomorphism.

Examples of left triangular tensor corings are given in [7].

PrOPOSITION 5.9. Let K be a Ief} triangular 1-coring, . K@ LM a
I-linear map, and GFy=GWo, ¥)=@ors > Wors W15 W) Then the
Sfollowing are equivalent:

(a) ¢ is an isomorphism in I-Modg g, .
(b) o is an isomorphism in R-Mod.
(c) Yo, is an isomorphism in R-Mod for p=1, ..., t

Proof. (b)<>(c) follows from Lemma 5.5(c). (a)=>(b) is immediate
from the formulae (5.6) and (5.8). For (b)=>(a), assume that ¥, is an
isomorphism in R-Mod and construct a left inverse ¢: K® M — L of ¢
in I'“Modg g, such that ¢, is an isomorphism in R-Mod, where
Fp= (¢, ¢) It is easy to see that such a ¢ is a two-sided inverse of .

It is obvious from the formulae (5.6) and (5.8) that we must put
o=y " As follows from Proposition 5.1(b)(c)(d), we must find such a
I-linear map ¢: U ® , M — L that

o' =¥5 () +HDy® y) (5.17)
for all ye M, yeZ, and
0=y "(u®x) +Fu®yo(x)) + L 4, ®%(5,®x)  (518)

forall xeL, ue U, Du=Y,a;,®b; with q;, b,e U.

By Lemma 5.3(a), any collectlon {#,.. $,} of R-linear maps with
¢,: e, M — e, L uniquely determines a I™-linear map ¢:U®, M- L such
that ¢ (y)= ¢(u ® y) for all y. Using the collection of maps {Wis s U0}
which corresponds to the map y, determine the values of the ¢, ... ¢,, for
the desired map ¢ by induction on & = h(s)—the least positive integer such
that u, e E, (sce Definition 5.8). If h=1, then Du,=0, and we put

$(») = —¥5 W5 '(y) (5.19)

for all yee; M. We note that ‘(y)eeij, as follows from Lemma 5.5(c),
so that (5.19) makes sense. If h=h(s)> 1, fix a decomposition

Du,=Y a,u®uvy, (5.20)
I
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where a;eI', u,e E, |, v,e U. Assuming by induction that ¢, has already
been defined for all s with A(s) <k, pick an s with A(s)=k and define

py)= _wo_lwsd/o_l(}")-z af¢f‘p(vf®‘//0 1()")), (5.21)

!

as suggested by (5.18). Here we treat ¢, as a map M — L, according to
Remark 5.4. Note that since the /-coring K is left triangular, A(f) <k for
all the summation indices f'in (5.21). Therefore ¢, has already been defined
by induction, and (5.21) makes sense.

We now show that the /-linear map ¢ which corresponds to the collec-
tion {¢,, .., @, }, defined according to (5.19) and (5.21), satisfies (5.17) and
(5.18).

LeMMa 5.10. If 2eT, and ¢ satisfies (5.18) for u= D1, then ¢ satisfies
(5.17) for 7 = A.

_ Proof of Lemma 5.10. Since Du = D(Di) = 0, (5.18) yields
H(DA® Yo(x))= =y "W(D2® x). Then, using (5.5), we have

Yo '(2p) + $(DL® y) =g {(Ao(x)) + H(DA® Yol x))
=5 (Wo(x) =Yg WDI® x) = ix= iy ().
Thus (5.17) holds for y=4. }

LEmMMma 5.11. If ¢ satisfies (5.17) for y=c, then it satisfies (5.18) for
u=cu.d, where d is an arbitrary element of I', and s=1, ..., n.

Proof of Lemma 5.11. We have, using (5.20), that
Du=Dc®u,d+) caju; @ v,d— cu,® Dd,
where a, =0 if Du;=0, and ’
Vo W(cu,d®x) + §lcu,d® Yo(x)) + §(De ® Y (u,d® x))

+Y dleayu,®Y(v,d® x)) — Pleu, ® Y(DdR x))
i

=Yg (e (u,® dx)) + c(u, ® diro(x)) + $(De ® fi(u, ® dx))
+e Y adu®§(v,®dx))— chlu, @ Y(Dd® x))
S

= g Wiu, @ dx) + cdu,® Yoldx)) + ¢ ¥, a,d(u, @ Y(v, ® dx))
2

(Yo Wy T¥oldx)] + ¢.[¥oldx)]
+Y ad 00, ® g ' [Wo(dx)]11} =0,
f
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using the assumption that (5.17) holds for ¢, the fact that formula (5.5)
holds for 7 =d, and formula (5.21). Hence (5.18) holds for u=cu.,d |

We now show how to use Lemmas 5.10 and 5.11 to finish the proof. It
is an easy consequence of (5.5) that (5.17) holds for all yeZ,; hence it
holds for all ye I',, according to Proposition 5.1(f). Since the I'-coring K
is left triangular, it follows from Lemma 5.10 that (5.18) holds for all
ue I’y ET; then Lemma 5.11 implies that (5.15) holds for all ye Z,, and so
on. Continuing this argument, we obtain that (5.17) holds for all
ve ', =T, whence (5.18) holds for all ue ", ,El'=U. |

For the rest of this section, we assume that the I-coring K is a left
triangular tensor coring, and restrict ourselves to those modules in /-Mod
which are projective over R.

PROPOSITION 5.12. Let M be a -module, and N= ®;=1 N, a direct
sum of the R-modules N,. Given R-isomorphisms Yo,.e,M — N, for
p=1,.., 1, and arbitrary R-linear maps y ;.e, M - N, for s=1,.., n, there
exists a structure of a left [-module on N for which:

(a) N,=e,N and
(b) (Yo, ¥): M—N is an isomorphism in B(K, '), where yo=

D1 VYo, and Y: U® M — N is a unique I-linear map determined by the
collection {y, .., ¥, }, according to Lemma 5.3(a).

Proof. The argument is similar to the proof of [7,4.2. Proposition,
p.465]. We begin with the observation that the natural
mapLEfT® M-I, ,Er®, M is a monomorphism of left I-
modules (we view it as the inclusion map of I,El ® M into
I, EI ® - M). To prove this, note first that e, I’ ® - M ~¢; M is R-pro-
jective because M is R-projective by assumption. Then, since each u, is
identified with e, ®e, , tensoring the inclusion map I,e, — I, e, with
e, M and passing to the direct sums produce the desired monomorphism.

For h=1, .., m, we will define on N a structure of a left I",-module with
the property that the I', . ,-structure extends the [ ,-structure if A< m— 1.
Assuming temporarily that such I',-structures have already been defined,
denote by i,: I'El ® r M - N a unique I ,-linear map corresponding
to the collection {y,,.., ¥,}, according to Lemma 5.3(a) (recall that
e,el’;, for p=1, ..t and all A, by Definition 5.8). Then ¥, extends ¥,
Really, since I',EI' ® - M is a [,-submodule of I', . | EI" ® M, and the
I, _,-module structure on N extends the [,-module structure,
Yo |ThEM ® - M is a I'y-linear map I, EI’ ® M - N corresponding to
the collection {¢1, s Y.}, according to Lemma 5.3(a). By the uniqueness,
Uit [T ET @ M=y,
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Proceed by induction on A=1, .., m. For each h, we define a I',-module
structure on N, and show that the pair (y,,,) satisfies (5.5) for all
v=zeZ, and § =,. We denote by yx the image of y ® x under the struc-
ture map I ® M — M, and by y - y the image of y ® y under the structure
map I, @ g N> N.

Leth=1Forallyel',,putye. y=¢o(7¢5 '(y))- Then 1 y= Yollyo '(5))
=y, and 7,720y =Yo(7; 7205 ' D) =V (v ¥a (o205 ' (3N} =7+
(72°y). Hence N is a left I';-module, and, clearly, N,=e¢,N because
e,el') for all p. Let |//, I'Er®, M- N be a unique I, lmear map
determmed by {¥,,..¥,}, according to LemmaS5.3(a). We have
voo(x)=Wo[7W, '(Wo(x))]=o(yx) for all xe M. This is precisely (5.5)
for Yy =y, because Dy =0 for all ye I',. In particular, (5.5) is satisfied for
all y=zeZ,.

Suppose now that a structure of a left I',-module on N is defined for
some k=1, and the pair (y¥,, tﬁ,,) satisfies (5.5) for all y=zeZ, and
lﬁ = tﬁ,,. Extend the I',-module structure to a [, ,-module structure on N
in such a way that (5.5) is satisfied for all y=zeZ, ., and z/}=1ﬁ,,+ ,. For
each ze Z,,,—Z,, define a I',-bimodule map [I,zI", - End (N). Taking
into account Definition 5.8(iii)(iv) and Lemma 5.3(b), it suffices to con-
struct an R-endomorphism ¢ of N satisfying ¢ =e,oe,. Choose ¢ to be the
R-endomorphism of N given, for all ye N, by the right-hand side of the
formula

Zey= l//0(2‘//0 () +¢,,(DZ®W0 () (5.22)

The formula makes sense because Dzel,EI, and oee,Endg(N)e,
because ¢,, e, € I"y and the pair (¥, y,,) satisfies (5.5) for all y e I',. Taking
into account Definition 5.8(v)(vi), we obtain a I,-bimodule map
W, .. — Endg(N) and, hence, a I',-ring map I, ., =T(W,,,) = EndRx(N).
Thus N has acquired a I',,,-module structure which extends its -
module structure, and which on the set Z, _, is given by (5.22) (recall that
(5.5), and hence (5.22), is satisfied by (Y, ,) for all y=ze Z,). Since
¥, extends §,, as explained above, (5.22) shows that (4, /. ,) satisfies
(5.5)forall y=zeZ,,,.

By induction, we have for all 4 that N is a I',-module, ¢, is a Iy-linear
map, and the pair (¢, ¥,) satisfies (5.5) for all y=zeZ, and Y=y,
Putting /1 =m, we get that N is a I',, = I-module, V,, is a I-linear map,
and the pair (Y, ¥,,) satisfies (5.5) for all y=zeZ,=Z and §y=14},,.
Using Proposition 5.1(f)(b), we see that (4, ¥/,,): M — N is a morphism in
B(K, I') which is an isomorphism by Proposition 5.9. |

We are now ready to prove the main result of this section.

THEOREM 5.13.  Idempotents split in B(K, I').
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Proof. Let y=1(yq, 7): M > M be an idempotent morphism in B(K, ),
then Yoxcy~' is an idempotent for each isomorphism ¢ in B(K, I').
Construct a I™module N and an isomorphism ¥ = (,, §/): M — N such
that Yoy ' =(go, 0). Then Remark 5.2 would imply that ¢, € End,-(N)
and ¢3=¢,. Since idempotents split in -Mod, there exist morphisms o,
and 1, in I'-Mod satisfying ¢,= 0,7, and t140,=1, for some L e I-Mod.
Putting o=1(0,,0) and t=(1,,0), we obtain got=yoyoy ' and
to6=1, in B(K,I'), whence y=( '>aof)o(Yy 'ctoyy) and 1, =
(W Yotoy)s (Y 'sasip). Thus the existence of the desired isomorphism
would imply the theorem.

We first record some consequences of the fact that y is an idempotent.
According to formulae (5.6) and (5.7), this is equivalent to z = (xo, %)
satisfying the conditions

Xo= X4 (5.23)

and
Hu®x)=xo7(u®x)+ F(u® xo(x)) + Z Ha,®7(b,®x)) (524)

for all xe M, ue U, Du=3,a,;®b,. Substituting yo(x) for x in (5.24), we
obtain that

0=xoi(u®xO(x))+Z)Z(m@i(bi@xo(X))) (5.25)

forall xe M, ue U, Du=3% ,a;,®b,.

Introduce a binary relation on the set E= {u, .., u,} by putting u, - u,
if Du;eU®rU has a nonzero component in the direct summand
Tu, I’ ® U of U®, U (see (5.10)). Since the I'-coring K is left triangular,
the transitive closure of the binary relation — is a partial ordering, which
we denote by <. By induction on the partial ordering in E, show that for
each u e E and every idempotent y in B(K, I'), there exists an isomorphism
Y=o, ¥): M > N in B(X, I') such that

¢=(fo, §)=Yecyoy !

and gﬁ(v@x)=0 for all xeM and all t<u in E. Then Lemma 5.3(a)
implies the existence of ¥ for which ¢ = (¢, 0), and the theorem follows,
as explained above.

Let » be a minimal element of the partially ordered set E. Then Du=0.
Let

N,=e,M, p=1,..1, (5.26)
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be a collection of R-modules, and

Yop=1Tu,m (5.27)

a collection of R-linear isomorphisms e, M — N,. To define a collection of
R-linear maps y,:e; M - N, , put

v.=0 fu#u, (5.28)
and
Y (x)=7iu® xo(x)) = xof(u® x) forall xee, M ifu=u;. (5.29)

By Proposition 5.12, there exists a /-module structure on N=

p=1N,=M and an isomorghism Y=o ¥):M->N in B(K,TI)
satisfying Vo=@ ,_, Yo, = 4y, $(u,®x)=y,(x) for all s and x. Then
¥ '=(ly, —¥), as follows from formulae (5.6) and (5.21). For
é=(do, )=y oy ~', we want to show that ¢, =0 if u, =u. Using for-
mulae (5.6) and (5.7), we have

Wordo=20 (W3u®x)=Fu®@x)+Yu®xo(x)) (530)
because Yy, =1,, and Du=0. Further, .

Fu®x) = — 1P (u® x) + FH{u® x) + P (u® xo(x)). (5.31)
But

~%o¥ (@ X) + (U ® x(x))
= — 2ol AU ® %o(x)) = 2o AU ® x)] + F(u ® (X)) — 1o A (4 ® #o(x))
= — 2o (U® Xo(x)) + %o XU ® x) + 7 (U ® yo(x)) = xo £ (4 ® xo(X))
= J(u®x), (5.32)

using (5.23), (5.25), and (5.24), togcther with Du=0. This implies
#(u® x)=0, and the base of induction has been established.

Suppose now that ¢ is an isomorphism in B(K, I") such that
¢ = (o, Y)=CEcyo& ' is an idempotent satisfying §(v ® x)=0 for all x
and all v <u in E. It suffices to find an isomorphism ¢ in B(X, I") such that
(= O)Y=¢edoy ! has the property {(v® x)=0 for all x and all v<u
in E. Without loss of generality, we may assume that ¢ =y, i.e., that the
idempotent y = (y,, ) has the property 7(v® x)=0 for all xe M and all
v<u in E. The argument here is similar to the case when u is a minimal
clement in E. We consider a collection of R-modules and R-linear maps
defined by formulae (5.26), (5.27), (5.28), and (5.29). Using Proposi-
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tion 5.12, we obtain an isomorphism ¥ = (1,,, §) in B(K, I') with inverse
Y~ '=(1,,,H). We have

it®x) =y (r®x)=0(r®x)=0 forallxe M and all v < u. (5.33)

Really, this is the assumption about 7; sgxtisﬁcs the condition by
Lemma 5.3(a), in view of (5.28), (5.29); and for 0 we have

0(v®x)= —f(r®x) forallxe M and all v<u, (5.34)

according to formulae (5.6), (5.21), and the assumption that the /-coring
K is left triangular. Coming back to ¢= (¢, #)=¢ o<y, note that
(5.33) implies

dr®x)=0  for all xe M and all v <y, (5.35)

as follows from (5.7). We note that, as before, formulae (5.6) and (5.7)
imply (5.30) because of yo=1,,,

Du=Y a,®b, withae @ Ivl, (5.36)

i v<u

and (5.33). Likewise, (5.33) and (5.34) imply (5.31). Finally, computation
(5.32) goes through similarly to the previous case, but, instead of Du=0,
we rely on (5.36) and (5.33). Since (5.35) holds, and (5.31), (5.32) imply
#(u® x)=0 for all x, the theorem is proved. |

COROLLARY 5.14. [Idempotents split in induc K.

6. RELATIVELY PROJECTIVE MODULES OVER FROBENIUS GROUPS

The content of this section was communicated to the second author by
Jacques Lewin.

Recall that a finite group G is a Frobenius group if it contains a proper
subgroup H with H~ H%=1 for all ge G — H, wherc x¥= gxg ' It is well
known [12, p. 317] that G is a split extension G = KH for a normal sub-
group K= {1,k ... k,} of G, and k%= k" implies a= b for a, be H and
any i with 1<i<u. Hencc Hk,H=J, ,ak,H=|], ,kiH, where ||
stands for disjoint union. If 4 is the number of elements of H, then Hk,H
consists of 4% elements.

For an arbitrary commutative ring R, denote by RG the group algebra
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G over R, and by RH the R-subalgebra of G generated by H. Then a

unique RH-bimodule map RH ® , RH — RHk;RH sending 1®1 to k; is
an isomorphism. Since G is a disjoint union of double cosets of H, we get

th

e following direct sum of RH-bimodules: RG=RH® (®, RHk,RH) ~

RH® (®; RH ® r RH) for some values of i between 1 and u. Since the
R-algebra RH is self-injective, condition (a) of Corollary 3.4 is satisfied.
Thus, assuming again that R is a field or a Dedekind domain, and applying
Theorem 4.2, we obtain the following statement.

THEOREM 6.1. Category p(RG, RH) has almost split sequences.
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