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IN-RODLCTION 

The paper deals with almost split sequences. Introduced in [2] for the 
category mod A of finitely generated modules over an artin algebra A, 
almost split sequences were later found in the category of lattices over an 
order [l, 43, as well as in certain subcategories of mod A [6, l&3]. It is 
generally recognized that if almost split sequences exist, the subcategory 
has nice properties. We are concerned with the subcategory of relatively 
projective modules. 

Let R be a field or a Dedekind domain with the field of quotients k, and 
let A and A be finite-dimensional R-algebras or R-orders, respectively, with 
A mapped into A via an R-algebra map i: A -+ A. Here we understand 
orders and lattices in the sense of [ 1, p. 85, Example (b)]. Namely, A is an 
R-order if it is a noetherian R-algebra projective as an R-module, and 
x = k OR A is a self-injective ring. A-mod denotes the category of finitely 
generated left A-modules if R is a field, or the category of left A-lattices if 
R is a Dedekind domain, where a left A-module h4 is a lattice if it is a 
finitely generated projective R-module such that k Ox M is a projective 
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C-module. As pointed out in [l], the classical orders and lattices lit into 
this more general scheme. Denote by p(A, A) the full subcategory of A-mod 
determined by the relatively projective A-modules, i.e., by the induced 
modules, isomorphic to A Q n X with J/~/l-mod, and their direct 
summands. The question is whether almost split sequences exist in p(A, A). 
To explain what it means we have to recall some notions introduced in 
c31. 

Let %’ be a full subcategory of A-mod closed under direct sums, nonzero 
direct summands, and such that if a module XEV is isomorphic to a 
module YE A-mod, then YE %. An exact sequence in V is an exact sequen- 
ce.-.Xi-l+Xi+Xi+l... of modules in A-mod in which the nonzero X;s 
are all in %?. A module NE W is called Ext-projective if every exact sequence 
0 -+ X-+ Y--f N -+ 0 in $5’ splits. A module L E V is called Ext-injective if 
every exact sequence 0 + L -+ Y--f 2 + 0 in V splits. A morphism 
g: M+ N in W is said to be right almost split in % if (i) g is not a splittable 
epimorphism and (ii) for every morphism h: W -+ N, where WE V and h is 
not a splittable epimorphism, there exists a morphism j: W + M satisfying 
h = gj. A morphism f: L + M in % is said to be left almost split in %? if (i) 
fis not a splittable monomorphism and (ii) for every morphism h: L + W, 
where WE$? and h is not a splittable monomorphism, there exists a 
morphism j: M-t W satisfying h = ~3 V is said to have right almost split 
morphisms if for each indecomposable NE V there is an MEW and a 
morphism g: M -+ N which is right almost split in V. Dually, ‘?Z is said to 
have left almost split morphisms if for each indecomposable L E %? there is 
an ME %? and a morphism f: L + A4 which is left almost split in V. Finally, 
V has almost split morphisms if it has both left and right almost split 
morphisms. 

An exact sequence 0 --t L 4 A4 + g N + 0 in V is called almost split if f 
is a left almost split morphism in %, and g is a right almost split morphism 
in %?. W is said to have almost split sequences if it satisfies the following 
conditions: 

(a) V has almost split morphisms. 
(b) If N is indecomposable non-Ext-projective in 97, then there is an 

almost split sequence 0 + L + M + N + 0 in V. 
(c) If L is indecomposable non-Ext-injective in %?, then there is an 

almost split sequence 0 + L -+ M --) N + 0 in %‘. 

Coming back to relatively projective modules, we are interested in 
almost split sequences in the special case when g is p(A, ,4). Auslander and 
Smalo proved in [3] that almost split sequences exist in $9 if %? is a 
dualizing R-variety closed under extensions. However, it is well known that 
the category p(A, ,4) generally is not closed under extensions. Accordingly, 
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to deal with relatively projective modules, we prove the following existence 
theorem (Theorem 1.2). 

Suppose that the direct sum of every two Ext-projective modules in %? is 
Ext-projective, and the direct sum of every two Ext-injective modules in % 
is Ext-injective. Then ‘6 has almost split sequences if and only if it satisfies 
the following conditions: 

(i) %? has almost split morphisms. 
(ii) If N is indecomposable non-Ext-projective in 97, then there is an 

exact sequence 0 + L + M --+R N -+ 0 in % with g right almost split in 9?. 
(iii) If L is indecomposable non-Ext-injective in g’, then there is an 

exact sequence 0 + L --+ /M + N + 0 in g with ,f’left almost split in V. 

This existence theorem replaces the assumption of Auslander and Smals 
that % is closed under extensions by a weaker technical assumption that 
the Ext-projectives and the Ext-injectives in % are closed under direct sums. 
We use the theorem to prove the existence of almost split sequences in 
p(A, A) under certain restrictions on A and A. We do not know whether 
those restrictions imply that p(A, A) is closed under extensions, but we 
prove they imply that the Ext-projectives and the Ext-injectives are closed 
under direct sums so that the existence theorem works. 

WC now explain what the difficulties are in proving the existence of 
almost split sequences in %? = p(A, A). Since right almost split morphisms 
exist in A-mod [ 1, 2,4], it is easy to prove the existence of right almost 
split morphisms in p(A, A) (Proposition 2.3(a)). (In the terminology of 
[4], the existence of right almost split morphisms in p(A, A) is a conse- 
quence of the easily verified fact that the subcategory p(A, A) is con- 
travariantly finite in A-mod.) Thus we get half of the condition (if of the 
existence theorem, and, for each indecomposable non-Ext-projective 
NE p( A, A), an exact sequence 0 -+ Ker g -+ M + s N + 0, where g: M --f ,V 
is a right almost split morphism in p(A, A) with Ker ge A-mod. To satisfy 
condition (ii) of the existence theorem, it would suffice to prove 
Ker g E p(A, A). We show in Section 2 that the latter condition is satisfied 
when the map i: A + A is injective, and Coker i, as a A-bimodule, is 
isomorphic to @I:, , I, @ R P,, where Is is injective in A-mod, and P,s is 
projective in mod-A for all s. These restrictions on the map i: A + A con- 
stitute the hypothesis of the main theorem of the present paper. Having 
satisfied the conditions of the existence theorem concerning right almost 
split morphisms, we note that the category p(A, A) generally is not well- 
behaved with respect to left almost split morphisms. So we construct an 
exact duality, whose domain is p(A, A), which in our context plays the role 
similar to that of the well-known duality D= Hom,( -, R): A-mod+ 
AOP-mod [ 1, 23, where A Up is the opposite ring of A. The construction is 
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based on the fact that the opposite category of p(A, A) is equivalent to 
p(A,, A”P), where the R-algebra A, has the same properties as the 
R-algebra A, and there exists an R-algebra map ii : Aop + A, satisfying the 
same conditions as the map i: A --f A. Thus the conditions of the existence 
theorem concerning right almost split morphisms are satisfied for 
p(A,, Aor’), whence we conclude that the conditions of the existence 
theorem concerning left almost split morphisms are satisfied for the 
opposite category p(A, A). Finally, we show that in p(A, A) the Ext-projec- 
tives are the projectives in A-mod (Section 2), and the Ext-injectives are the 
direct summands of the modules of the form A On 1, where I is injective in 
A-mod (Section 4). Therefore the Ext-projectives and the Ext-injectives are 
closed under direct sums, and almost split sequences exist in p(A, A) under 
the above hypothesis on i: A --) A. The latter is the main theorem of the 
present paper. To construct A,, we first construct the A”“-coring 
C = Horn, (A, A), where the homomorphisms are those of right A-modules, 
with counit E: C + Aop. Then A, = Hom,,,(C, Aop) is the set of left Aop- 
module homomorphisms from C into Aop with i, = HomAOP(s, A”*) 
[21,13]. We fix R, A, A, C, and A, throughout the paper, and assume that 
the action of R on all R-bimodules is central. 

We now give examples of R-algebra maps i: A -+ A satisfying the 
hypothesis of the main theorem, claiming the existence of almost split 
sequences in p(A, A). Let G be a Frobenius group, H its proper subgroup 
whose intersection with gHg-’ is trivial whenever ge G - H, and i the 
natural inclusion of the group algebra A = RH into the group algebra 
A = RG. It is shown in Section 6 that Coker i satisfies the hypothesis. Or 
let A be the path algebra of the quiver (oriented graph) 1 ta 2 c b 3 over 
the ring R, and A the R-subalgebra of A generated by a, ab, and the empty 
paths e,, e2, e3 at the vertices 1, 2, 3, respectively. Then it is easy to check 
that the cokernel of the natural inclusion i: A + A satisfies the hypothesis 
of the main theorem. 

The latter example is a very special case of the large class of R-algebra 
maps i: A + A which are related to BOCSes [19]. Representations of 
BOCSes, used in [7] to obtain important properties of tame tinite-dimen- 
sional algebras, are our main motivating example; they are connected with 
relatively projective modules as follows. It is shown in [13] that the 
hypothesis on i: ,4 --f A implies the existence of a duality between p(A;A) 
and i(C, Aop) (where i(C, A”“) is the category of relatively injective C-co- 
modules consisting of the induced C-comodules, isomorphic to C OnoP X 
with XeAoP-mod, and their direct summands) and that the category of 
induced C-comodules for an arbitrary C is equivalent to the category of 
representations of the corresponding BOCS. Using that, we show that the 
hypothesis of the main theorem on the map i: A + A is satisfied if and only 
if the counit E: C-t Aop of the A”“-coring C is surjective, and Ker E is 
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isomorphic as a AoP-bimodule to @z=, Q,r OR P,, where Q,( P,?) is projec- 
tive in A”l, -mod (mod-AoP) for all s. In other words, the hypothesis is 
satisfied if and only if the BOCS corresponding to C is free in the language 
of [7], and if the latter is the case, then the opposite category of the 
category p(A, A) of relatively projective A-modules is equivalent to the 
category i(C, Aop) of relatively injective C-comodules. Thus the main 
theorem relates to the existence of almost split sequences for matrix 
problems, originally introduced in [20, 151 as representations of differen- 
tial graded categories, and later described in [ 193 as representations of 
BOCSes. More precisely, we describe in Section 5 a class of corings, called 
left triangular tensor corings, for which every direct summand of an 
induced comodule is induced; i.e., every relatively injective comodule 
is relatively cofree. The class contains all triangular BOCSes in the 
terminology of [ 19,7], hence, in particular, the BOCSes occurring in the 
reduction of representations of finite-dimensional algebras to representa- 
tions of BOCSes. For the dual rings, it means that every direct summand 
of an induced module is induced; i.e., every relatively projective module is 
relatively free. Thus in this case almost split sequences exist in the category 
of induced modules, hence-for representations of triangular BOCSes. 

We now set the notation. Let 1’ be a ring (associative with identity), 
f-Mod (Mod-T) the category of left (right) f-modules, and I--mod 
(mod-f) the category of finitely generated left (right) I--modules. Given 
U, VET-Mod, Horn,.-( U, V) stands for the set of homomorphisms of CT 
into k’, For X, YE Mod-f ‘, Horn ,.(X, Y) is the corresponding notation. 
Suppose S is a r-ring, i.e., a ring homomorphism I--+ S is given. Denote 
by lnduc S (induc S) the full subcategory of S-mod determined by the 
induced modules, i.e., by the modules isomorphic to S a,- M with ME 11 
Mod (ME f-mod). Let P(S, r) (p(S, 1’)) be the full subcategory of S-Mod 
consisting of the direct summands of all modules in Induc S (induc S). The 
induced modules and their direct summands are called relatively projective, 
or (S, r)-projective, modules. Likewise, if K is a r-coring [21], Induc K 
(induc K) is the full subcategory of the category K-Comod of left 
K-comodules which is determined by the induced comodules, i.e., by the 
comodules isomorphic to K 0 ,- M with ME I--Mod (A4 E r-mod). I( K, I‘) 
(i(K, I‘)) stands for the full subcategory of K-Comod consisting of 
the direct summands of all comodules in Induc K (induc K). The induced 
comodules and their direct summands are called relatively injective, or 
(K, r)-injective, comodules. 

The paper utilizes categorical machinery. Namely, the above mentioned 
duality between p(A, A) and p(A,, A“p) (Section 4) is obtained from an 
equivalence of categories i( C, A(‘,) and p(A , , A”“). That equivalence is a 
consequence of the following very general fact we prove. If a monad 
F = (F, p, v) in a category X is a right adjoint of a comonad G = (G, 6, E) 
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in X, then the Kleisli categories X, and X, arc isomorphic. (The statement 
is a counterpart of the well-known fact [lo] that the Eilenberg-Moore 
categories XF and X” are isomorphic if F is a left adjoint of G.) In par- 
ticular, if a I’-coring K is finitely generated projective as a left r-module, 
then S= Horn,.-(K, r) is a r-ring, and the monad in I’-Mod determined 
by the endofunctor S @,.- is a right adjoint of the comonad determined 
by K Or-, as follows from the natural isomorphisms 

Horn, (K@,-M,N)=Hom,.-(M,Hom, (K,N))=Hom,_(M,S@,.N) 

with M, NE T-Mod. Since the Kleisli categories here are equivalent to 
the categories of induced modules or induced comodules, we get an 
equivalence between I(K, I’) and P(S, Z-). To come back to the original 
setting, we may put r= A”, and K = C because C is finitely generated 
projective as a left Aop-module. All categorical arguments are presented in 
Section 3. 

The results of this paper generalize those of [S, 63. 
The first author was informed by W. W. Crawley-Bocvey that M. C. R. 

Butler had worked on similar problems. 
The authors are grateful to Maurice Auslander, who suggested the 

approach to the problem; to Jacques Lewin, who brought Frobenius 
groups to their attention; and to the referee for the helpful suggestions. 

1. ALMOST SPLIT SEQUENCES IN SUBCATEGORIES 

The results of this section were presented at the International Conference 
on Representations of Algebras in Warsaw, Poland, in May 1988 [S]. 
Throughout the section, WC assume that A is an artin algebra or an order 
over a commutative noetherian equidimensional Gorenstein ring and that 
A-mod is the category of finitely generated left A-modules or of A-lattices 
[4]. Throughout the section we fix %? as a full subcategory of A-mod closed 
under direct sums, nonzero direct summands, and such that if a module 
XE %’ is isomorphic to a module YE A-mod, then YE %. When A is an artin 
algebra, the general theory of almost split sequences in % was developed by 
Auslander and Smals in [3]. WC need to recall some notions they have 
introduced. 

An exact sequence in %? is an exact sequence . . . Xi , -+ Xi + X,, , . . . of 
modules in A-mod in which the nonzero Xls are all in %?. A module NE +? 
is called Ext-projective if every exact sequence 0 + X + Y + N + 0 in ‘+? 
splits. A module LE%' is called Ext-injcctive if every exact sequence 
0 + 15 -+ Y -+ Z + 0 in V? splits. 

A morphism K: M + N in % is said to be right almost split in $7 if (i) g 
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is not a splittable epimorphism and (ii) for every morphism h: W-t N, 
where WE% and h is not a splittable epimorphism, there exists a 
morphism j: W + M satisfying h = gj. A morphismf: L -+ M in G? is said to 
be left almost split in ‘3 if (i) f is not a splittable monomorphism and (ii) 
for every morphism h: L + W, where WE% and h is not a splittable 
monomorphism, there exists a morphism j: M + W satisfying h = jf ?J is 
said to have right almost split morphisms if for each indecomposable NE (8 
there is an ME 4p and a morphism K: M + N which is right almost split in 
%?. Dually, %? is said to have left almost split morphisms if for each 
indecomposable L E %’ there is an ME V and a morphism .f: L -+ M which 
is left almost split in %‘. Finally, S? has almost split morphisms if it has both 
left and right almost split morphisms. 

An exact sequence 0 -+ L -+I M + R N + 0 in ?Z is called almost split if./ 
is a left almost split morphism in ‘6, and x is a right almost split morphism 
in %. ‘G? is said to have almost split sequences if it satisfies the following 
conditions: 

(a) % has almost split morphisms. 
(b) If N is indecomposable non-Ext-projective in %, then there is an 

almost split sequence 0 -+ L + M + N --+ 0 in %‘. 
(c) If L is indecomposable non-Ext-injective in %, then there is an 

almost split sequence 0 --f L -+ M + N -+ 0 in ‘6. 

DEFINITION 1.1. We say that the Ext-projective (Ext-injective) modules 
in ‘6 are closed under direct sums if whenever X and Y are Ext-projective 
(Ext-injective) in ‘8, X@ Y is Ext-projective (Ext-injective) in %. 

THEOREM 1.2. Suppose that both the Ext-projectioe and the Ext-injectire 
modules in %? are closed under direct sums. Then % has almost split sequences 
if und only if‘ it satisfies the following conditions: 

(i) %? has almost split morphisms. 

(ii) If N is indecomposable non-Ext-projectice in 59, then there is un 
exact sequence 0 -+ L -+ M -+g N + 0 in ‘6 with g right almost split in %. 

(iii) [f L is indecomposable non-Ext-injective in ‘8, then there is an 
exact sequence 0 + L + f M + N -+ 0 in g with f left almost split in 92. 

Prooj: The necessity is obvious. Prove the sufficiency. Let N be 
indecomposable non-Ext-projective in ‘Z-. Consider an exact sequence 
O--+X-+’ Y -+’ N + 0, where t is a minimal morphism corresponding to 
the right almost split morphism g given by condition (ii). Then X is a direct 
summand of L, so that XE%, and t is minimal right almost split in %. WC 
only have to show that s is left almost split in ‘6. Let Xi, . . . . X, be the 
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indecomposable direct summands of X. They are not all Ext-injective 
because t is not a splittable epimorphism, and the Ext-injective modules in 
G9 are closed under direct sums. For j = 1, . . . . r consider an exact sequence 

o- x,A v,A wj- 0 (1.1) 

in V, where if Xi is not Ext-injective, then hj is minimal left almost split in 
V (use condition (iii)); and if Xj is Ext-injective, then Vj= Xi, W, = 0, 
hj= 1. Note that hi is a minimal morphism in both cases. Let 
O+X--+hV-bk W-+ 0 be the direct sum of the exact sequences (1.1) for 
all j; it does not split because some of the sequences (1.1) do not split 
(remember, not all Xj’s are Ext-injective). For each j= 1, . . . . r we have a 
commutative diagram 

hr o-xi- 4 vj - wj--+ 0 

where uj: Xi + X is the natural inclusion. Really, this is obvious if Xi is 
Ext-injective, because ts = 0. If Xi is not Ext-injective, then note that suj is 
not a splittable monomorphism because of the minimality of t, and use the 
fact that hj is left almost split in %. Hence we get the commutative diagram 

h 
o-x- 

k 
v-w-o 

o-XAY&N-0, 

where v is induced by the vis, and w by the wis. If w is not a splittable 
epimorphism, there exists a morphism f: W + Y satisfying w = tf, whence 
the top sequence splits by [16, Chap. III, Lemma 3.3, p. 741, a contradic- 
tion. Hence w is a splittable epimorphism, and wq = 1 for some q: N -+ W. 
We now arrive at the following commutative diagram of d-modules 

O-X-Z-N-O 

O-X”Y--f--+N-0. 
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Since u:y = 1, t;p is an isomorphism, whence ZE 9, V= Im p @ Ker L;, and 
Im h c Im p. If t’ is not an isomorphism, then h is not a minimal morphism, 
which contradicts the minimality of all hj’s because a direct sum of minimal 
morphisms is a minimal morphism. Thus c is an isomorphism, w is an 
isomorphism, and W is indecomposable. Since t is a minimal morphism, so 
is k, whence none of the Xj’s is Ext-injective. Therefore r = 1, X is indecom- 
posable, and s is left almost split. 

If L is indecomposable non-Ext-injective in w;, an exact sequence 
O*L+I’ V -+k W + 0, where h is a minimal morphism corresponding to 
the left almost split morphism f given by condition (iii), is almost split in 
‘8’. The proof is similar to the preceding argument. 1 

Recall that when A is an artin algebra, the basic existence theorem of 
[3] states that if V is a dualizing R-variety closed under extensions, then 
V: has almost split sequences. Since Ext is an additive bifunctor, if a sub- 
category is closed under extensions, then both the Ext-projective and the 
Ext-injective modules in it are closed under direct sums. Thus our theorem 
may be viewed as an extension of the abovementioned result of Auslander 
and Smalo. 

2. Ext-PROJECTIVE MODULES AND RIGHT ALMOST SPLIT MORPHISMS IN 

~(4 A 1 

We describe the Ext-projective modules in p(A, A), show they are closed 
under direct sums, and prove p(A, A) satisfies conditions (i) and (ii) of 
Theorem 1.2 for right almost split morphisms. 

For a left A-module N, consider a short relative projective resolution 

O--&(N)-A&N-l N-0, (2.1 ) 

where m is the multiplication map, and O(N) = Ker m. 

LEMMA 2.1. For any NE A-mod, Q(N) is injectice in A-mod. 

ProojI We note first that the exact sequence 

0-ALA-Cokeri-0 

of A-bimodules splits as a sequence of right A-modules because, as a right 
A-module, Coker i is projective. Tensoring with N, we obtain the exact 
sequence of left A-modules 

O- N& A O,, NP’ (Cokeri) On N- 0, (2.2) 
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wherej is the map Nz A On N +i@’ A @,, N. Since mj= 1, the sequence 
(2.2) splits. Denote by h: (Coker i) a,., N + A @,, N a unique morphism of 
left A-modules satisfying ph = 1 and jm + hp = 1. Then we get the exact 
sequence 

0-(Coker)i)@,NLA@,,NzN-0, 

which, as a sequence of left A-modules, is isomorphic to (2.1). To 
show Q(N) is injective as a left A-module, it suffices to prove 
so is (Cokeri)O,N-O:=,I,~O.P,O,N. But P,@,N is finitely 
generated projective as an R-module because N can be viewed as a A -R 
bimodulc which is finitely generated projective as an R-module, and P, is 
a finitely generated projective right A-module. Therefore P, O,, N is a 
direct summand of a free R-module of finite rank, whence 1, Ou P, a,, N 
is injective in A-mod. 1 

LEMMA 2.2. Let 0 + L +*M + R N + 0 be an exact sequence in A-mod 
with NE p( A, A). Then: 

(a) Q(N) is an Ext-injectice module in p(A, A). 
(b) There exists an exact sequence O+A@,L@Q(N)+h 

A On M +gn’ N -+ 0 of A-modules, where m: A a,, M + M is the multi- 
plication map, and the restriction of h to A On L coincides with 1 Q,f: 
A@,L-+A@,M. 

ProoJ: (a) It is well known that sequence (2.1) splits as a sequence 
of left A-modules. Since N is relatively projective, it splits as a sequence 
of A-modules. Hence Q(N) E p(A, A), and Lemma 2.1 implies Q(N) is 
Ext-injectivc. 

(b) Consider the following commutative diagram in A-mod. 

0 0 0 

o- n(L) - Q(M) - Q(N) -0 

I I I 
O-A@, L aA QnM%AQnN-0 

I 
m m In 

o- I I I 
L- M A N -0 

I 
0 

I 
0. 
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Since the columns and the two bottom rows are exact (remember, A is 
projective as a right A-module), the top row is exact. It is split exact in 
A-mod by Lemma 2.1, hence it is split in A-mod because Q(N) E p(A, A). 
We have Q(M) = (1 @S)(Q(L)) @ N, , where N, 2: Q(N). It is easy to see 
that Ker (gm)=(l@f‘)(A @.L)+Q(M)=(l@.f)(A @,L)@N,. 1 

PROPOSITION 2.3. Let N be an indecomposable module in p(A, A), and 
M +g N a right almost split morphism in A-mod. Then: 

(a) gm: A On M -+ N is right almost split in p( A, A). 

(b) Suppose N is not projective in A-mod, so that g is onto and we 
have an exact sequence 0 + L --tf M --f fi N -+ 0 of’ A-modules. Then there 
exists an exact sequence 0 + X +.’ Y +’ N + 0, where Y is a direct sum- 
mand of A @,, M; t is a minimal right almost split morphism in p(A, A); X 
belongs to p(A, A) and has no direct summand.s which are injective in A-mod. 
In fact, X is a direct summand of‘ A @,, L. 

(c) A right almost split morphism Y --, N in p( A, A) is surjectice if and 
only iJ’hr is not Ext-projective. 

(d) N is projective in A-mod if and only if it is Ext-projective in 
~(4 A ). 

(e) The Ext-projective modules in p[A, A) are closed under direct 
sums. 

Proof: (a) Since g is not a splittable epimorphism, neither is gm. We 
show that if U E p(A, A) and h: U + N is not a splittablc epimorphism, then 
there exists a morphism j: U+ A @,, M satisfying h = (gm) j. Really, since 
g is right almost split, h = gk for some k: I/ -+ M. Since m: A @ ,, M -+ M 
has a right inverse in A-mod, and U is relatively projective, k = rnj for some 
j: U + A O,, M. Substituting, we get h = (gm) j. 

(b) Let t: Y + N be a minimal right almost split morphism in 
p(A, A) corresponding to gm [2]. Then we get an exact sequence 
0 -+X +’ Y -+’ N -+ 0 with X a direct summand of Ker(gm), and I’ a 
direct summand of A @ ,, M. By Lemma 2.2(b), Ker (an) Y A 0 n L 0 
Q(N) so that XE p(A, A). Show X has no direct summands injective in 
A-mod. 

Assume, to the contrary, that U is such a summand. Let U +y X -+p U 
be morphisms in A-mod satisfying pq = 1. Then we have a commutative 
diagram 

1 h II 
O-U-V-N-O 
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of A-modules, where the bottom row splits over A because U is injective. 
Since N is relatively projective, the bottom row splits over A; i.e., there 
exists a morphism k: V+ 0’ in A-mod satisfying kh = 1. Then krsq = 
khpq= 1, so that U is a direct summand of Y, contradicting the fact that 
t is minimal. 

Since Q(N) is injective in A-mod by Lemma 2.1, X has no summands of 
Q(N); i.e., X is a direct summand of A @,, L. 

(c) Follows from (a) and (b). 
(d) The necessity is clear. The sufficiency follows from (b). 
(e) Follows from (d). 1 

3. DUAIJTIES, ADJOINT MONADS, AND KIXISLI CATEGORIES 

This section contains certain facts on category theory and categories of 
modules which will be used in Section 4 to prove the existence of almost 
split sequences. Some of them, i.e., the theorem that if a monad is a right 
adjoint of a comonad, then their Kleisli categories are isomorphic [14], 
seem to bc interesting on their own. 

We begin with the following, apparently well-known, statement. 

LEMWA 3.1. Let 21i he a preadditive category in which the idempotents 
split, ‘Bi a full subcategory of 5!li, and CCj the full subcategory of 91i deter- 
mined by the direct summands of all objects of ‘B,, i= 1, 2. If @: 23, -+ 8, 
is an additive equivalence of categories, then it can be extended to an additive 
equivalence of categories !E 6, + C2. 

ProqJ: For each object CE Q,, choose a pair of morphisms 
C+qB-+PC, where B~23, and pq=l,. If CEB,, we put B=C and 
p = q = 1 c. Then choose an object C’ E 6, and morphisms C’ -+q’ B -+ p’ C’ 
satisfying p’q’ = lc., and qp + q’p’ = 1 B. Since the idempotents split in U,, 
@(qp) = vu and @(q’p’) = v’u’ for some morphisms N +” @B +” N and 
N’ +‘I’ @B +“‘ N’ in PI, satisfying uv = lN and u’v’ = l,,,,. If @(qp) = 1 9B, 
we choose N = @B, u = v = 1, and N’ = 0. Since Q, is an additive functor, 
vu + v’u’ = @(qp) + @(q’p’) = 1 OR. 

Detine now YC = N for C E 6, , and for each f: C, + C, in 0. i put 

Yf=u*@(YzfP1)~,. (3.1) 

Here the morphisms p,, q, for Ci, as well as u,, v, for Ni, are chosen as 
described above, i = 1,2. Note that YC = @C if C E 23, , and Yf = @f if f is 
in 23,. 
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Since 

we get 

h@(YJbI I= 0, @(qrhJ, 14 = 03 

u* @(4x4 I= 0, @(Y;fp; 0. 

(3.2) 
1 c’l = 

This implies immediately that Y is a functor. Using (3.2) again, we see that 
if Yj’= 0, then @(q2fp1) = 0, whence q2fp, = 0 because Qi is faithful. Multi- 
plying by p2 on the left and by q, on the right, we get f = 0; i.e., Y is faith- 
ful. To show Y is full, note that if h: N, + N2 is a morphism in Kr, then 
Y(pz@ ‘(t’:hnr) q,) = h. The verification is straightforward. Finally, show 
Y is dense. If ME K,, then there is a pair of morphisms M +’ @B -+’ M, 
where BE $93, and st = 1, because @ is dense. Since the idempotents split in 
‘II,, @-‘(ts)=qp for some C _ty B +pC, where pq= 1 and CECF,. Since 
Y extends @, we have YqYp = Y(qp) = @(qp) = ts and YpYq = 1; i.e., the 
pair of morphisms YC + *% @B + yp YC provides another splitting for the 
idempotent ts in VIZ. Clearly, M is isomorphic to YC in PI,. Thus Y is an 
equivalence of categories. 

The additivity of Y is obvious. 1 

Recall [2] that the contravariant additive functor D = Hom,( -, R) is a 
duality between A-mod and AoP- mod, as well as between A-mod and 
C-comod. Then [ 13, Theorem 4.4, p. 18 I], together with Lemma 3.1, 
implies 

THEOREM 3.2. The contravmiant functor D is an udditive dltality between 
p(A, A) und i(C. Aop). 

We now describe the A-rings A for which the A”P-coring C corresponds 
to a free BOCS [7]. 

LEMMA 3.3. Let B be a A-himodule. 

(a) If B 1 I OR P with I injtctive in A-mod and P projective in 
mod-A, then B* = Horn -,,,(B, A) 2 W @ R Q with W projective in A”P-mod 
und Q pwjective in mod-AoP. 

(b) If B z W Ox Q with W projective in A-mod and Q projective in 
mod-A, then: 
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(i) B* ‘v I OR P with I injective in A”“-mod -und P projective in 
mod-A Op. 

(ii) *B= Horn,, (B, A) ‘Y I, OR P, with I, injectiue in A-mod and P, 
prqjective in mod-A. 

Proof: Since B is finitely generated projective as a right A-module in 
both (a) and (b), [ 13, Lemma 4.3, p. 1811 gives an isomorphism of right 
A-modules D( B 0 n M) = DM 0 ,, B*, functorial in ME A-mod. Putting 
B=I@,P and M=DA, we have B*=D(DA)@,B*-D(B@,DA) 
N D(I OR P On DA) z DZ OR D( P @,, DA), the latter isomorphism 
being based on [ 13, Proposition 4.1, p. 1793. Here DZ is projective in 
Aor-mod, and D(P @,, DA) is projective in mod-AoP because P is a direct 
summand of a fret module, and DA is injective. (a) is proved. 

To prove (b), note that (i) 3 (ii). The proof of (i) is similar to the proof 
of (a). 1 

COROLLARY 3.4. The following ure equivalent: 

(a) The sequence 

O-A&A-Cokeri-0 

is exact (i.e., the map i is injective), and Coker i ‘v @ :_, i,y OR P, with I,y 
injective in A-mod and P, projective in mod-A. 

(b) The sequence 

O- Ker.s- CA AoP- 0 

is exact (i.e., the map G is surjective), and Ker E 2: @ YE , W, OR Q, with W,< 
projective in Aop- mod und Qs projective in mod-AoP. 

Proof: If the first or second sequence is exact, it is split as a sequence 
of right A- or Aop- modules, respectively. Therefore, applying to the 
sequences the contravariant additive functors Horn -,,( -, A) or 
Horn-,,.,( -, A’P), we obtain exact sequences of AoP- or A-bimodules, 
respectively. It remains to use Lemma 3.3, [ 13, Corollary 4.2, pp. 179-1801, 
and the fact that E = Horn-.(i, A). 1 

Prove now that i(C, A““) is equivalent to p(A,, Aop) if condition (b) of 
Corollary 3.4 is satisfied. We have to turn to general category theory; the 
notions used here are defined, for example, in Chapters IV and VI of [ 173. 

Let ‘$I be a category, F = (F, p, r]) a monad in ‘% with multiplication 
p: F2 + F and unit q: I + F, G = (G, 6, E) a comonad in 2I with comulti- 
plication 6: G + C;’ and counit E: G --t I. Suppose that the monad F is a 
right adjoint of the comonad G; i.e., the functor F is a right adjoint of 
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the functor G under an adjunction sl: 2X(GX, Y) -+ %!l(X, FY), and the 
following two diagrams commute for all A’, YE% 

%(GX, Y) ---k wx w 

‘U(EX. Y) 
I I 

‘U(X. qY) 

‘U(X, Y) = ‘WC Y) 

(3.3 i 

(3.4) 

21(G2X, Y)-% 'zt(X, F'Y). 

We prove that under these circumstances the Kleisli categories 21p and ‘21, 
are isomorphic [14]. For the convenience of the reader, we give a full 
treatment. Note that the diagrams (3.3) and (3.4) are obtained by reversing 
the arrows in the diagrams from [ 10, p. 390, top], defining a monad which 
is a left adjoint of a comonad. If F is a left adjoint of G, then [ 10, Proposi- 
tion 3.3, p. 3891 shows that the Eilenberg-Moore categories ‘21F and 2I” are 
isomorphic. 

In the remaining part of this section, we fix the monad F and its left 
adjoint comonad G which make the diagrams (3.3) and (3.4) commute. 

Define a map 0: 2l, -+ 21F as follows. For each XE‘U put OX= X. For 
each morphism f: GX -+ Y in 211, put 

Of = a(f): x + FY. (3.5) 

THEOREM 3.5. 0:2I, + 21F is an isomorphism of categories. 

Proof: Show first that 0 is a functor. For each identity morphism 
EX: GX + X in ‘?I, we have @A’) = r(aX) = qX, using the diagram (3.3). 
Hence 0 preserves identity morphisms. Given g: GY + Z and f: GX -+ Y, 
the composite morphism in 2l, is gGfFX: GX+ Z. Then 

using the diagram (3.4). But pZF(r(g)) x(f) is the composite of a(g) and 
x(f) in 21f. 

To finish the proof, we note that the functor 2l,+ flu,; given by XH X 
for all XE ‘+.?l, and gH x- ‘(g) for each g: A’--+ FY, is an inverse of 0. 1 
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Let 2Ii be the full subcategory of 21F consisting of the free F-algebras, 
i.e., of the algebras of the form (FX, PX) with XE ‘II. Likewise, denote by 
2I,G the full subcategory of 21”” consisting of the cofree G-coalgebras, i.e., of 
the coalgebras of the form (GX, 6X) with XE 2L Consider the following 
commutative diagram of categories and functors whose rows are canonical 
adjunctions for the Eilenberg-Moore and Kleisli categories involved, with 
Si a left adjoint of Ti, i = 1, 2, 3, 4. 

Here U and V are the unique functors making the diagrams commute. It 
is well known [ 17, Exercises 1, 2, p. 1441 that U, V are fully faithful, and 
UpI,) = rrr;, V(2I,) = 21:; in other words, the restriction of U (which we 
still denote by U) 21P+ 21: is an equivalence, and so is V: 2l, --f 2Ig. 
Explicitly, 

ux = (FX, ptx), Uf =/tYFf, 

U-‘(FX, uX) = X, u ‘g = g&c 
(3.6) 

for all X, YE 2l, S: X+ FY in U, and all morphisms g: (FX, uX) -+ 
(FY: p Y) of free F-algebras. V and V- ’ are defined dually. We obtain 

COROLLARY 3.6. In the setting of Theorem 3.5, @= VW’UP’: 
‘uF II+ ‘2lg is an equivalence of categories. 

PROPOSITION 3.7. Suppose 2I is an abelian category, Fpreserves cokernels, 
and G preserves kernels. Then 

(a) F and G are additive fiunctors. 

(b) 2l“ and 21G are abelian categories. 

(c) The equivalence @ = VO -’ U ‘: 2li + (ug, described in Corollary 
3.6, is additive. 

(d) Denote by add 2lt (add 21:) the full subcategory of a’(%“) 
determined by the direct summands of objects in 21: (21:). Let Y’: add 21; -+ 
add 2I,G‘ be the equivalence of categories constructed from @ according to 
Lemma 3.1. If C, -+/C, -+R C,+O is an exact sequence in ‘UP with C,E 
add 21:, i = 1, 2, 3, then YC, + w YCz --+ Q YC, -+ 0 is an exact sequence 
in 2I”. 

(e) Iff: X + Y is manic in 21, then @(Ff ): GX + GY is manic in 2t”“. 
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Pro?6 (a) Follows from [9, Proposition 1.4, p. 141. 
(b) This is just [lo, Proposition 5.3, p. 3951. 
(c) It follows from (3.5), using [17, Chap. IV, Theorem 3, p. 831, 

that 0 is an additive isomorphism; then so is 0 - ‘. V and U-- ’ are also 
additive, as follows from (3.6). 

(d) Here, as in the proof of Lemma 3.1, we have C; +y’ Bi 4~‘~ C,, 
where B; = FX, for some Xi E ‘21 and piqi = 1. It follows from the formulae 
(3.1) (3.5), and (3.6) that 

where YC, --*‘I @Bi --*“I YC,, cDB;= GX,, and uici= 1, i= 1, 2, 3. Remem- 
ber that we also have morphisms p:, qi, ul, vi satisfying p,!q( = 1, 
yipi+ q:pj = I, ulci = 1, ciui+ t;lul= 1 for all i. 

Assume now that g is a cokernel off in %‘; and show Yg is a cokernel 
of Yf in ‘?I’? As follows from [ 10, Proposition 5.2, pp. 3943951, it suflices 
to prove that yg is a cokernel of Y’f in 2I. Let h: YC, + Y be a morphism 
in ‘?I satisfying hYf =huz@(q2fp,) t’, =O. Multiplying by U, on the right 
and using (3.2), we get O=hu2~(q2fp,)=hu2G(cr-‘(q,fp,rlX,))6X,. The 
latter expression is the composite of hu, and r ‘(q2fp1$Y1) in 211,. By 
Theorem 3.5, the composite of a(hu?) and q2 fpl&Y, in PI, is zero, i.e., 
~YF(r(hu~)) q2.f;7, qX, = 0. Using the equivalence U: ‘$I,-+ 2Ic given by 
(3.6), we get pYF(a(&)) q2fp, = 0, which yields pYF(r(ku,)) qI f = 0, 
after the multiplication by q, on the right. Since g is a cokernel off in t!I”, 

~YF(4hu2)) 42 = kg (3.8) 

for a unique k: C, -+ FY in ‘$I’. We claim that 

P WMu,)) 4; p; = 0. (3.9) 

To prove this, it suffices to show that ,~YF(cl(hu,)) qip;qXz = 0, using CJ. 
Theorem 3.5 implies that the latter equality is equivalent to 

which holds because of (3.7) and (3.2). Multiplying (3.8) by p2 on the right 
and adding to (3.9), WC get 

PYJY~~~,))=~RP,. (3.10) 

Multiplying by ‘1X, on the right and using properties of the natural 
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transformations q and p: we obtain cr(hu,) = kgp,gX,, so that hu, = 
a - YhJ,q3gP2e-*). 

Since kp3 is a morphism in 2li, (3.6) implies kp, = ,uYF(kp3qX3). Using 
the diagram (3.4), we obtain 

hu,=a-‘(~Y~(k~3~X3)q3g~zvlX,) 

=!X -‘Ca-‘(Wp3M,) qsm+fdl6X, 
=a -‘Ckp,?X,cr-‘(q3gp,?X,)lbJJz 
=tl ‘Uv,rlJ’,) G(a ‘(43 w,G’d) 6x2 
=X -‘(b3G3) wGW’(q3 gp2vlX2)) 6X2, 

the last step being based on (3.2) and (3.7). Multiplying by t‘2 on the right, 
we obtain h = a .-‘(kp,qX,) u3 Yg: using (3.1) and (3.7). To finish the proof, 
it remains to show that h =jYg, for some morphism j: YC3 + Y in VI, 
implies 

j= x-‘(kp,t@-,) c3. (3.11) 

Multiplying by u2 on the right, we get 

using (3.2) and (3.7). Then, using (3.4), we get 

4hu2)=4ju3G(a ‘(q3gp2rlX2))6X2)=~Ya2(ju3G(a-‘(q3gp2rlX2))6X2) 
=clYa[4ju3G(a ‘(q3 gp2vX2)) 6X2)1 
= pYaC4ju3) a-‘(q3 m2vXdl 

= ~W&b3)) q3 gP2qX2. 

Passing to 21LI’ via U, we obtain pYF(a(hu,)) =pYF(a(ju,)) q3gp2. Com- 
paring with (3.10), we get K =pYF(a(ju,)) q3 because g and p2 are epi in 
914 Multiplying by ps on the right, we obtain kp, = pYF’(z(ju,)) qJ pJ. But 
p YF(a( ju,)) q; pi = 0 by (3.9), whence kp, = p YF(a( ju3)). To obtain 
(3.11), it suffices to multiply the latter equality by ‘IX, on the right, then 
use properties of the natural transformations q, ,n, and u3u3 = 1. 

(e) We have 

@(Ff) = G(r ‘(FfilX)) 6X= G(a ‘(qYf)) 6X 

= G(~EA’) 6X = G~GEXGX = Gf, 
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using (3.3). Since 1‘ is manic in ‘?I, f is a kernel because PI is abelian. Hence 
Gf is a kernel, by assumption, therefore manic in 81. Then Gfis manic in 
?I”. 1 

PROPOSITION 3.8. Let K he a r-coring which, as a left Iktodule, is 
finitely generated projective. Then: 

(a) *K= Horn,.-(K, I‘) is a f-ring. 

(b) There exists an additive equivalence of categories @: Induc *K + 
Induc K whose restriction @I induc *K: induc *K + induc K is an 
equivalence. The equivalence @ can be extended to an additive equivalence 
!I? P(*K, I‘) + I(K, r), whose restriction !Pl p( *K, F): p( *K, I’) + i(K. r) is 
an a equivalence of categories. 

(c) Let K he flat as a right F-module. Then: 

(i) If L + M + N + 0 is an exact sequence of left *K-modules with 
L, M, NE P( *K, r), then YL + YM + YN + 0 i.s an exact sequence qf left 
K-comodules. 

(ii) For each injective module I in T-Mod, *K @,- I is injective a,s 
a left r-module, hence Ext-injective in P( *K, r). 

(iii) An induced module *K @,- M is Ext-injective in P(*K, r) [f 
and only if it is a direct summand of +K 0 ,. I, where I is injectioe in T-Mod. 

Proof: (a) Let p: K+ K Or K and C: K + f’ be the comultiplication 
and counit, respectively, of K. For f, ge *K, define the product Rf as the 
composite of the mapsKj/‘KO,.K~‘~~KKO.r=K~*r, and the 
structure map r + *K as the map sending each y E r to the morphism 7s 
(remember, *K is a I’-bimodule). *K is the opposite ring of the one detined 
in [21, 3.2. Proposition (a)(c), p. 3981. 

(b) For M, NE T-Mod we have the following natural isomorphisms 
of abelian groups 

Horn, (K 0,. M, N) ‘v Horn, (M, Homr..(K, N)) 

‘v Horn,. (M, *K Or N) (3.12) 

because K is finitely generated projective as a left r-module. Hence the 
monad in T-Mod induced by the functor *K a,.- is a right adjoint of the 
comonad in T-Mod induced by the functor K Or-. Really, the com- 
mutativity of the diagrams (3.3) and (3.4) is obtained by applying the 
isomorphism (3.12), which is functorial in the r-bimodule K, to the 
morphisms E: K + r and p: K + K a,- K of r-bimodules. @ = VO --’ U- ’ is 
an additive equivalence Induc *K + Induc K by Proposition 3.7(c), and 
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the properties of 8, as defined by (3.5), ensurc that @ 1 induc *K is an 
equivalence. The rest follows from Lemma 3.1. 

(c) The endofunctor K 0,. of T-Mod preserves kernels, hence 
Proposition 3.7(d) implies (i). 

(ii) Let 0 + X+ Y + Z + 0 bc an exact sequence in I’-Mod. Since 
K is flat and I injective, the following two sequences are exact in I-Mod: 

Using the natural isomorphism (3.12), we conclude that the latter exact 
scqucncc is isomorphic to the sequence 

O-Horn,. (Z,*KOrZ)-+Hom, (Y,*K@,-I) 

+ Horn,.- (X, *K 0 ,. I) -+ 0. 

Therefore *K @ ,. I is injective in T-Mod. The rest is clear. 

(iii) The sufficiency follows from (ii). For the necessity, consider an 
exact sequence 0 + M + I + N + 0 in T-Mod with Z injectivc. Tensoring 
with *K, which is projective as a right r-module, we obtain the exact 
sequence 

O+*K@,.M+ *KQrI+*K@, N+O 

of *K-modules. It splits because *K 0,. M is Ext-injective in P(*K, Z-). 1 

COROLLARY 3.9. (a) Let Y: p(A , , /lop) + i(C, Aop) he the additive 
equivalence of categories given by Proposition 3.8(b). Then D!F p( A,, A”“) + 
p(A, A) is an additive duality. 

(b) u X + Y + Z + 0 is an exact sequence of left A, -modules with X, 
Y, ZE~(A,, Aop), then O+DYZ+DYY+DYX is an exact sequence of 
lefl A-modules. 

(c) The structure map i, : Aop + A, of the AoP-ring is injective, and 
Coker i,, as a AoP-bimodule, is isomorphic to Q YE, I, OR P,, where Z, is 
injective in Al”‘- mod and P, is projective in mod-AoP. 

ProoJ (a) follows from Theorem 3.2. (b) follows from Proposition 
3.8(c)(i) and the fact that D is exact. The proof of (c) is almost the same 
as that of (b) * (a) in Corollary 3.4: one only has to use Lemma 3.3(b)(ii) 
instead of Lemma 3.3(b)(i). 1 
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4. Ext-TNJE(:rIvE MODULES AND LEFT AI-MOST SPIJT MORPHISMS IN p(A, A); 
EXISTENCE OF ALMOST SPLIT SEQUENCES 

PROPOSITION 4.1. Let L be an indecomposable module in p(A, A). 
DY’: p(A,, Aop)+p(A, A) the duality given by Corollary 3.9(b), and 
(DY) - ’ an inverse duality. 

(a) Let f: M--f (DY) ’ L be a right almost split morphism in 
p( A,, Aop), then D Yf: L --f DYYM is a left almost split morphism in p( A, A). 
Thus left almost split morphisms exist in p(A, A). 

(b) If (DY) -’ L is not projectice in A ,-mod, then there exists an 
exact sequence 0 + L +h V +k W + 0 in p(A, A) with h left almost split in 
pt.4 A). 

(c) The following are eyuicalent: 

(i) L is Ext-injectice. 
(ii) (DY) ’ L is projectioe in A,-mod. 
(iii) L is a direct summand of A @ ,, I, where I is injectice in 

A-mod. 
(iv) L is injectioe in A-mod. 

(d) A left almost split morphism L + X in p(A, A) is injective if and 
only if L is not Ext-injectiue. 

(e) The Ext-injective modules in p(A, A) are closed under direct sums. 

Prooj: (a) Note that (DY) ’ L is indecomposable and use Proposi- 
tion 2.3(a). 

(b) By Proposition 2.3(b), there exists an exact sequence of A,- 
modules O-+X +.’ V +‘(DY) ’ L-0 with X, Ycp(Al, Aop) and t right 
almost split in p(A,, A”“). Then the sequence 0 -+ L jh V dk W of 
A-modules, where V = DYY, W = DYX, h = DYt, and k = DYs, is exact 
by Corollary 3.9(b), and h is left almost split by part (a). It remains to 
show k is onto. Using Lemma 2.2 and Proposition 2.3(a)(b), it suffices to 
show that if q: U, + U, is a monomorphism in AoP-mod, and 
1 Oq: A, Onop U, -+A, On,,,, U, is the induced monomorphism in A, -mod, 
then Y( 1 @q) is injective. This relation follows from Proposition 3.7(e) 
(remember, both A, and C are projective as right A”P-modules). 

(c) (i) 3 (ii) follows from (b). 
To prove (ii)=+(iii), note that L=DY(DY)-‘L, and DY(A,)- 

DWA, O,,w Aop) = D(C @,,op A”“) N A @,,, DA according to [13, 
Lemma 4.3, p. 1811. Since DA is injective in A-mod, and D, Y are additive 
functors, the statement follows. 
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(iii) + (iv). Since A is finitely generated projective as a right 
A-module, we have A @,, ZzHomn-(C, I), where C=Hom-,(A, A) is a 
A-bimodule projective (hence flat) as a right A-module by Corollary 3.4. It 
remains to use the well-known consequence of the adjoint associativity 
stating that if J is an injective left S-module, and B is an S- T-bimodule 
flat as a T-module, then Horn, (B, J) is an injective left T-module. 

(iv)*(i). If 0-t L+ Y-+2-+0 is an exact sequence in p(A, A), 
then it splits over A because L is A-injective, hence splits over A because 
2 is relatively projective. 

(d) Follows from (b) and (c). 
(e) Follows from (c). 1 

THEOREM 4.2. (a) Let N be an indecomposable non-Ext-projectioe 
module in p(A, A), and 0 + L + A4 + N--f 0 an almost split sequence in 
A-mod. There exisrs an almost split sequence 0 +X -+ Y + N + 0 in 
p(A, A ), where X ( Y) is a direct summand of A @I ,, L (A @A M). 

(b) Let L be an indecomposable non-Ext-injectioe module in p(A, A). 
There exists an almost split sequence 0 + L + V + W + 0 in p(A, A). 

Proqf Follows from Proposition 2.3, Proposition 4.1, and Theo- 
rem 1.2. m 

5. RELATIVELY PROJECTIVE AND INDUCED MODULES 

In view of the recent applications of representations of BOCSes to 
representations of finite-dimensional algebras [7], the question of whether 
almost split sequences exist for representations of BOCSes is important. As 
shown in [6], they do exist in the special case of representations of par- 
tially ordered sets. Since the problem of classifying the representations of a 
BOCS can be viewed as the problem of linding a canonical form for a 
certain collection of matrices [20, 15, 193, the indicated question is also 
important for linear algebra. If K is a r-coring, then, in the algebraic 
language of [13], the category of representations of a BOCS is just the 
Kleisli category of the comonad in r-mod induced by the endofunctor 
K 0,.-; the category is equivalent to the category induc K of induced 
K-comodules. However, the existence theorem of Section 4 does not apply 
immediately because relatively injective comodules, which are direct 
summands of induced comodules, are not, in general, representations of 
BOCSes. In this connection, it is natural to ask whether a r-coring K has 
the property that every direct summand of an induced comodule is induced; 
i.e., every relatively injective comodule is relatively cofree. The.question is 
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equivalent to asking whether idempotents split in lnduc K. If the answer is 
“yes,” almost split sequences exist in induc K. The question seems also 
interesting on its own because one wants to have a class of corings well- 
behaved with respect to induced comodules. Although it was known that 
idempotents split in the category of representations of a partially ordered 
set, as well as in some other cases, the general answer was missing. In this 
section we describe a large class of corings with the desired property; 
the class contains all known special cases. In particular, it contains ail 
triangular BOCSes in the terminology of [ 19, 73. The dualities of Section 3 
yield a class of I‘““- rings for which every direct summand of an induced 
module is induced, i.e., every relatively projective module is relatively free. 
For these rings, almost split sequences exist in the category of induced 
modules. 

Let r be an R-algebra (for the moment, R can be replaced by any com- 
mutative ring), and K a f-coring with comultiplication p: K -+ K 8,-K, 
counit c: K -+ I-, and a grouplike R. Recall that p(g) = g @ g and c(g) = 1. 
Following [ 191, for U= Ker E consider two R-linear maps f --* U and 
U+ U 0,. U which are denoted by the same letter D and given by the 
formulae 

D;,=yg-gyy (5.1) 

and 

Du=p(u)-uog-g@u (5.2) 

for all 7 E f, u E U. 
Then D extends uniquely to an R-differential D of degree 1 on the graded 

tensor ring r(U) of the f-bimodule U. Here the elements of r are assigned 
degree 0, and the elements of U are assigned degree 1; D satisfies the 
Leibniz formula 

D(w)= (Du) w + (- l)degU r;(Dw) (5.3) 

for all homogeneous t’, M; E T(V), and 

D'=O. (5.4) 

Thus T(U) is a differential graded algebra (DG-algebra) [ 16. p. 1901, 
except that the differential D is of degree I rather than - 1. 

We now describe in the language of [13] a category which, in fact, 
coincides with the category of representations of the differential graded 
category (DGC) corresponding to the coring K [20, 15. 191. 

For every M, NE f-Mod, define an R-linear map 

F:Hom,-(K@,M, N)-+Hom.(M,N)@Hom,- (U OrM, N) 
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as follows. For each I$: K Q,- M --f N put F4 = (&,, $), where 4”: M + N 
and $UQ,-M+N are given by &(x)=q5(gQx) for all XEM and 
c+i=& u QrM. 

PROPOSITION 5.1. (a) The map F is well-defined and injectice. 

(b) Im I; consists of ail pairs ( Il/o, 4) satisfjing 

Yti”(.X) = tio(^r’x) + $(Dy 0 x) (5.5) 

for all XEM, YEI-, where $,,: M + N is an R-linear map, and 
4: Cl Q r M + N is a r-linear map. 

(c) If4~Hom,- (K@,.M,N), $~Hom,.-(KQ,L,M), and #~JII/ 
is the composite of 4 and $ in the Kleisli category f-Mod, Or of the 
comonad in I.-Mod determined by the endofinctor K al.-, then 
F(c$ 0 t+b) = (x0, f), where 

and 

zo = #oil/o (5.6) 

;i(uQx)=~o~(~Q~)+~(~Q~o(~))+Ci(aiQ~(b;Qx)) (5.7) 

,for all XE L, UE U, Du=CiaiQb,. 

(d) The image of the identity morphism I: Q 1 ,+, qf M in I’-Mod,,,. 
is 

F(~Ql,)=(l,mo). (5.8) 

(e) F is an isomorphism between I’-Mod,,,- and the category 
B(K, r) whose objects are those of T-Mod, and whose morphisms are all 
pairs (eo, 4) satisfying (5.5), with the composition defined by (5.6), (5.7). 

(f) If an R-linear map tie and a r-linear map $ satisjj (5.5) for 7 
equal to 7, and yz in r and all x E M, then they satisfy (5.5) for 7 = 1/, y2 and 
all x. Thus (Ii/o, I+&) E Im F if (5.5) holds for any set of generators of r as an 
R-algebra. 

ProoJ (a) Since c(g) = 1, then K= gT@ U is a direct sum of right 
r-modules, and the restriction of E to gZ’ is an isomorphism gf rg f in 
Mod-I: Then K Q,- M u gQ MO U 0,. M is a direct sum of R-modules 
for each M in T-Mod, and the map g Q M + M sending g Q x to x for each 
x E M is an isomorphism of R-modules. Therefore F is well-defined and 
injective. 

(b) If (Il/“, I,&) is of the form F$ for some r-linear map 
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t+k K 0,-L -+ kI, then (5.5) holds; the verification is straightforward. 
Suppose now that the pair ($0, 4) satisfies (5.5) and show that the 
R-linear map II/: K Or L + A4 defined by tj(rj 0 x) = $0(;!x) and 
~)(uOx)=tJ(u@x) for all XE~M, y E f, UE c’, is r-linear. Since $ is 
r-linear, we only have to show that $(yg@ x) = y$( g @ x). Using (5.5), we 
have $(--;gOx) = $((g’/ + &)0x) = $(gyOx) + $(&Ox) = $0(7x) + 
~(D’iO-u)=‘l~,(x)=‘l~(gOx). 

(c) Since p(g) = g@ g, we have 

%,,(,~)=X(gOx)=~(KO~(gOx))=~(XO~o(x))=~o(~o(x’)) 

for all SE L. Hence (5.6) holds. Also, using (5.2) we get j(u@x) = 
X(uOX)=~(gOIl/(uOX))+~(UOIC/(gOX))+~,~(aiO~(h,Ox)) for all 
UE li, XE L. This is precisely (5.7). 

(d) Obvious. 

(e) Follows from (a). (b), (c), and (d). 

(f) Suppose ‘r, rl/&) = $o(~i xl+ $(Ql 0,~) and ~~lcl~(x) = 4&Z-~) 
+$(Qz@x) for all XEM. Then r,~r~0(~)=~,[~0(;~Z~)+~(DY20x)]= 
i’,~o(‘J~-~)+~(~1~Y:!ox) = ti t-O 0 r,‘izx)+~(ni,,oY*x)+~(*J,D7rOx) = 
~o~~,;~~-~~+~{c~~l~~z+~lo^/21o~}=~ooIljl?~~+~~~~~i~2~o~~. I 

For the rest of this section suppose that the identity 1 E f can be written 
as a sum of pairwise othogonal idempotents 1 = e, + ... + e, in such a way 
that, as a r-bimodule, Ci is isomorphic to @ :=, I-ej,, 0 R e,>f. (This is the 
case, for instance, when the r-coring K satisfies condition (b) of 
Corollary 3.4.) If ~4,~ corresponds to ei,@e,‘ under the abovementioned 
isomorphism, then 

u= & lic,l‘ (5.9 1 
5-I 

and 

We often consider the isomorphism LT E @ : , fei, 0 x ejY I- as identifica- 
tion. 

Remurk 5.2. As follows from Proposition 5.1(b), a pair ($(), 0), where 
t,k(, is an R-linear map, is a morphism in B(K, I-) if and only if $0 is a 
homomorphism of /-modules. Then Proposition 5.1(c)(d)(e) implies that 
there exists an embedding of the category T-Mod into B(K, f) sending 
every /‘-module M to itself, and every homomorphism 0: M -+ N in f-Mod 
to the morphism (II, 0): M -+ N in 23(K, r). Generally, the embedding is 
not full. 
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LEMMA 5.3. Let r und A be R-algebras, 1 = e, + ... + e, and 
1=f,+ . . . + j’, representations of the identities uj’r and A, respectively, as 
sums ojpairwise orthogonal idempotents. Let ME r-Mod, NE A-Mod, and 
fi=@:=,Af,O.ejsr. 

(a) For each A-linear map 6: U @ ,. M + N and s = I, . . . . n, consider 
the R-lineur map as: ej7 M + f;,? N given by 

for all x E ej,, M. The map B H (a, , . . . . a,,) is an R-isomorphism 

Horn,-(U OrM, N)r & Hom,(e,rM,j',5N). 
5-l 

In particular, ij A = I-, I; = t, and j; = ei for i= 1, . . . . t, then the mup 
d H (a,, . . . . a,,), where 

a,(x) = 6(u, 0 xl, (5.11) 

is an R-isomorphism 

Homr-(U Or M, N)r & Hom,(e,!M, eisN). 
.r - 1 

(b) For euch A-bimodule V, the evaluation at ,fi@ j; map Horn, d 
(As. OR j;A, V) + V, sending every homomorphism bEHorn,, d(Aj;. OR 
jjA, V) to q5(fi@fj), is an isumorphism Horn,, d(A,f, OR fjA, V) -.fi Vfj 
natural in V. 

PruoJ (a) WC have the following natural isomorphisms for P,, = AL, 
and Q,y = e,,$T: 

Horn,-(UOrM,N)-Horn,- & P,@.Q,@,.M,N 
( .s= 1 > 

n 
= 0 Hom, (P, Ox Q, OrM, N) 

.r = I 

2 & HomAP, Or M, Horn,-(P,, N)) 
.s = I 

= & HomR(e,srOrM, Horn,-(Af,,,N)) 
F=, 

= &I Hom.(ejIMM,j;sN). 
.c - I 
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(b) In a similar way, we get 

Horn,, -dAf, 0 R.fi4 v) z Hom, ,,(Afi OR R 0 ,.f& V 

N Horn R-n(R @,I+, Hom,-(4, VI 

2: Horn H AR O.f;A,f,V 

z Horn R- N(R Horn .,(f,A, .fi VI) 

‘v Horn R-RR(R,h~Vf/)~.f;v; 

because we assume that R acts centrally on all A-bimodules. 1 

Remark 5.4. Since 6(u,,@x)=O if x~e,,M withp#j,, (5.11 j allows us 
to view CJ,$ as an R-linear map M + N whose image is contained in e,N and 
whose kernel contains e,M whenever p ~j,~. At our convenience, we will 
treat cz either as a map from e,M into e,N, or as a map from M into N. 

In the remaining part of this section we assume that 

De,, = 0 for p = 1, . . . . t, (5.12) 

i.e., eP g = ge, for all p. 

LEMMA 5.5. (a) If y~e,l’e,, then D;1 =~,-ufust,,hf, kvhere a/E 

Ed fei,cjb~ hf E ej.,,,Teq, and p, y = 1, . . . . t. 

(b) Du,=C h ahUp 0 hhuq(h,ch7 

ch E ejqch,rejr, and s = 1, . . . . n. 
lchere ah E ei71TelH,,, hh 6 ejp,h,re,ql,r,, 

(c) I” (do, &): M + N is a morphism in B(K, I’), then &,(e, M) c ep N 
for all p = 1, ,,,, t. 

Proof: (a) and (b) Since Y=epyey and uY=eisu,ej,, (5.3) and (5.12) 
imply Dy = e,(Dr) e4 and Du,~ = ei,(DuS) ejT. 

(c) For any x E M, we have q$,(e,x) = e,@,(x) + &De, Ox) = 
e,&(x), using (5.5) and (5.12). 1 

For every morphism (q&, d): M + N in ‘B(K, f-) consider a (t+ n)-tuple 
of R-linear maps G(&, 4) = (&,, . . . . q$,,, d,, . . . . d,,), where #,, . . . . $,, are 
obtained from 4 according to (5.11), and c$,,,, = & 1 e,M: eP M -+ ep N. The 
latter makes sense because of Lemma 5.5(c). 

PROPOSITION 5.6. (a) The map G is injective. 

(b) Im G consists of all (t + n)-tuples (t,bol, . . . . t,bo,, I++, , . . . . $,) qf 
R-lineur maps satisjjkg 

Ye”&) = +op(i-x) + c vik(f)(b,.~) (5.13) 
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for all x E e, M and y E e,Te,, where D; = x,-a/u,, r,hf, as explained in 
Lemma 55(a), p, q = 1, ..,, t. 

(c) Zf(&, 4): M -+ IV, ($“, $): L + M are morphisms in B(K, r), and 
G((d,, i)c? (It/o, $)I = (;501~...~ x0,, xl, . . . . xnL then 

for all p and 

x0, = 40, $0, (5.14) 

h 

for all x E e,, L, where s = 1, . . . . n and Du, = xh ahup @ hhuy(hjch as 
explained in LEmma 5.5(b). 

(d) The image of the identity morphism is 

G’(1 M, 0) = (I,, ,M, . . . . lurM? 0, ...? 0). 

(e) G is an isomorphism between 23(K, I’) and the category D(K, I‘) 
whose objects are those of T-Mod, and whose morphisms are all (t + n)- 
tup1e.y ($ol, . . . . +0,, $1, . . . . tin) satisfying (5.13), with the composition defined 
by (5.14), (5.15). 

(f) If a (t + n)-twle (Iclol, . . . . tiO,, $,: . . . . ti,) satisfies (5.13) for all 
x~e,M and a fixed y2~e4rer, as well as for all x E e,M and a fixed 
7, E ePrey, then it satisfies (5.13) f or all xEe,M and y=y,y>. Thus ifs is 
a set of generators of the form e,yey for the R-algebra I-, then ($“,, . . . . $O,r 
$, , . . . . Ic/,,) E Im G if’ (5.13) hold.7 for every pair 7 and x, where y = ePye,, E S 
and xEe,M. 

Proqf: (a) Follows from Lemma 5.5(c) and Lemma 5.3(a). 

lb) If 

G($o, $I= ($o,> . ..v $01, $1, . . . . ICI,), (5.16) 

then (I//,,, 4) satisfies (5.5), so that, using Lemma 5.5(c), we have Y~I/~~(x) = 
do(x) = $o(v) + $(D;, 0 x) = $o(~x) + Zpp,hu,(,) Ob,x) = ~o,bx) + 
xfa,-$sC,,(b,-x). Thus (5.13) holds. 

Suppose now that a (t +n)-tuple (tjo,, . . . . I+!I~,, 11/, , . . . . I/J,,) of R-linear 
maps satisfies (5.13). Construct a pair ($(), I,&), where IL,,: M+ N is an 
R-linear map, and I,$: U @ ,. M -+ N is a r-linear map satisfying (5.16). We 
Put $o= 0; 1 GOP and choose $ to be a unique f-linear map which 
corresponds to the n-tuple (1(/, , . . . . $,) according to Lemma 5.3(a). Check 
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($“, 4) satisfies (5.5). Using Proposition 5.1(f), we may assume yEepTe,. 
Since (5.13) holds, we get 

Here we have used the orthogonality of the idempotents e,, . . . . e,, 
Lemma 5.5(a), the r-linearity of $, and (5.11). Thus (5.5) holds, whence 
(tiO, I,&): M -+ N is a morphism in B(K, I‘). It is obvious that (I/~, 4) 
satisfies (5.16). 

(c) The formulae (5.14) and (5.15) are immediate consequences of 
(5.6) and (5.7) in view of Lemma 5.5(c) and (5.11). 

(d) Obvious. 
(e) Follows from (a), (b), (c), and (d). 
(f) Similar to the proof of Proposition 5.1(f). 1 

Remurk 5.7. If R is a field, f is a finitely generated R-algebra, and we 
consider only finite-dimensional over R modules in f-Mod, the problem of 
classifying the objects of B(K, f) is the problem of finding a canonical 
form for a finite collection of matrices under a given set of admissible trans- 
formations, as follows from (5.13), (5.14) (5.15). %(K, r) is the category 
introduced in [20, 151. 

DEFINITION 5.8. Suppose I’, as an R-algebra, has a set of generators 
Z which admits a filtration Z, c Z, c ... c Z, = Z such that ep E Z, 
for p = 1, . . . . I. Let r,, = R[Z,] be the R-subalgebra of f generated by 
Z,,. Suppose also that the set E = {u,, . . . . u,,} admits a filtration 
E, c E, c , . E, = E such that: 

(i) DZ, = 0 and DZh c f,, , ET for all h > 1. 
(ii) DE,=OandDE,cIm(TE,..,T@,-C1+li’@,.LI)forallh>l. 

Then the f-coring K is called left triangular. 
The r-coring K is called a kfl triangular tensor coring if the set of 

generators Z of the R-algebra f satisfies the following conditions for 
h = 2, . . . . m: 

(iii) For all z E Z - Z,, we have z = e,,ze,, for some p, y = 1, . . . . t. 
(iv) A unique map I-,,- ,e,, OR e,f,._, -+ I. ,zI.,, , of I*,, ,- 

bimodules sending ep @ ey to z is an isomorphism (see Lemma 5.3(b)). 

481/135/l-4 
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(v) W,, = Cz, zh- zh , I’,- ,zT,, , is a direct sum of the f, ,-sub- 
bimodules I’,,- ,zT,, , of I-. 

(vi) Let T( W,,) be the tensor ring of the r, ,-bimodule W,. A 
unique map of I-, ,-rings T( W,,) + I-,, sending z to z for all z E 2, - Zh _ , 
is an isomorphism. 

Examples of left triangular tensor corings are given in [7]. 

PROPOSITION 5.9. Let K he a left triangular I ‘-coring, tj: K 0 ,- L + M a 
r-linear map, and GF$ = G($,, 4) = ($(,, , . . . . I/~,, $, , . . . . $,). Then the 
following are equivalent: 

(a) $ is an isomorphi.rm in I’-Mod,,, . 
(b) tj,, is an isomorphism in R-Mod. 
(c) I+!I~~ is an isomorphism in R-Mod for p = 1, . . . . t. 

ProoJ (b)o (c) follows from Lemma 5.5(c). (a)*(b) is immediate 
from the formulae (5.6) and (5.8). For (b) 3 (a), assume that e0 is an 
isomorphism in R-Mod and construct a left inverse 4: K @,- M + L of $ 
in T-Mod,, B1. such that 4” is an isomorphism in R-Mod, where 
Fc$ = (&,, 4). It is easy to see that such a 4 is a two-sided inverse of II/. 

It is obvious from the formulae (5.6) and (5.8) that we must put 
&=I),‘. A s o [ll ows from Proposition 5.1 (b)(c)(d), we must find such a 
r-linear map 4: U 0,. &J + L that 

rll/o’(Y)=~ol(*iY)+~(DyOy) (5.17) 

for all yEM, FEZ, and 

O=$, ‘$(U@X)+&UO$O(X))+C d(aiO$(b,Ox)) (5.18) 

for all x E L, ZA E Li, Du = xi ai@ bi with air bie U. 
By Lemma 5.3(a), any collection (#,, . . . . #,} of R-linear maps with 

#5: ejT M + ei, L uniquely determines a r-linear map 4: U @ ,- M + L such 
that d,(y) = &u, @ y) for all y. Using the collection of maps {11/i, . . . . II/,} 
which corresponds to the map $, determine the values of the 4,) . . . . #n for 
the desired map C$ by induction on h = h(s)-the least positive integer such 
that u, E E, (see Definition 5.8). If h = 1, then Du, = 0, and we put 

4,(Y) = 4; v.40 ‘(Y) (5.19) 

for all y E e,,M. We note that $0 ‘(y) E e,sL, as follows from Lemma 5.5(c), 
so that (5.19) makes sense. If h = h(s) > 1, fix a decomposition 

(5.20) 
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where a/ET, uf~Eh-,! I I; E U. Assuming by induction that d,, has already 
been defined for all s with h(s)< k, pick an .P with h(s)= k and define 

as suggested by (5.18). Here we treat q%f as a map M-+ L, according to 
Remark 5.4. Note that since the f-coring K is left triangular, h(f) -C k for 
all the summation indices f in (5.21). Therefore 4/- has already been defined 
by induction, and (5.21) makes sense. 

We now show that the r-linear map 6 which corresponds to the collec- 
tion (4,) . . . . d,,}, defined according to (5.19) and (5.21), satisfies (5.17) and 
(5.18). 

LEMMA 5.10. If ).ET, and d satisfirs (5.18) for u= Di., then 4 sati?fies 
(5.17)for i:=i.. 

Proof qf’ Emma 5.10. Since Du = D(D).) = 0, (5.18) yields 
&Di@$Jx)) = -$; ‘$(D~.@x). Then, using (5.5), we have 

(ii ‘(iy) + J(Dj.0 y)= t,b;‘(j$O(x)) + &Di.@cc/,(x)) 

=~,‘(Z.g,(x))-II/,‘~(Di.Ox)=i.x=ilc/o ‘(y). 

Thus (5.17) holds for ?=I.. 1 

LEMMA 5.11. /f ~,8 sati~fles (5.17) for 7 = c, then it satisfies (5.18) for 
u = cu,d, where d is an arbitrary element of f, and s = 1, . ..) n. 

Proof of Lemma 5.11. We have, using (5.20) that 

Du = DC @ u,sd + 1 cap/ @ I+ d - cu, Q Dd, 
/ 

where a, =0 if Du,=O, and 

ticI ‘$(cu,dO x) + &cu,dO $&)I + i(DcO $(u,dO x)) 

+I ~(caf.u,O~(v,dOx))-~(cu,O~(DdOx)) 
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using the assumption that (5.17) holds for c, the fact that formula (5.5) 
holds for 7 =d, and formula (5.21). Hence (5.18) holds for u=cu,d. 1 

We now show how to use Lemmas 5.10 and 5.11 to finish the proof. It 
is an easy consequence of (5.5) that (5.17) holds for all FEZ,; hence it 
holds for all 7 E r,, according to Proposition 5.1(f). Since the r-coring K 
is left triangular, it follows from Lemma 5.10 that (5.18) holds for all 
u E f I EC then Lemma 5.11 implies that (5.15) holds for all 7 E Z,, and so 
on. Continuing this argument, we obtain that (5.17) holds for all 
r~r,,,=r, whence (5.18) holds for all UET,,,ET=U. 1 

For the rest of this section, we assume that the f-coring K is a left 
triangular tensor coring, and restrict ourselves to those modules in T-Mod 
which are projective over R. 

PROPOSITION 5.12. Let M be a r-module, and N = @ ‘,=, N,, a direct 
sum of the R-modules Np. Given R-isomorphisms $Op : e,M + N,, for 
p = 1, . ..) t, and arbitrary R-linear maps $,T : ej3M + N, for s = 1, ,,., n, there 
exists a structure of a left r-module on N for which: 

(a) N,=e,N and 

(b) ($0, 4): M + N is an isomorphism in B(K, r), where 1+9~= 
@~=,$4and$:UQrM + N is a unique r-linear map determined by the 
collection { $, , ..,, II/,,}, according to Lemma 5.3(a). 

Proof: The argument is similar to the proof of [7,4.2. Proposition, 
p, 465-J We begin with the observation that the natural 
mapf,ETQ,M+r,,+, ET 0,. M is a monomorphism of left f,,- 
modules (we view it as the inclusion map of f,ET Or M into 
r ,, + r Er Or M). To prove this, note first that ej,r 0 ,-M z ej,M is R-pro- 
jective because M is R-projective by assumption. Then, since each u, is 
identified with e,O e,, tensoring the inclusion map T,,eL -+ f, + ,ei,, with 
ej,it4 and passing to the direct sums produce the desired monomorphism. 

For h = 1, . . . . m, we will define on N a structure of a left f,-module with 
the property that the I-,, + , - structure extends the I-,,-structure if h < m - 1. 
Assuming temporarily that such r,-structures have already been detined, 
denote by I,%,,: T,,ET @,- M + N a unique l-,-linear map corresponding 
to the collection {$,, . . . . e,,}, according to Lemma 5.3(a) (recall that 
e,Ef,z for p= 1, . . . . t and all h, by Definition 5.8). Then 6, + I extends $,,. 
Really, since r,, ET Q ,- M is a r,,-submodule of r,, + , ET Or M, and the 
<,, _ 1-module structure on N extends the f,I-module structure, 
$h + ,I I-,, El- @ ,- M is a I-,-linear map I-, ET @ ,- M + N corresponding to 
the collection ($, , . . . . $,}, according to Lemma 5.3(a). By the uniqueness, 
$~+,IrSrQ,-M=&,. 



ALMOSTSPLIT SEQUENCES 51 

Proceed by induction on h = 1, . . . . m. For each h, we define a r,,-module 
structure on N, and show that the pair (eO, $,) satisfies (5.5) for all 
;J = z E Z,, and $ = I+&,. We denote by yx the image of y @ x under the struc- 
ture map r 0 R M + M, and by y 3 y the image of 7 0 y under the structure 
map I-,, OR IV+ N. 

L.eth= l.Forall;,~f,,put~(:~=Il/~(;l~o ‘(y)).Then 1 :~=rc/,(l+O l(y)) 
= J*, and Y~Y~“Y=~~(Y,Y~IC/O’(Y))=~~{Y,~~-’C~~(Y~~~ ‘b))l) =yl 5 
(y2 c y). Hence N is aA left r,-module, and, clearly, N, = e,, X because 
e,, E rr for all p. Let $, : f, ET Or M -+ N be a unique Z-,-linear map 
determined by {+,, . . . . tj,,j, according to Lemma 5.3(a). We have 
i’ o $0(x) = rl/oCY$o ‘w0(4)1= Il/o(?X) f or all x E M. This is precisely (5.5) 
for $ = $ i because Q = 0 for all y E I’, . In particular, (5.5) is satisfied for 
all jl=z~Z,. 

Suppose now that a structure of a left r,-module on N is defined for 
some h > 1, and the pair (tjO, I$,,) satisfies (5.5) for all 7 = z eZh and 
1+6 = $h. Extend the r,-module structure to a I-,,+ ,-module structure on N 
in such a way that (5.5) is satisfied for all y = z E Z,, + , and $ = $,, + , . For 
each ZEZ,,+, - Z,,, define a I-,-bimodule map f,,zr,, + End,(N). Taking 
into account Definition 58(iii)(iv) and Lemma 5.3(b), it suffices to con- 
struct an R-endomorphism CJ of N satisfying (T = epbeq. Choose rs to be the 
R-endomorphism of N given, for ail y E N, by the right-hand side of the 
formula 

i=L’=tio(Z$0 ‘(Y))+$h(DZO(I/0 ‘(Y)). (5.22) 

The formula makes sense because Dz~r,,Er, and a~e,End,(N)e, 
because e,,, e4 E I-, and the pair (r,GO, I+&,,) satisfies (5.5) for all 7 E rl. Taking 
into account Definition 5,8(v)(vi), we obtain a Z-,-bimodule map 
W h+l + End,(N) and, hence, a fh-ring map r,, + , = T( W, + , ) + End,(N). 
Thus N has acquired a rh + ,- module structure which extends its I-,,- 
module structure, and which on the set Z,,, , is given by (5.22) (recall that 
(5.5) and hence (5.22), is satisfied by ($,,, I,&,) for all y = ~EZ~). Since 
J h + 1 extends $,,, as explained above, (5.22) shows that (tic,, $h+ ,) satisfies 
(5.5) for all y=z~Z~+,. 

By induction, we have for all h that N is a /-,-module, I+&,, is a f,,-linear 
map, and the pair (tiO, 4,) satisfies (5.5) for all y =zEZ~ and I,& = $,z. 
Putting k = m, we get that N is a f,,, = r-module, $, is a r-linear map, 
and the pair ($,,, 6,) satisfies (5.5) for all y = ZEZ,= Z and $ = $,,. 
Using Proposition 5.1(f)(b), we see that (I,+~, I,?,,): M -+ N is a morphism in 
B(K, I-) which is an isomorphism by Proposition 5.9. 1 

We are now ready to prove the main result of this section. 

THEOREM 5.13. Idempotents split in B(K, f). 
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Prooj Let x = (x0, j): M-, M be an idempotent morphism in d(K, r), 
then + 0 xc I++ -’ is an idempotent for each isomorphism I+!I in 23(K, f ). 
Construct a r-module N and an isomorphism + = ($“, 4): M + N such 
that Ic/ 0 x 3 Ic/ -’ = (&,, 0). Then Remark 5.2 would imply that e$, E End,(N) 
and #z=#,. Since idempotents split in T-Mod, there exist morphisms (TV 
and t0 in T-Mod satisfying &,= 0~5~ and T~(T~ = 1, for some L E f-Mod. 
Putting cr=(a,,O) and T=(T”,O), we obtain OOT=~(/OXO$-’ and 
TgO= 1, in d(K,r), whence x=(~-‘~a~Il/)o(~-‘~r~Il/) and l,.= 
(~~-l<~T~~)~(,& ’ 0 0 3 $). Thus the existence of the desired isomorphism I+G 
would imply the theorem. 

We first record some consequences of the fact that x is an idempotent. 
According to formulae (5.6) and (5.7), this is equivalent to x = (x0, i) 
satisfying the conditions 

x0=x; (5.23) 

and 

for all XE M, UE U, Du =xi ai@bi. Substituting x,,(x) for x in (5.24), we 
obtain that 

o=Xo~(uO%o(x))+C~(aiO;i(b,OX”(x))) (5.25) 

for all XEM, UE U, Du=Ciai@hi. 
Introduce a binary relation on the set E = {u, , . . . . u,} by putting ui + uj 

if Duj E V Or U has a nonzero component in the direct summand 
ru,r @,- U of U 01- Li (see (5.10)). Since the r-coring K is left triangular, 
the transitive closure of the binary relation -+ is a partial ordering, which 
we denote by <. By induction on the partial ordering in E, show that for 
each UE E and every idempotent x in d(K, r), there exists an isomorphism 
rj = (tiO, 4): M-r N in 8(K, r) such that 

and &00x) = 0 for all XE M and all c < u in E. Then Lemma 5.3(a) 
implies the existence of t,G for which 4 = (do, 0), and the theorem follows, 
as explained above. 

Let u be a minimal element of the partially ordered set E. Then DU = 0. 
Let 

NP=epM, p = 1, . ..) t, (5.26) 
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be a collection of R-modules. and 

*op= lrpM (5.27) 

a collection of R-linear isomorphisms e,M + N,,. To define a collection of 
R-linear maps $,, : ei, M + N,, put 

*.v=o if u # u,~ (5.28 ) 

and 

‘4.0) = d(~o%,(x))-%“i(~O-~) forall .r~e,.~M if u=u,. (5.29) 

By Proposition 5.12, there exists a I’-module structure on IV= 
@ .k _ 1 N,, = M and an isomorphism $ = ($,,, &): M -+ N in 8(K, I’) 
satrsfying )clO= @L=, tiO,,= l.M, $(u,~@x) = $,(x) for all s and x. Then 
$ ’ = (1 ,Y, - $), as follows from formulae (5.6) and (5.21). For 
d=(h4)=‘h~%o$ -‘, we want to show that 4, =0 if u,$ = u. Using for- 
mulae (5.6) and (5.7), we have 

(IcI~~%h=%o, (~-%)(~ox)=~(~ox)+~(uo~,(x)) (5.30) 

because tiCI = 1 M and Du = 0. Further, 

&40x)= -i(“~(z’ox)+;i(uox)+~(u~~o(x)). (5.31) 

But 

-xo~(~~ox)+~(~ox”(x)) 

= -%,C~(uO%,(x))-;Cof(uOx)l +~(UOj(t(X.))--%o;i(UOX”(X)) 

= -xo~(~ox”(x))+~“~(uox)+~(uo~~,(x))-%o~(uo%”(x)) 
= jj(u@x), (5.32) 

using (5.23), (5.25), and (5.24), together with Du =O. This implies 
C&U 0 x) = 0, and the base of induction has been established. 

Suppose now that s’ is an isomorphism in 6(K, I-) such that 
4=(4o,$)=rcP5 ’ is an idempotent satisfying &o Ox) = 0 for all x 
and all 1; < u in E. It suffkes to find an isomorphism $ in 23(K, r) such that 
i=Ko9i)=‘bd~~$ ’ has the property [(u @ x) = 0 for all x and all L; 6 u 
in E. Without loss of generality, we may assume that += K, i.e., that the 
idempotent x = (x0, i) has the property i(u@x) = 0 for all XE M and all 
c’< u in E. The argument here is similar to the case when u is a minimal 
element in E. We consider a collection of R-modules and R-linear maps 
defined by formulae (5.26), (5.27), (5.28), and (5.29). Using Proposi- 
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tion 5.12, we obtain an isomorphism $ = (1 M, I,&) in %(K, r) with inverse 
I,-’ = (l,U, 0). We have 

;i(c~x)=~(u~x)=ii(c~x)=0 for all x E M and all c < U. (5.33) 

Really, this is the assumption about 4; $ satisfies the condition by 
Lemma 53(a), in view of (5.28), (5.29); and for fi we have 

B(ujx)= -lj(G@X) for all x E M and all u 6 U, (5.34) 

according to formulae (5.6), (5.21), and the assujfnption that the f-coring 
K is left triangular. Coming back to 4 = (do, 4) = Ic/ “xc I,-‘, note that 
(5.33) implies 

&u@x)=O for all x E M and all o < U, (5.35) 

as follows from (5.7). We note that, as before, formulae (5.6) and (5.7 
imply (5.30) because of Ic/” = 1 M, 

Du=c u,@hi with aiE @I TUT, (5.36 
I L-c” 

and (5.33). Likewise, (5.33) and (5.34) imply (5.31). Finally, computation 
(5.32) goes through similarly to the previous case, but, instead of Du = 0, 
we rely on (5.36) and (5.33). Since (5.35) holds, and (5.31), (5.32) imply 
#(u@x) = 0 for all x, the theorem is proved. 1 

COROLLARY 5.14. Idempotents split in induc K. 

6. RELATIVELY PROJECTIVE MODULES OVER FROBENIUS GROUPS 

The content of this section was communicated to the second author by 
Jacques Lewin. 

Recall that a finite group G is a Frobenius group if it contains a proper 
subgroup H with H n Hg = 1 for all g E G - H, where x8 = gxg ‘. It is well 
known [ 12, p. 3173 that G is a split extension G = KH for a normal sub- 
group K= {l,k,, . . . . k,} of G, and ky = k: implies a = h for a, h E H and 
any i with l<i<u. Hence Hk;H=U,.,ak,H=U,.,k4H, where u 
stands for disjoint union. If h is the number of elements of H, then Hk,H 
consists of h2 elements. 

For an arbitrary commutative ring R, denote by RG the group algebra 
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of G over R, and by RH the R-subalgebra of G generated by H. Then a 
unique RH-bimodule map RH OR RH + RHkiRH sending 1 Q 1 to ki is 
an isomorphism. Since G is a disjoint union of double cosets of H. we get 

the following direct sum of RH-bimodules: RG = RHO (Oi RHk,RH) z 
RHO (0 i RH OR RH) for some values of i between 1 and U. Since the 
R-algebra RH is self-injective, condition (a) of Corollary 3.4 is satisfied. 
Thus, assuming again that R is a field or a Dedekind domain, and applying 
Theorem 4.2, we obtain the following statement. 

THEOREM 6.1. Category p(RG, RH) has almost split sequences. 
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