
Composition of XML Dialects:

A ModelicaXML Case Study

Adrian Pop Ilie Savga Uwe Aßmann Peter Fritzson

Programming Environments Laboratory (PELAB)
Department of Computer and Information Science (IDA)

Linköping University, Linköping, Sweden

Abstract

This paper investigates how software composition and transformation can be applied to domain
specific languages used today in modeling and simulation of physical systems. More specifically, we
address the composition and transformation of the Modelica language. The composition targets the
ModelicaXML dialect which is the XML representation of the Modelica language. By extending
the COMPOST concrete composition layer with a component model for Modelica, we provide
composition and transformation of Modelica. The design of our COMPOST extension is presented
togheter with examples of composition programs for Modelica.

Keywords: Composition of XML dialects, XML, Domain Specific Languages, Modelica,
ModelicaXML, COMPOST

1 Introduction

Modelica [10] [4] [5] is an object-oriented modeling language used for modeling
of multi-domain (i.e. mechanical, electrical, electronic, hydraulic, etc) complex
physical systems. Modeling with Modelica has a component-oriented approach
where components can be connected togheter to form a complex system. To
have access to the structure of a model, ModelicaXML [17] has been developed
as an XML representation (serialization) of Modelica language.

Commercial software products as MathModelica [8] and Dymola [7] as
well as open-source as OpenModelica [11] can be used for modeling with the

1 {adrpo,ilisa,uweas, petfr}@ida.liu.se

Electronic Notes in Theoretical Computer Science 114 (2005) 137–152

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.071
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82512758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:adrpo@ida.liu.se, ilisa@ida.liu.se, uweas@ida.liu.se, petfr@ida.liu.se
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

Modelica language. While all these tools have high capabilities for compilation
and simulation of Modelica models, they:

• Provide little support for configuration and generation of components and
models from external data sources (databases, XML, etc).

• Provide little support for security, i.e. protection of ”intellectual property”
through obfuscation of components and models.

• Do not provide automatic composition of models using a composition lan-
guage. This would be very useful for automatic generation of models from
various CAD products.

• Provide little support for library designers (no automatic renaming of com-
ponents in models, no support for comparison of two version of the same
component at the structure level, etc)

We address these issues by extending the COMPOST framework with a Mod-
elica component model that acts on the ModelicaXML representation.

The use of XML technology for software engineering purposes is highly
present in the literature today. The SmartTools system [6] uses XML tech-
nologies to automatically generate programming environments specially tai-
lored to a specific XML dialect that represents the abstract syntax of some
desired language. The use of Abstract Syntax Trees represented as XML
for aspect-oriented programming and component weaving is presented in [18].
The OpenModelica [11] project investigates some transformations on Model-
ica code like meta-programming [1]. The bases of uniform composition for
XML, XHTML dialect and the Java language were developed in the Euro-
pean project Easycomp [9]. However, the possibilities of this framework can
be further extended and tested by supporting composition for an advanced
domain specific language like Modelica.

The paper is structured as follows. The next section introduces Modelica,
ModelicaXML, and COMPOST. Section 3 presents our COMPOST extension
and its usage through various examples of composition and transformation
programs for Modelica. Conclusion and future work can be found in Section
4. Section 5, the appendix, gives the ModelicaXML representation for some
of the examples.

2 Background

In this section we briefly introduce the Modelica language and its XML repre-
sentation: ModelicaXML, followed by a short description of the COMPOST
framework.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152138

2.1 Modelica and ModelicaXML

Modelica has a structure similar to the Java language, but with equation and
algorithm sections for specifying behavior instead of methods. Also, in con-
trast to Java, where one would use assignment statements, Modelica is primary
an equation-based language. Equations are more powerful than assignments
because they do not specify a certain control and data flow direction. Since
the flow direction is not explicitly specified, the Modelica classes are more
reusable than the classes from traditional programming languages, which use
assignment statements for which the data flow direction is always from the
right to the left-hand side.

We introduce Modelica by an example:

class HelloWorld "HelloWorld comment"
Real x(start = 1);
parameter Real a = 1;

equation
der(x) = -a*x;

end HelloWorld;

In the example we have defined a class called HelloWorld, that has two
components and one equation. The first component declaration (line 02) cre-
ates a component x, with type Real. All Modelica variables have a start at-
tribute, which can be initialized using a modification equation like (start = 1).

The second declaration declares a so called parameter named a, of type
Real and set equal to an integer with value 1. The parameters are constant
during simulation; they can be changed only during the set-up phase, before
the actual simulation.

The software composition is not performed directly on the Modelica code,
but instead, on an alternative representation of it: ModelicaXML [17].

As an example, the HelloWorld class translated to ModelicaXML would
have the following representation:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE modelica SYSTEM "modelica.dtd">
<program>
<definition ident="HelloWorld" restriction="class"

string_comment="HelloWorld comment">
<component visibility="public" type="Real"

ident="x">
<modification_arguments>
<element_modification>
<component_reference ident="start"/>
<modification_equals>

<integer_literal value="1"/>
</modification_equals>

</element_modification>

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 139

</modification_arguments>
</component>
<component visibility="public"

variability="parameter"
type="Real" ident="a">

<modification_equals>
<integer_literal value="1"/>

</modification_equals>
</component>
<equation>

<equ_equal>
<call>
<component_reference ident="der"/>
<function_arguments>

<component_reference ident="x"/>
</function_arguments>
</call>
<sub operation="unary">
<mul>
<component_reference ident="a"/>
<component_reference ident="x"/>

</mul>
</sub>

</equ_equal>
</equation>

</definition>
</program>

The translation of the Modelica into ModelicaXML is straightforward. The
abstract syntax tree (AST) of the Modelica code is serialized as XML using the
ModelicaXML format. 2 ModelicaXML is validated using modelica.dtd Doc-
ument Type Definition (DTD). Using the XML representation for Modelica,
generation of documentation, translation to/from other modeling languages
can be simplified.

2.2 Compost

COMPOST is a composition framework for components such as code or doc-
ument fragments, with special regard to construction time. Its interface layer
called UNICOMP for universal composition provides a generic model for frag-
ment components in different languages and different concrete component
models. 3

Components are composed by COMPOST as follows. First, the compo-

2 This paper does not present how the Modelica is transformed to ModelicaXML. The
reader is referred to [17] for more information.
3 COMPOST and its interface layer UNICOMP can also model runtime and other types
of component models, which are not the subject of this paper.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152140

nents, i.e., templates containing declared and implicit hooks, are read from
file. Then, a composition program in Java applies composition operations to
the templates, and transforms them towards their final form. (The transfor-
mations rely on standard program transformation techniques.) After all hooks
have been filled, the components can be pretty-printed to textual form in a
file again. They should no longer contain declared hooks so that they can be
compiled to binary form.

2.2.1 The notions of components and composition

Fragment-based composition with COMPOST is based on the observation
that the features of a component can be classified in several dimensions. These
dimensions are the language of the component, the model of the component,
and abstract component features. The dimensions depend on each other and
can be ordered into a layer structure of 5 layers (Fig. 1):

Fig. 1. The layers of COMPOST.

1 Transformation Engine Layer The most basic layer encapsulates knowl-
edge about the contents of the components, i.e., about the concrete lan-
guage of the component. Fragment-based component composition need a
transformation engine that transforms the representation of components
[2]. For such transformation engines, COMPOST reuses external tools,
such as the Java refactoring engine RECODER [14]. This transforma-
tion engine layer contains adapters between COMPOST and the external

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 141

tools.

2 Concrete Composition Layer On top of the pure fragment layer, this
layer adds information for a concrete component model, e.g., Java frag-
ment components, or ModelicaXML fragment components. Concrete
composition constraints are incorporated that describe valid composi-
tions, which can refer to the contents of the components. For instance, a
constraint could be defined that disallows to encapsulating a Java method
component into another Java method component.

3 Time Specific Composition Layer On this layer the time of the com-
position is taken into account: static or runtime composition.

4 Abstract Composition Layer In this layer, knowledge is modeled that
does not depend on the concrete component language, nor on the concrete
component model. General constraints are modeled, for instance, that
each component has a list of subcomponents, the component hierarchy is
a tree, or composition expressions employ the same type of component,
independently of the concrete type.

5 UNICOMP Interface Layer The interfaces of the abstract composi-
tion layer have been collected into a separate interface layer, UNICOMP.
This set of interfaces provides a generic fragment component model, from
which different concrete component models can be instantiated.

For COMPOST applications, UNICOMP hides underlying concrete infor-
mation about the component model to a large extent. An application uses
COMPOST in a similar way as a component framework with an Abstract
Factory [12]. When a component is created, its concrete type is given to the
COMPOST factory. However, after creation, the application only uses the
UNICOMP generic interfaces. Hence, generic applications can be developed
that work for different component models, but use generic composition op-
erations. Already on the Abstract Composition Level, the following uniform
operations for fragment components are available:

(i) Other uniform basic operations. COMPOST composition operators can
address hooks and adapt them during composition for a context. As a
basic set of abstract composition operators, copy, extend, and rename are
available.

(ii) Uniform parameterizations. Template processing works for completely
different types of component models. After a semantics for composition
points and bind operations has been defined, generic parameterization
programs can be executed for template processing.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152142

(iii) Uniform extensions. The extension operator works on all types of com-
ponents.

(iv) Uniform inheritance. On the abstract composition layer COMPOST de-
fines several inheritance operators that can be employed to share compo-
nents, be it Java, or XML-based components. Inheritance is explained as
a copy-and-extend operation, and both copy and extend operations are
available in the most abstract layer.

(v) Uniform connection. COMPOST allows for uniform connection opera-
tions, as well for topologic as well as concrete connections [2].

(vi) Uniform aspect weaving. Based on these basic uniform operations, uni-
form aspect weaving operations [13], can be defined.

The great advantage of the layer structure is that new component models,
e.g., for XML languages, can be added easily as we show in this paper. In fact,
COMPOST is built for extension: adding a new component model is easy,
it consists of adding appropriate classes in the concrete composition levels,
subclassing from the abstract composition level as we show in Section 3.

2.2.2 Composition Constraints

Each COMPOST layer contains constraints for composition. These con-
straints consist of code that validates components and compositions.

(i) Composite component constraints. A component must be composite, i.e.,
the composed system is a hierarchy of subsystems. A component is the
result of a composite composition expression or a composition program.

(ii) Composition typing constraints. Composition operations must fit to com-
ponents and their composition points. For instance, a composer may only
bind appropriate values to composition points (fragments to fragments,
runtime values to runtime values), or use a specific extension semantics.

(iii) Constraints on the content of components. For instance, for a Java com-
position system, this requires that the static semantics of Java is modeled,
and that this semantics controls the composition. For an XML dialect,
semantic constraints can be modeled, for instance, that all links in a doc-
ument must be valid, i.e., point to a reasonable target. Our extended
framework presented in this paper provides parts of the Modelica seman-
tics in top of the ModelicaXML format.

With these constraints, it should be possible to type-check composition
expressions and programs in the UNICOMP framework. Many of these con-
straints can be specified in a logic language, such as Datalog or OWL, and
can be generated to check objects on every layer.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 143

2.2.3 Support for staged composition

COMPOST supports staged composition as follows. Firstly, the UNICOMP
layer has been connected to the Component Workbench, the visual component
editor of the VCF [15]. Composition programs for fragment component models
can be edited from the Component Workbench, and executed via COMPOST.

So far, a case study has been build for a web-based conference reviewing
system that requires Java and XHTML composition. This paper shows how
to compose Modelica components by using its alternative XML representation:
ModelicaXML.

Secondly, COMPOST can be used to prepare components such that they fit
into component models of stage 2 and 3. For instance, COMPOST connectors
can prepare a Java class for use in CORBA context [3]. They can also be
used to insert event-emitting code, to prepare a class for Aspect-Oriented
Programming.

3 COMPOST extension for Modelica

This section describes the Modelica component model. The architecture of
our system is presented. Modelica Box and Hook hierarchies are explained.
Finally, various composition programs are given as examples.

3.1 Overview

The architecture of the composition system is given in Fig. 2. A Modelica
parser is employed to generate the ModelicaXML representation. Modeli-
caXML is fed into the COMPOST framework where it can be composed and
transformed. The result is transformed back into Modelica code by the use of
a ModelicaXML unparser.

In order to compose and transform the Modelica code the XML Fragment
Box of COMPOST is augmented with with the Modelica structure and seman-
tics to form the Modelica component model. The component model consists
of a Modelica Box (templates) hierarchy and Modelica Hook Hierarchy (pa-
rameterization) described below.

3.2 Modelica Box Hierarchy

Besides general classes, Modelica uses so called restricted class constructs to
structure information and behavior: models, packages, records, types, func-
tions, connectors and blocks. Restricted classes have most properties in com-
mon with general classes, but have some restrictions, e.g. there are no equa-
tions in records.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152144

Fig. 2. The XML composition. System Architecture Overview.

Modelica classes are composed of elements of different kinds, e.g.:

• import or extends declarations.

• public or private variable declarations.

• equation and algorithm sections.

Each of the Modelica restricted classes and each of the element types have
their corresponding box class in the Modelica Box hierarchy (Fig. 3).

In our case the boxes (templates) are mapped to their specific element
types in the ModelicaXML representation. For example, the ModelicaClass

box is mapped to a <define ident="ClassName">..</define> element. The
ModelicaClass box can contain several ModelicaElement boxes and can con-
tain itself in the case that one Modelica class is declared inside another class.

The boxes that inherit from ModelicaContainer represents the usual con-
structs of the Modelica language. The boxes that inherit from ModelicaElement

are defining the contents of the boxes that inherits from ModelicaContainer.

The boxes incorporate constraints derived from Modelica static seman-
tics. For example, one constraint specifies that inside a ModelicaRecord no
ModelicaEquationSection is allowed.

While these constraints in our case were specified in the Java code, a
future extension will automatically generate these constraints from external
specifications expressed in formalisms such as DTD, OWL or Relational Meta-
Language (RML) [16].

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 145

Fig. 3. The Modelica Box Hierarchy. The Box Hierarchy defines a set of templates for each language
structure.

3.3 Modelica Hook Hierarchy

Implicit Hooks are fragments of Modelica classes that have specific meaning
according to Modelica code structure and semantics. By using Hooks one
can easily change/extract parts of the code. In the Modelica Hook Hierarchy
presented in (Fig 4) only Implicit Hooks are defined for the Modelica code.
There is no need to define Declared Hooks specially for Modelica, because the
XMLDeclaredHook already performs this operation. One can have an XML de-
clared hook that extracts from the XML document the contents of an element
with a specified tag, i.e., extract.

Hooks are used to configure parts of boxes. The XMLImplicitHook is
specialized as ModelicaParameterHook or ModelicaModificationHook.

ModelicaParameterHook binds variable components in ModelicaXML that
have variability attribute set to "parameter". To provide typing con-
straints, specific hooks for real_literal, integer_literal, string_literal
types have been declared. This constraints the binding of the parameters to
values of proper type.

ModelicaModificationHook targets component declarations that have their
elements changed by modifiers. In the HelloWorld example in Section 2, the
modifier is imposing on component x to change its start value. At the Model-
icaXML level the ModelicaModificationHook is searching for XML elements
of the form:

<component ident="ComponentName">

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152146

Fig. 4. The Modelica Hook Hierarchy.

<modification_arguments>
<element_modification>
<component_reference ident="element"/>
<modification_equals>
value initialization e.g.
<integer_literal>1</integer_literal>

</modification_equals>
</element_modification>
</modification_arguments>

</component>

This hook will bind proper values to the modified elements.

Also, other types of implicit hooks can be specified like hooks for the left
hand side or the right hand side of an equation, hooks that change types of
components, hooks that change the documentation part of a class declaration,
etc.

3.4 Examples of composition and transformation programs

This subsection gives concrete examples on the usages of our framework. The
examples are written in Java, but they could easily be performed using a
tool that has visual abstractions for the composition operators. For presenta-
tion issues only the Modelica code is given in the examples below and their
corresponding ModelicaXML representation is presented in Section 5.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 147

3.4.1 Generic parameterization with type checking
To be able to reuse components into different contexts they should be highly
configurable. Configuration of parameters in Modelica is specified in class
definitions and can be modified in parameter declaration. The values can
be read from external sources using external functions implemented in C or
Fortran. In the example below we show how the parameters of a Modelica
component can be configured using implicit hooks. Because we use Java, the
parameter/value list can be read from any data source (XML, SQL, files, etc).
The example is based on the following Modelica class:

class Engine
parameter Integer cylinders = 4;
Cylinder c[cylinders];
/* additional parameters, variables and equations */

end Engine;

Different versions of the Engine class can be automatically generated using a
composition script. Also, the parameter values are type checked before they
are bound to ensure their compatibility. The composition script is given below
partially in Java, partially in pseudo-code:

ModelicaCompositionSystem cs =
new ModelicaCompositionSystem();

ModelicaClass templateBox =
cs.createModelicaClass("Engine.mo.xml");

/* read parameters from configuration file, XML or SQL */
foreach engine entry X {
ModelicaClass engineX =

templateBox.cloneBox().rename("Engine_"+X);
foreach engine parameter {
engineX.findHook("parameterName").bind(parameterValue);
/* typed parameterization */

}
engineX.print();

}

Using a similar program, the modification of parameters can be performed in
parameter declarations.

3.4.2 Class Hierarchy Refinement using Declared Hooks
When designing libraries one would like to split specific classes into a more
general part and a more specific part. As an example, one could split the
class defined below into two classes that inherits from each other, one more
generic and one more specific in order to exploit reuse. Also if one wants
to add a third class, e.g. RectangularBody, to the created hierarchy the
transformation above would be beneficial. The specific class that should be
modified is given below:

class CelestialBody "Celestial Body"
Real mass;
String name;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152148

The desired result, the two split classes where one inherits from the other,
is shown below:

class Body "Generic Body"
Real mass;
String name;

end Body;

class CelestialBody "Celestial Body"
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

One can see that this transformation extracts parts of classes and inserts
them into a new created class. Also, the old class is modified to inherit from
the newly created class.

This transformation is performed with the help of one declared hook (for
the extraction part) and an implicit hook for the superclass, with its value
bound to the newly created class. The user will guide this operation by spec-
ifying, with a declared hook or visually, which parts should be moved in the
new class. The composition program that performs this transformations is as
follows:

ModelicaCompositionSystem
cs = new ModelicaCompositionSystem();

ModelicaClass bodyBox =
cs.createClass("Body.mo.xml");

ModelicaClass celestialBodyBox =
cs.createModelicaClass("Celestial.mo.xml");

ModelicaElement extractedPart =
celestialBody.findHook("extract").getValue();

celestialBody.findHook("extract").bind(null);
bodyBox.append(extractedPart)
bodyBox.print();
celestialBody.findHook("superclass").bind("Body");

/* or findSuperclass().bind("Body"); */
celestialBody.print();

Similar transformations can be used to compose Modelica models based
on the interpretation of other modeling languages. During such composition
some classes need to be wrapped to provide a different interface. For example,
when there is only a force specified for moving a robot arm, but the available
library of components only provides electrical motors that generate a force
proportional to a voltage input.

3.4.3 Composition of classes or model flattening
Mixin composition of the entire contents of two or more classes into one an-
other is performed when the models are flattened i.e. as the first operation
in model obfuscation or at compilation time. The content of the classes com-
posed below is not relevant for this particular operation. The composition

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 149

program that encapsulates this behavior is as follows:

ModelicaCompositionSystem cs =
new ModelicaCompositionSystem();

ModelicaClass resultBox =
cs.createModelicaClass("Class1.mo.xml");

ModelicaClass firstMixin =
cs.createModelicaClass("Class2.mo.xml");

ModelicaClass secondBox =
cs.createModelicaClass("Result.mo.xml");

resultBox.mixin(firstMixin);
resultBox.mixin(secondMixin);
resultBox.print();

It first reads the two classes from files, creates a new result class and pastes
the contents of the first classes inside the new class.

4 Conclusion and future work

We have shown how composition on Modelica, using its alternative the Model-
icaXML representation, can be achieved with a small extension of the COM-
POST framework. While this is a good start, we would like to extend our
work in the future with some additional features like:

• More composition operators and more transformations, i.e., obfuscation,
symbolic transformation of equations, aspect oriented debugging of compo-
nent behavior by weaving assert statements in equations, etc.

• Implementation of full Modelica semantics to guide the composition, based
on the already existing Modelica compiler implemented in the OpenModel-
ica project [11].

• Validation of the composed or transformed components with the OpenMod-
elica compiler.

• Automatic composition of Modelica models based on interpretation of other
modeling languages.

Modelica should provide additional constraints on composition, based on the
domain knowledge. These constraints are specifying, for example, that specific
components should not be connected even if their connectors allows it. We
would like to further investigate how these constraints could be specified by
library developers.

5 Appendix

CelestialBody in ModelicaXML format before transformation:

<definition ident="CelestialBody" restriction="class"

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152150

string_comment="Celestial Body"/>
<component visibility="public" ident="mass" type="Real" />
<component visibility="public" ident="name" type="String" />
<component visibility="public" variability="constant"

ident="g" type="Real">
<modification_equals>

<real_literal value="6.672e-11"/>
</modification_equals>

</component>
<component visibility="public" variability="parameter"

ident="radius" type="Real" />
</definition>

CelestialBody and Body in ModelicaXML format after transformation:

<definition ident="Body" restriction="class"
string_comment="Generic Body"/>

<component visibility="public" ident="mass" type="Real" />
<component visibility="public" ident="name" type="String" />

</definition>

<definition ident="CelestialBody" restriction="class"
string_comment="Celestial Body"/>

<extends type="Body"/>
<component visibility="public" variability="constant"

ident="g" type="Real">
<modification_equals>

<real_literal value="6.672e-11"/>
</modification_equals>

</component>
<component visibility="public" variability="parameter"

ident="radius" type="Real" />
</definition>

The Engine class representation in ModelicaXML.

<definition ident="Engine" restriction="class">
<component visibility="public" variability="parameter"

type="Integer"
ident="cylinders">

<modification_equals>
<integer_literal value="4"/>

</modification_equals>
</component>
<component visibility="public" type="Cylinder" ident="c">
<array_subscripts>
<component_reference ident="cylinders"/>

</array_subscripts>
</component>
</definition>

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152 151

References

[1] Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus, and Kaj Nyström. Meta
Programming and Function Overloading in OpenModelica. In Proceedings of the 3th
International Modelica Conference, 3-4 October 2003.

[2] Uwe Aßmann. Invasive Software Composition. Springer-Verlag, February 2003.

[3] Uwe Aßmann, Thomas Genßler, and Holger Bär. Meta-programming Grey-box Connectors. In
R. Mitchell, editor, Proceedings of the International Conference on Object-Oriented Languages
and Systems (TOOLS Europe). IEEE Press, Piscataway, NJ, June 2000.

[4] The Modelica Association. Modelica. http://www.modelica.org.

[5] The Modelica Association. Modelica - A Unified Object-Oriented Lanugage for Physical
System Modeling. http://www.modelica.org/ .

[6] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier Parigot, and Claude
Pasquier. SmartTools: a Generator of Interactive Environments Tools. In International
Conference on Compiler Construction CC’01, April 2001.

[7] Dynasim Company. Dymola. http://www.dynasim.se.

[8] MathCore Company. Mathmodelica. http://www.mathcore.se.

[9] The EASYCOMP Consortium. EASYCOMP home page. http://www.easycomp.org, August
2000.

[10] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica. Wiley-
IEEE Press, 2003.

[11] Peter Fritzson, Peter Bunus, Vadim Engelson, Levon Saldamli, Henrik Johansson, and Andreas
Karstöm. The Open Source Modelica Project. In Proceedings of the 2nd International Modelica
Conference, 18-19, March 2002.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, Reading, MA, 1994.

[13] Mattias Karlsson. Component-Based Aspect Weaving Through Invasive Software
Composition. Master’s thesis, Department of Computer and Information Science, Linköpings
Universitet, September 2003.

[14] Andreas Ludwig. The RECODER Refactoring Engine. http://recoder.sourceforge.net,
September 2001.

[15] Johann Oberleitner and Thomas Gschwind. Composing distributed components with the
Component Workbench. In Proceedings of the 3rd International Workshop on Software
Engineering and Middleware (SEM 2002), volume 2596 of Lecture Notes in Computer Science.
Springer-Verlag.

[16] Mikael Petterson. Compiling Natural Semantics. PhD thesis, Linköping University, 1995.
Dissertation No. 413, also in Lecture Notes in Computer Science (LNCS) 1549, Springer-Verlag,
1999.

[17] Adrian Pop and Peter Fritzson. ModelicaXML: A Modelica XML Representation with
Applications. In Proceedings of the 3rd International Modelica Conference, 3-4 October 2003.

[18] Stefan Schonger, Elke Pulvermüller, and Stefan Sarstedt. Aspect-Oriented Programming
and Component Weaving: Using XML Representations of Abstract Syntax Trees. In Second
Workshop on Aspect-Oriented Software Development, February 2002.

A. Pop et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 137–152152

http://www.modelica.org
http://www.modelica.org/
http://www.dynasim.se
http://www.mathcore.se

	Introduction
	Background
	Modelica and ModelicaXML
	Compost

	COMPOST extension for Modelica
	Overview
	Modelica Box Hierarchy
	Modelica Hook Hierarchy
	Examples of composition and transformation programs

	Conclusion and future work
	Appendix
	References

