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Abstract 

Vehicle-to-Vehicle communications provide the opportunity to create an internet of cars through the recent advances in 
communication technologies, processing power, and sensing technologies. A connected vehicle receives real-time information from 
surrounding vehicles; such information can improve drivers’ awareness about their surrounding traffic condition and lead to safer 
and more efficient driving maneuvers. Lane-changing behavior, as one of the most challenging driving maneuvers to understand 
and to predict, and a major source of congestion and collisions, can benefit from this additional information. This paper presents a 
lane-changing model based on a game-theoretical approach that endogenously accounts for the flow of information in a connected 
vehicular environment. A calibration approach based on the method of simulated moments is presented and a simplified version of 
the proposed framework is calibrated against NGSIM data. The prediction capability of the simplified model is validated. It is 
concluded the presented framework is capable of predicting lane-changing behavior with limitations that still need to be addressed. 
Finally, a simulation framework based on the fictitious play is proposed. The simulation results revealed that the presented lane-
changing model provides a greater level of realism than a basic gap-acceptance model.  
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Game theory has been applied in different disciplines in order to understand, analyze and model decision-making 
processes (Petrosjan and Mazalov, 2012).  In addition to its application in the domains of economics, politics and 
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sociology, the theory was adopted in the engineering field to explore the presence of more efficient wireless network 
communications (Han et al., 2012). One area of interest that bridges the gap between human decision-making and 
wireless communications is that of connected vehicles systems, possibly with some degree of autonomous driving. 
Connected vehicles systems require efficient Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
communication algorithms and appropriate driver responsiveness in order to avoid human errors that could lead to 
unsafe and congested traffic conditions. Computer scientists and engineers have focused on the security, safety and 
privacy of vehicular communications (Qianhong et al., 2010; Xiaodong et al., 2007) in connected environments.  
However, two critical questions regarding the traffic flow aspects need to be answered: (1) How to capture and specify 
the driving behaviors (tactical and operational) in a connected vehicle environment, and (2) How to translate such 
behaviors into efficient/practical V2V and V2I communication logic in that environment. 

Addressing the above questions requires proper driver behavioral modeling (for which this paper proposes using 
game theory), efficient algorithmic implementation and accurate trajectory data based calibration. The corresponding 
efforts should lead to a connected vehicle framework for reducing congestion and decreasing crash rates. Particularly, 
V2V communications and V2I communications provide the opportunity to create a “network” of vehicles through the 
recent advances in communication technologies, processing power, and sensing technologies. Connected Vehicles 
technology enhances the effectiveness and reliability of drivers’ strategic, tactical, and operational decisions. Even 
though the impact of this technology is significant at the strategic level (for instance, accurate real-time information 
about roadway conditions can improve drivers’ route choice decisions), drivers’ operational and tactical decisions will 
also be influenced, and thus constitute the focus of this paper.  

Acceleration and lane-changing decisions are drivers’ main operational and tactical decisions. Lane changing is 
considered as one of the most challenging driving maneuvers to understand and to predict, and the corresponding 
driving decisions are often seen as a major source of congestion and collisions. While acceleration behavior 
(especially car-following behavior) has been studied extensively since the 1950’s and many different models with 
different assumptions have been proposed to capture drivers’ car-following and free-flow behaviors,  only few lane-
changing models have been presented in the literature. Moreover, most existing lane-changing models are rule-based 
models (Gipps, 1986; Kesting et al., 2007) that do not take into consideration stochasticity and uncertainty. While 
some models adopt more realistic utility-based approaches to capture drivers’ decision-making processes (Ahmed, 
1999), they do not explicitly consider the dynamic interactions among drivers and cognitive decision features. 
Moreover, most of these models are not formulated to consider the flow of information in a connected environment. 
To address such shortcomings, the main objective of this paper is to develop a lane-changing model that endogenously 
accounts for the flow of information in a connected vehicular environment. Towards realizing this objective, a game-
theoretical approach inspired by early works of Kita and his colleagues (Kita, 1999; Kita et al., 2002) is adopted. 
Game theory provides the foundation to capture the dynamic interactions between drivers in a lane-changing 
maneuver.  This approach suggests two game types: 
• Game 1: two-person non-zero-sum non-cooperative game under complete information: this type of game 

represents lane-changing decisions in a connected environment. Through V2V communication, we assume that 
drivers are certain about other drivers’ decisions. In addition to the information about other drivers’ decisions, V2V 
communication may reduce the uncertainty related to the game payoffs. Payoffs reflect the drivers’ utility gain 
from choosing different strategies and depend on the drivers’ preferences and characteristics. 

• Game 2: two-person non-zero-sum non-cooperative game under incomplete information: This type of game 
represents lane-changing decisions that are made when drivers are uncertain about other drivers’ decisions. Such 
uncertainty may lead to mandatory or discretionary lane-changes (Ahmed, 1999) depending on the drivers’ 
willingness to take risks. 
Moreover, a calibration approach based on the method of simulated moments (MSM) is presented and the modeling 

framework is calibrated against Next-Generation Simulation (NGSIM) data (Federal Highway Administration, 2007). 
MSM possesses good small sample properties and thus provides an unbiased and consistent estimator for a fixed 
number of simulations. Validation of the proposed approach is also presented.  An efficient simulation approach based 
on fictitious play and learning in games is presented. The approach assumes that drivers play a repeated game until a 
Nash equilibrium is reached (Nash, 1951). 

The remainder of the paper is organized as follows: section 2 presents a brief review of major game-theory 
applications in transportation engineering along with a review of some essential lane-changing models. The modeling 
framework is presented in section 3 and the logic behind formulating the two games mentioned earlier is discussed. A 
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MSM based calibration approach is offered in section 4. The corresponding section is followed by a discussion on the 
model validation in section 5. Finally, section 6 illustrates the fictitious play based simulation approach before 
concluding with some summary remarks and future research needs in section 7.  

2. Background 

In addition to the game theory applications in different science and engineering fields mentioned in Section 1, game 
theory has been adopted multiple times in transportation analysis (He et al., 2010). The main game theory models used 
are: (1) ordinary non-cooperative game, (2) generalized Nash equilibrium game, (3) Cournot game, (4) Stackelberg 
game, (5) bounded rationality game and (6) repeated games. The corresponding transportation analysis types may be 
mainly classified as: (a) macro-policy analysis (including i- games between travelers and authorities, ii- games 
between authorities, and iii- games between travelers) and (b) micro-behavior simulation (including i- games between 
travelers and authorities, and ii- games between travelers). These studies focused mainly on vehicular traffic and on 
the strategic decision making level (i.e. route choice, departure time choice, destination choice and mode choice) (Bell, 
2000; Fisk, 1984; Hollander and Prashker, 2006; Tosin, 2008). As for the shorter tactical and operational decision 
making time frame, the studies approached the problem from a safety perspective, as the objective was to avoid 
conflicts and collisions between vehicles (Zhang, 2009; Zhe, 2013). 

Such operational level applications motivated the use of game theory to develop improved traffic control strategies 
(Yu and Faldini, 2004), particularly signalization. The objective was to create decentralized and coordinated traffic 
signal control systems that respond in real time to the volume fluctuations in a given transportation network (El-
Tantawy and Abdulhai, 2010). Other game theory applications involved ramp metering and speed harmonization 
(Ghods and Kian, 2008; Li and Fan, 2008). Lately, the operational and the tactical level decisions (i.e. acceleration, 
turning, gap-acceptance, lane-changing and merging) involved in traffic flow control started to be translated into 
autonomous driving logics via agent-based simulation (Rakha et al., 2013). The corresponding studies however suffer 
from two major limitations.  First, the applicability of game theory to microscopic driving decisions modeling may 
create computationally slow algorithms rendering the adopted approach impractical for real-time simulation purposes 
(Hoogendoorn and Bovy, 2009). This limitation is even more manifested when dealing with more complex lane-
changing models.  Second, to examine the hypothesis that game theory may be applied to capture lane-changing 
behavior in a robust manner, calibration needs to be performed accurately using high resolution (space and time) 
trajectory data. Such data may not be readily available in different geographic locations for different roadway 
geometric and traffic control features. At this stage, the authors assume that such data would be available through 
newer generation sensing instruments. The main goal of this paper is then to show that game theory may be adopted to 
construct more robust lane-changing models than currently in use, and that such models may be implemented and 
simulated efficiently in order to be used in a connected vehicle environment. 

Lane-changing decisions are latent in nature and one can just observe the outcome of this decision making process 
(Ahmed, 1999). The time to make this decision is not observable either. Moreover, the whole process is continuous 
and the order of events in this process can change (e.g., available gap, in one case, can be a triggering factor for a lane-
changing decision while, in another case, a driver may look for an acceptable gap to change lane) (Ahmed, 1999). 
Most of the lane-changing models in the literature are rule-based models. Gipps’ (1986) lane-changing model is a 
notable example of the rule-based models. It assumes that drivers are willing to keep their own desired speed while 
using a “correct lane” on their path from an origin to a destination. However, these two objectives may be conflicting; 
therefore several other adjustments (including the possibility of lane-changing maneuver, presence of heavy vehicles, 
and vehicles’ speed and the target lane’s speed) were considered in the model, which determines the possibility, 
necessity, and attractiveness of a lane-changing maneuver through a series of questions that need to be answered (i.e. 
if-then rules).  

In an effort to capture the underlying behavioral mechanisms of lane-changing decisions, (Ahmed, 1999) presented 
a utility-based framework. This model divides lane-changing maneuvers into mandatory (MLC) and discretionary 
(DLC) and adopts a three step approach to model a lane-changing maneuver: decision to change lane, decision to 
select target lane, and decision to accept the gap in the target lane. This model used a discrete choice modeling 
framework where lane-changing decisions are made at discrete points in time. Moreover, each lane-changing decision 
was assumed to be independent from previous lane-changing decisions in DLCs. Choudhury et al. (Choudhury et al., 
2006) enhanced this framework by incorporating forced merging in the model structure and calibrated the update 
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framework using NGSIM data. They compared this framework with the original model (Ahmed, 1999) and found that 
the extended model performs significantly better than the original model. 

Another lane-changing model that focused on interactions between a merging vehicle and through vehicles in an 
on-ramp location is Kita’s model (Kita, 1999; Kita et al., 2002). The corresponding game theoretical approach 
captures the interactions between modeling framework is a two-player non-zero-sum non-cooperative game where the 
merging vehicle chooses between merge and stay in the merge lane and the through vehicle chooses between give way 
and do not give way. The main assumption of this model is that drivers minimize their lane-changing risk (defined 
based on time-to-collision). 

In light of the presented literature review, further work is needed to investigate the suitability of game theory as a 
basis for lane-changing algorithms in a connected vehicle environment. For this purpose, adequate model formulation 
and efficient calibration are needed. The corresponding model should then be tested through well-designed simulation 
sensitivity analysis. 

3. Model Formulation 

3.1. Modeling Lane-Changing with Inactive V2V Communications 

In the absence of communication, drivers’ perception of their surrounding traffic condition is subjective. The lack 
of accurate information may result in inefficient, unreliable, and unsafe driving maneuvers. Drivers are uncertain 
about the nature of other drivers’ lane-changing maneuvers. In this study, two types of lane-changing maneuvers are 
considered: mandatory lane-changing and discretionary lane-changing. Note that different payoffs are expected for 
these two types. The lane-changing behavior under inactive V2V communications is modeled as a two-person non-
zero-sum non-cooperative game under incomplete information. Figure 1 shows the schematic of a typical lane-
changing maneuver and Tables 1 and 2 show the structure of the discretionary and mandatory games in normal form, 
respectively. In both of these cases, the target vehicle has two pure strategies (Change Lane and Wait) and the lag 
vehicle has three pure strategies (Accelerate, Decelerate, and Change Lane). Note that in reality, the lag vehicle can 
have more pure strategies including Do Nothing (ignoring the lane-changing), Courtesy Yield, and Forced Yield (in 
case that the target vehicle executes a forced lane-change); however, due to simplicity and calibration issues (e.g. lack 
of data for calibration), this study considers a general deceleration strategy, which contains all of the above cases. In 
such a game, a strategy of a player is defined based on the probabilities that are assigned to each pure strategy. 

Table 1. Discretionary lane-changing game with inactive V2V communication in normal form. 
P and R denote the payoff for target and lag vehicle, respectively. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 

La
g 

V
eh

ic
le

 

1B  (Accelerate) ( 1111,RP ) ( 1212,RP ) 

2B  (Decelerate) ( 2121,RP ) ( 2222,RP ) 

3B  (Change Lane) ( 3131,RP ) ( 3232,RP ) 

 

 

Fig. 1. The schematic of a typical lane-changing maneuver. 
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Table 2. Mandatory lane-changing game with inactive V2V communication in normal form. 
 P andQ denote the payoff for target and lag vehicle, respectively. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 

La
g 

V
eh

ic
le

 

1B  (Accelerate) ( 1111,QP ) ( 1212,QP ) 

2B  (Decelerate) ( 2121,QP ) ( 2222,QP ) 

3B  (Change Lane) ( 3131,QP ) ( 3232,QP ) 

 
This study adopts Harsanyi transformation (Harsanyi, 1967) to transform a game of incomplete information to a 

game of imperfect information. This method introduces “nature” as a player who chooses the type of each player. Let
p denotes the probability of the target vehicle facing mandatory lane-changing. Consequently, still assuming 

independence among pure strategies, p−1 denotes the probability of the target vehicle engaging in discretionary lane-
changing. Figure 2 shows the result of the Harsanyi transformation of the game. In this transformation, from the lag 
vehicle’s standpoint, nature moves first and chooses mandatory lane-changing with probability p and discretionary 
lane-changing with probability )1( p− . Note that both drivers have the same beliefs about these probabilities. 
However, the target vehicle observes nature’s move, while the lag vehicle is unaware of the actual move performed by 
nature. Combining these two transformed games into a normal form, the target vehicle will have four pure strategies, 
and the lag vehicle will still have three pure strategies (see Table 3 for more details). The notation Ai

MAj
D (i, j =1,2)

means the target vehicle can execute a mandatory or a discretionary lane change based on the nature’s move.  

3.2. Modeling Lane-Changing with Active V2V Communications 

In an active V2V Communications network, vehicles receive accurate information from surrounding vehicles. This 
additional information enhances drivers’ inaccurate perception of their surrounding traffic condition leading to safer 
and reliable execution of lane-changing maneuvers. This study assumes that drivers have information about the nature 
of the lane-changing maneuver (discretionary vs. mandatory) through V2V communications. Therefore, the lane-
changing behavior under active V2V communications is modeled as a two-person non-zero-sum non-cooperative 
game under complete information. Table 4 shows the structure of this game in normal form. 

Table 3. Lane-changing game with inactive V2V communication in normal form. 

ACTION 
Target Vehicle 

DM AA 11  DM AA 21  DM AA 12
DM AA 22  

La
g 

V
eh

ic
le

 

1B  (Accelerate) 
( 11P , 

1111 )1( RppQ −+ ) 

( 2111 )1( PppP −+ , 

2111 )1( RppQ −+ ) 

( 1112 )1( PppP −+ , 

1112 )1( RppQ −+ ) 

( 12P , 

1212 )1( RppQ −+ ) 

2B  (Decelerate) 
( 21P , 

2121 )1( RppQ −+ ) 

( 2221 )1( PppP −+ , 

2221 )1( RppQ −+ ) 

( 2122 )1( PppP −+ , 

2122 )1( RppQ −+ ) 

( 22P , 

2222 )1( RppQ −+ ) 

3B  (Change Lane) 
( 31P , 

3131 )1( RppQ −+ ) 

( 3231 )1( PppP −+ , 

3231 )1( RppQ −+ ) 

( 3132 )1( PppP −+ , 

3132 )1( RppQ −+ ) 

( 32P , 

3232 )1( RppQ −+ ) 

 

Fig. 2. Lane-changing game with inactive V2V communication in extensive form. 
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Table 4. Lane-changing game with active V2V communication in normal form. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 

La
g 

V
eh

ic
le

 

1B  (Accelerate) ( 111111, orRQP ) ( 121212, orRQP ) 

2B  (Decelerate) ( 212121, orRQP ) ( 222222, orRQP ) 

3B  (Change Lane) ( 313131, orRQP ) ( 323232, orRQP ) 

3.3. Graphical Representation of the Best Response 

Calculating players’ best responses (Nash Equilibria) has been a topic of interest among economists since the 
introduction of game theory. Nash equilibrium, in general, is not unique even for a simple two-player bi-matrix game; 
Finding the entire set of Nash equilibria and identifying players’ equilibrium selection mechanisms are challenging in 
nature. This section presents a graphical representation of the Nash equilibria for the bi-matrix game of Table 4. Note 
that the game in Table 3 cannot be represented in a 3-dimentional space since the target vehicle has 4 pure strategies; 
however, the concept of can be transferred from a 3-dimentional space into a 4-dimentional one. 

In the game illustrated in Table 4, the best response of each driver is the set of probabilities that maximize his/her 
payoff, considering the set of probabilities chosen by the other driver. Let 1q , 2q , and pdenote the probabilities of 
choosing 1A , 1B , and 2B , respectively. Consequently, assuming independence among alternatives and that the 
probability axioms hold when modeling drivers’ decisions, the probability of choosing 2A is )1( p− and the probability 
of choosing 3B is )1( 21 qq −− . Based on these probabilities, the expected payoff of each driver can be calculated as 
follows, 

⎥⎦
⎤

⎢⎣
⎡ −++⎥⎦

⎤
⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +−++

⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +−+=⎟

⎠
⎞⎜

⎝
⎛

BPpBpPBPBPBPBPBPBPpq

BPBPBPBPBPBPpqBPE

32)1(31)3222()3122()3221(2

)3212()3112()3211(1
         (1) 

⎥⎦
⎤

⎢⎣
⎡ +−+−+

⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +−++⎥⎦

⎤
⎢⎣
⎡ +−+=⎟

⎠
⎞⎜

⎝
⎛

APAPAPqAPAPq

APAPAPAPAPAPqAPAPAPAPqpAPE

32)3222(2)3212(1

)3231()1231()3221(2)1231()3211(1          (2) 

The best response in this set of equations can be obtained by maximizing the expected payoff for each player: 
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10)3231()1231()3221(2)1231()3211(12. =⇒>⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +−++⎥⎦

⎤
⎢⎣
⎡ +−+⇒ pAPAPAPAPAPAPqAPAPAPAPqifEq

 

100)3231()1231()3221(2)1231()3211(12. ≤≤⇒=⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +−++⎥⎦

⎤
⎢⎣
⎡ +−+⇒ pAPAPAPAPAPAPqAPAPAPAPqifEq

 

Eq.2⇒ if q
1
(P
11
A +P

32
A )− (P

31
A +P

12
A )⎡

⎣⎢
⎤
⎦⎥
+ q
2
(P
21
A +P

32
A )− (P

31
A +P

12
A )⎡

⎣⎢
⎤
⎦⎥
+ (P

31
A −P

32
A )

⎡
⎣⎢

⎤
⎦⎥
< 0⇒ p = 0

 

The best response (obtained through finding the Nash equilibrium) can be determined by finding the point of 
intersection of these planes in a 3D space (Kita et al., 2002). One should expect multiple intersection points (Nash 
equilibria) for a single problem. Figure 3 presents an illustration of these intersection points. 

3.4. Pay-off Functions Formulation 

Kita and his colleagues (Kita, 1999; Kita et al., 2002) formulated the pay-off functions based on drivers’ tendency 
to avoid collisions.  However, since collision risk can affect both drivers, formulating pay-offs based on only time-to-
collision can lead to unrealistic Nash equiliria (Liu et al., 2007). On the other hand, they assumed that lag vehicle tries 
to minimize speed variation and target vehicle (merging vehicle in their case) tries to minimize the time spent in the 
acceleration lane while considering the collision probability. The second approach is expected to produce more 
realistic results since it considers parameters related to drivers’ safety and comfort. However, data analysis shows that 
sometimes lag vehicles tries to prevent lane-changing by accelerating and closing the gap, which cannot be captures 
by only comfort related parameters. Moreover, both of the above studies focus on merging section and mandatory 
lane-changing.  

This study focuses on modeling lane-changing behavior in a more general context. Therefore, the pay-offs should 
be designed to reflect drivers mandatory and discretionary lane-changings. For discretionary lane-changing, it is 
assumed that the target vehicle (lane-changing vehicle) evaluates whether changing lane is beneficial by comparing 
the acceleration required to avoid collision ( CAcc ) and speed before and after lane-changing. The lag vehicle, 
however, evaluates whether to avoid interfering in the lane-changing (either by decelerating or changing lane) or to 
prevent it (by accelerating). Therefore, the lag vehicle compares CAcc and speed before and after the lane-changing 
maneuver. Note that in all of the lane-changing instances, it is assumed that: (1) the lead and lag vehicles are in car-
following mode before the lane-changing maneuver, (2) both lag and target vehicles are at an equilibrium condition at 
the time of lane-changing, and (3) both lag and target vehicles can accurately estimate the variables in the pay-off 
functions. 

 

Fig. 3. Illustration of the “Best Response”. 



427 Alireza Talebpour et al.  /  Transportation Research Procedia   7  ( 2015 )  420 – 440 

3.4.1. Target Vehicle 
At the decision time, the target vehicle needs to decide about changing lane. This study considers safety and speed 

gain as the main decision factors for the target vehicle. Drivers have significant tendency to avoid collision; therefore, 
before executing the lane-changing maneuver, the target vehicle calculates two values of CAcc : (1) for the lag vehicle 
considering the target vehicle as the new leader, and (2) for the target vehicle considering the lead vehicle as the new 
leader. In other words, target vehicle evaluates the situation from the safety stand point after the lane-changing 
maneuver. In addition to safety, drivers have a tendency to accelerate until they reach their desired speed. In a car-
following regime, the driver’s ability to reach the desired speed is limited by the leading vehicle; however, drivers 
prefer to be as close as possible to the desired speed. Therefore, this study assumes that the target vehicle evaluates the 
speed gain if he/she decides to change lane.  

Table 5 summarizes the resulting pay-off functions. First consider the situation where the target vehicle decides to 
change lane. If the lag vehicle decides to accelerate or decelerate, the target vehicle needs to calculate CAcc for itself 
and the lag vehicle. On the other hand, if the lag vehicle decides to change-lane, the target vehicle does not need to 
calculate CAcc for the lag vehicle. In all of these cases, however, the speed gain should be calculated since it is a 
function of the new and old leaders’ speed. In addition to the standard driving situations, there exist very complicated 
ones, which cannot be captured by CAcc and speed gain; this study captures the unobserved decision variables by 
introducing an error term. 

11
3
11

2
11arg

1
11

0
1111 εαααα +Δ+++= VAccAccP C

Lead
C

etT          (3) 

21
3
21

2
21arg

1
21

0
2121 εαααα +Δ+++= VAccAccP C

Lead
C

etT          (4) 

31
2
31

1
31

0
3131 εααα +Δ++= VAccP C

Lead           (5) 

where  
C

etTAcc arg : Acceleration to prevent collision for the lag vehicle considering the targe vehicle as the leader; 

C
LeadAcc : Acceleration to prevent collision for the target vehicle considering the lead vehicle as the leader; 

VΔ : Speed difference between the old leader and the new leader (lead vehicle); 

312111 ,, εεε :Error terms to capture the unobserved variables;and 

2
31

1
31

0
31

3
21

2
21

1
21

0
21

3
11

2
11

1
11

0
11 ,,,,,,,,,, ααααααααααα : Parameters to be estimated. 

Note that it is expected that the target vehicle places different weights on CAcc when the lag vehicle accelerates or 
decelerates ( 1

21
1
11 αα ≠ and 2

21
2
11 αα ≠ ).  

Alternatively, the target vehicle can select to continue without changing lane. In reality, drivers make decisions 
about lane-changing by comparing their current situation with their expected situation after the lane-changing 
maneuver. In other words, they change lane to improve their driving experience (for instance, if the current leader 
suddenly decelerates, changing lane is an alternative for the target vehicle to avoid collision). Therefore, the variables 
related to the driving condition prior to the lane-changing maneuver should be included in the pay-off functions. In 
this case, the target vehicle’s pay-offs can be calculated based on the current driving situation at the time of the lane-
changing decision. 

12
1
12

0
1212 εαα ++= cfAccP           (6) 

22
1
22

0
2222 εαα ++= cfAccP           (7) 

32
1
32

0
3232 εαα ++= cfAccP           (8) 

where cfAcc : Acceleration based on normal car-following behavior; 

      322212 ,, εεε : Error terms to capture the unobserved variables;and 

       
1
32

0
32

1
22

0
22

1
12

0
12 ,,,,, αααααα : Parameters to be estimated. 
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Table 5. Pay-off matrix of the target vehicle. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 
La

g 
V

eh
ic

le
 

1B  (Accelerate) 11
3
11

2
11arg

1
11

0
11 εαααα +Δ+++ VAccAcc C

Lead
C

etT  12
1
12

0
12 εαα ++ cfAcc  

2B  (Decelerate) 21
3
21

2
21arg

1
21

0
21 εαααα +Δ+++ VAccAcc C

Lead
C

etT  22
1
22

0
22 εαα ++ cfAcc  

3B  (Change Lane) 31
2
31

1
31

0
31 εααα +Δ++ VAccCLead  32

1
32

0
32 εαα ++ cfAcc  

3.4.2. Lag Vehicle 
At the lane-changing time, the lag vehicle decides whether to give way (decelerate or change lane) or prevent the 

target vehicle from changing lane (accelerate). Table 6 summarizes the resulting pay-off functions. First consider the 
situation where the lag vehicle decides to accelerate. If the target vehicle decides to change lane, the lag vehicle should 
calculate CAcc with the target vehicle whereas if the target vehicle decides to keep its current lane, the lag vehicle 
should calculate CAcc with the lead vehicle. Similar to the pay-off functions of the target vehicle, this study specifies 
an error term to capture the unobserved decision variables. 

11arg
1
11

0
111111 δββ ++= C

etTAccRorQ           (9) 

12
1
12

0
121212 δββ ++= C

LeadAccRorQ           (10) 

where  1211,δδ : Error terms to capture the unobserved variables;and 

  
1
12

0
12

1
11

0
11 ,,, ββββ : Parameters to be estimated. 

Similar payoff structure is expected if the lag vehicle decides to decelerate. However, instead of calculating the 
acceleration to prevent collision, the lag vehicle considers a comfortable deceleration to provide a courtesy. Therefore, 
even if lower deceleration rate is required to prevent collision, the lag vehicle decelerates with higher deceleration rate. 

21arg
1
21

0
212121 δββ ++= Y

etTAccRorQ           (11) 

22
1
22

0
222222 δββ ++= Y

LeadAccRorQ           (12) 

where Y
etTAcc arg : },min{ argarg

C
etT

Y
etT AccAcc where 2arg 05.3

s
mAccY etT −= ; 

Y
LeadAcc : },min{ C

Lead
Y
Lead AccAcc where 205.3

s
mAccYLead −= ; 

2221,δδ :Error terms to capture the unobserved variables;and 

1
22

0
22

1
21

0
21 ,,, ββββ :Parameterns to be estimated. 

Finally, if the lag vehicle decides to give way by changing lane, its pay-off function is similar, in structure, to the 
target vehicle’s pay-off function described in the previous section. Note that the pay-off does not depend on the target 
vehicle’s decision. 

31
3
31

2
31arg

1
31

0
3132313231 '' δββββ +Δ+++=== VAccAccRRorQQ C

Lead
C

etT          (13) 

where  
C

etTAcc 'arg : Acceleration to prevent collision for the new lag vehicle considering the lag vehicle as the leader; 

C
LeadAcc ' : Acceleration to prevent collision for the lag vehicle considering the new lead vehicle as the leader; 

31δ : Error terms to capture the unobserved variables;and 

3
31

2
31

1
31

0
31 ,,, ββββ : Parameters to be estimated. 



429 Alireza Talebpour et al.  /  Transportation Research Procedia   7  ( 2015 )  420 – 440 

Note that all k
ijβ ( 3..1,, =kji ) is different for mandatory and discretionary lane-changing and needs to be estimated 

separately. 

Table 6. Pay-off matrix of the lag vehicle. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 
La

g 
V

eh
ic

le
 

1B  (Accelerate) 11arg
1
11

0
11 δββ ++ C

etTAcc  12
1
12

0
12 δββ ++ C

LeadAcc  

2B  (Decelerate) 21arg
1
21

0
21 δββ ++ Y

etTAcc  22
1
22

0
22 δββ ++ Y

LeadAcc  

3B  (Change Lane) 31
3
31

2
31arg

1
31

0
31 '' δββββ +Δ+++ VAccAcc C

Lead
C

etT  

4.  Model Calibration 

Calibrating games is a challenging task due to the difficulties in finding the entire set of Nash equilibria as well as 
the unknown nature of the players’ equilibrium selection process. Early efforts to find Nash equilibria were limited to 
specific games with a limited number of players and simple structures. A good example of these early works is a study 
by Tucker (Tucker, 1960) who proposed a linear programming approach to find a Nash equilibrium in a matrix game. 
However, most of these methods were not able to calculate the entire set of Nash equilibria. Since these early works, 
few algorithms have been proposed that are capable of finding the entire set of Nash equilibria; however, to the best of 
the authors’ knowledge, there are only few reliable algorithms in the literature that can effectively find all Nash 
equilibria in a non-zero-sum game with finite number of players. Govindan and Wilson (Govindan and Wilson, 2003) 
proposed one of the most effective algorithms for calculating the entire set of Nash equilibria in finite games. Their 
approach is based on Kohlberg and Mertuens structure theorem (Elon and Mertens, 1986), which indicates the 
homeomorphic nature of the graph of Nash equilibrium correspondence to the space of games (the space that is 
determined by the number of pure strategies). In other words, there exist a continuous, invertible transform between 
these two spaces. This characteristic enables a homotopy method to transform the original game to a much simpler one 
with a unique equilibrium point. Later, this equilibrium point can be traced back to find an equilibrium point in the 
original game (Govindan and Wilson, 2003). Another effective method to find all Nash equilibria is called support 
enumeration (Dickhaut and Kaplan, 1993). This approach is also based on the homeomorphic nature of the graph of 
Nash equilibrium correspondence to the space of games and solves a set of polynomial equations over the set of 
strategies with positive selection probability.  

In addition to finding the entire set of Nash equilibria, finding the underlying equilibrium selection mechanisms 
from observations is extremely challenging. Therefore, researchers usually assume a selection mechanism and 
calibrate the pay-off functions accordingly (Bajari et al., 2010). Note that for simplicity, this study assumes that 
players only play pure strategies. Adopting more sophisticated equilibrium selection approaches, including selecting 
Pareto dominated strategies, may improve the models’ capability of capturing drivers’ lane-changing behavior and is 
left for the future research. 

4.1. Calibration Approach 

This study adopts the method of simulated moments (MSM) presented by Bajari et al. (Bajari et al., 2010) to 
estimate the parameters of the pay-off functions as well as the equilibrium selection mechanism. Consider the two 
player game of Table 4. Let 2,1, =iAi denote the set of pure strategies for player i and ),( 21 aaa = denote a set of 
action for each player in this two player non-zero-sum non-cooperative game under complete information (

21 AAa ×∈ ). The pay-off for player i when a denotes the set of action for each player can be written as follows (Bajari 
et al., 2010; Bresnahan and Reiss, 1990), 

)();,(),,,( axafxau ii εθεθ +=           (14) 

where x andθ denote the variables and their associated parameters in the pay-off function for player i , respectively. 
The pay-off function, iu , consists of two terms: (1) a function if which represents the observable elements in the 
player i ’s pay-off function and depends on the set of strategies, and (2) an error term to capture the unobserved 
decision variables. Following the approach by Bajari et al. (Bajari et al., 2010), this study assumes that the error term 
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is independent and identically distributed (i.i.d.) with a normal distribution. Note that this assumption suggests that a 
driver’s experience does not affect his/her payoff functions. In reality, however, the error terms can be correlated since 
the driver’s previous experience is likely to exert significant effect on the pay-off functions. 

Let ),( 21 uuu = denote the set of pay-offs for both players if a is selected as the set of actions. Let )(aΩ indicate the 
set of Nash equilibria for this set of actions (note that there might be more than one Nash equilibrium for one set of 
actions). The probability of selecting )(uΩ∈ω , )),(,( μωλ uΩ , can be calculated as follows (Bajari et al., 2010),  

∑
Ω∈

=Ω
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),(.

'

')),(,(
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uy

uy

e
eu

ω

ωμ
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μωλ           (15) 

where 
⎩
⎨
⎧

=
Otherwise
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uy

0
1

),(
ω

ω . 

By combining the above elements, Bajari et al. (Bajari et al., 2010) formulated the probability of observing a 
specific set of actions as follows, 

εεωμωλμ
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         (16) 

where )(εg has a normal distribution. Bajari et al. (Bajari et al., 2010) proposed a method of simulated moments 
(MSM) to solve Eq. 16. MSM, unlike maximum likelihood estimator (MSL), generates an unbiased estimator for any 
number of iterations (Bajari et al., 2010). The method involves finding the entire set of Nash equilibria. This study 
utilizes Gambit (McKelvey et al., 2014), which is a free software package that adopted the support enumeration 
method to calculate the entire set of Nash equilibria.   
Figure 4 illustrates the calibration process based on the method of simulated moments. This approach starts with 
simulating the integral of Eq. 16 using a Monte-Carlo procedure. For this purpose, first, values of ε are drawn from

)(εg  and pay-offs are calculated accordingly. Second, the equilibrium set, )(uΩ , is calculated using Gambit. Third, 
based on the equilibrium set, the probability of selecting each equilibrium, )),(,( μωλ uΩ , and the probability of 
observing a set of action, a , is determined. Finally, the integral can be estimated precisely by averaging over a large 
number of draws. Once ),,|( μfxaP is simulated ( ),,|(ˆ μfxaP ), a comparison between the calculated probabilities 
and the actual observations can be made. Let )(1 kag t == denote an indicator function ( 1=g if the t th set of action 
is equal to k ). Bajari et al. (Bajari et al., 2010) defined a vector of moments similar to the following equation, 

[ ]∑
=

−==
T

t
tTk xkPka

T
m

1
, ),,|(ˆ)(11),( μθμθ           (17) 

whereT denotes the number of observations in the dataset. The combination ofθ and μ that minimize the following 
equation forms the optimal parameter values (Bajari et al., 2010),

  { }),(),(minarg)ˆ,ˆ( ,
'

,,
μθμθμθ

βθ
TkTk mm ×=                (18)  

4.2. Calibration Results 

The well-known NGSIM data are used for calibration of the presented lane-changing model (Federal Highway 
Administration, 2007) is used. This dataset was collected on the 15th of June, 2005 on US 101 in Los Angeles, 
California, USA. The segment length is 2100 ft and has 5 lanes in the southbound direction (see Figure 5). Trajectory 
data covers three 15 minutes periods during the morning peak: from 7:50 AM to 8:05 AM, from 8:05 AM to 8:20 AM, 
and from 8:20 AM to 8:35 AM. Figure 5 also demonstrates the speed profiles for the first two data collection periods 
on US 101 based on the trajectory data. This figure reveals that flow dropped significantly on this segment at the end 
of the first data collection period. After this point, the overall traffic flow condition remained unchanged. At the same 
time, the stop and go waves started to form and the frequency of these waves increased over time. 
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Fig. 4. Calibration process based on the method of simulated moments (Bajari et al., 2010). 

To calibrate the proposed model, one needs a number of observations for each combination of pure strategies. For 
the case that the target vehicle decides to change lane, reasonable number of mandatory and discretionary lane-
changing maneuvers are identified in this dataset. Since this segment contains an on-ramp followed by an off-ramp, a 
lane-changing maneuver is considered mandatory if the corresponding vehicle eventually exits the highway through 
the off-ramp. Any lane-changing maneuver that does not satisfy this condition, is considered to be discretionary. Note 
that lane-changing maneuvers to and from the ramp are not considered in the calibration. 

Unlike the first case, identifying maneuvers in which drivers decide not to change lane is very challenging. This 
study proposes an identification based on the visual observation. In other words, the location of a vehicle is monitored 
throughout the segment; if the vehicle’s location deviates from the middle of the lane toward the lower /upper ends of 
the lane and the vehicle never completely change its current lane, the maneuver is considered as an instance of 
deciding not to change lane. Indeed, this method can induce significant error into the calculations; however, this is the 
most straightforward approach considering the data availability. Note that introducing an observations error term could 
reduce the impact of misidentifications and is left for the future research.  

The presented model, in the general form, has 58 parameters. Calibrating the entire set of parameters, in general, is 
not computationally practical. The following assumptions are made to simplify the model and reduce the number of 
parameters: 
• The constant is removed from all pay-off functions. Note that this assumption put a limit on model’s prediction. 
• It is assumed that the target vehicle’s pay-offs are zero if he/she decides not to change lane. This assumption is 

reasonable considering the fact that the driving environment has not changed for the target vehicle. The error term 
can still capture the unobserved decision variables. 

• It is assumed that the target vehicle has the same pay-off regardless of the lag vehicle’s decision to accelerate or 
decelerate. This assumption, in general, is not valid; however, in certain cases (including mandatory lane-changing) 
this can be the dominating behavior. 

• It is assumed that the target vehicle only considers the lag vehicle in calculating his/her pay-offs. 
• It is assumed that the lag vehicle is only sensitive to collision and not speed variation. 
• Since the model parameters are homogenous among drivers, it is assumed that the lag vehicle’s pay-off function 

and its parameters are similar to the target vehicle when the target vehicle decides to change lane. 
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Table 7 and 8 show the resulting pay-off matrix for the target and lag vehicles, respectively. Note that the decision 
variables are normalized based on the largest values of decision variables in the entire game. The US-101 dataset from 
7:50AM to 8:05AM is used for calibration. Table 9 presents the calibration results for mandatory and discretionary 
lane-changings. 50 (out of 551) instances of discretionary lane-changing maneuver and 10 (out of 10) instances of 
mandatory lane-changing instances are used in calibration. It is assumed that drivers are aware of the lane-changing 
type (mandatory lane-changing in which a driver follows the advised lane-changing maneuver vs. discretionary). The 
Mean Absolute Error (MAE) is at the acceptable range (below 10%) for the mandatory lane-changing, while the MAE 
value is above 10% for the discretionary lane-changing. More discussion on these results is presented in the next 
section. 

Table 7. Pay-off matrix of the target vehicle. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 

La
g 

V
eh

ic
le

 

1B  (Accelerate) 112arg1 .. εηη +Δ+ VAccC etT  120 ε+  

2B  (Decelerate) 212arg1 .. εηη +Δ+ VAccC etT  220 ε+  

3B  (Change Lane) 312. εη +ΔV  320 ε+  

Table 8. Pay-off matrix of the lag vehicle. 

ACTION 
Target Vehicle 

1A  (Change Lane) 2A  (Do not Change Lane) 

La
g 

V
eh

ic
le

 

1B  (Accelerate) 11arg3. δη +C
etTAcc  123. δη +C

LeadAcc  

2B  (Decelerate) 21arg4. δη +Y
etTAcc  224. δη +Y

LeadAcc  

3B  (Change Lane) 312'arg1 .. δηη +Δ+ VAccC
etT

 

 

Speed Profile: 7:50 – 8:05 

Speed Profile: 8:05 – 8:20 

Fig. 5. (a) Schematic illustration of the study area and video coverage for trajectory data collection on US 101 (Federal Highway Administration, 
2007) and (b, c) Speed (in mph) profiles during each data collection period. 

 

a b 

c 
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Table 9. Calibration results for the discretionary and mandatory lane-changing (simplified model). 

Discretionary Lane-changing Mandatory Lane-changing 

Parameter Calibrated Value Parameter Calibrated Value 

1η  -0.750 1η  -0.875 

2η  0.875 2η  0.375 

3η -0.750 3η -0.625 

4η 0.125 4η 0.25 

μ  1.000 μ  1.000 

Mean Absolute Error (MAE) 0.383  Mean Absolute Error (MAE) 0.059 

5. Model Validation 

This section discusses the model’s capability of predicting lane-changing behavior based on the calibration results. 
Following the methodology presented in Liu et al. (Liu et al., 2007), in addition to the Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE) is used to validate the proposed model 

RMSE =
1

n
(1(x̂i − xi ))

2

i=1

n

∑           (19) 

where n , x̂ , and x denote the number of observation, model prediction, and actual observation, respectively. 1(x̂i − xi )
is equal to one if x̂i = xi and zero otherwise. Note that the validation is based on the US-101 dataset from 8:05AM to 
8:20AM. 200 (out of 410) instances of discretionary lane-changing maneuver and 10 (out of 10) instances of 
mandatory lane-changing instances are used for validation. Table 9 shows the validation results for mandatory and 
discretionary lane-changing. MAE and RMSE values are very high for both mandatory and discretionary lane-
changing. The validation results reveals that the simplified model does not carry a prediction power and is not capable 
of accurately predicting lane-changing behavior. However, some predicting ability still exists in the model and since 
the model is simplified to a great extent, the original model is expected to predict the lane-changing behavior more 
accurately. Further calibration and validation are required and are left for the future research. 

Table 10. Validation results for the discretionary and mandatory lane-changing (simplified model). 

Discretionary Lane-changing Mandatory Lane-changing 

Mean Absolute Error (MAE) 0.724  Mean Absolute Error (MAE) 0.645 

Root Mean Square Error (RMSE) 0.830  Root Mean Square Error (RMSE) 0.773 

6. Simulation Framework 

Acceleration modeling and lane changing modeling are core elements of the micro-simulation traffic models. The 
acceleration models are intended to capture the operational decision making process while the lane changing models 
aims at capturing the tactical driving decision making process. This paper, following the simulation model of Hamdar 
et al. (Hamdar et al., 2008), adopts a duration-based framework at the tactical level and part of the acceleration 
framework of Talebpour and Mahmassani (Talebpour and Mahmassani, 2014) at the operational level. Note that more 
details on the model formulation can be found in Hamdar and Mahmassani (Hamdar and Mahmassani, 2009; Hamdar, 
2009). 

6.1. Duration Framework 

In the duration framework, the hazard-based duration models are used to capture the tactical decision making 
process; the driving process is divided into different episodes characterized by a termination probability - given that 
the episode has not ended before – and  an episode duration (the time lapses before the driver enter another episode). 
The episodes can be divided into car-following episodes and free-flow episodes based on the corresponding inter-
vehicle follower-leader interactions.  
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A car-following episode ends when either the distance between the vehicle and its leader increases to the point that 
the new episode can be considered as a free-flow episode or the vehicle changes lane (the vehicle can enter another 
car-following episode or free-flow episode depending on the interaction between the vehicle and the leader). The free-
flow episode ends when either the vehicle changes the lane (similar to the car-following episode, the outcome can be 
either a free-flow episode or a car-following episode) or the distance between the vehicle and its leader decreases to 
the point that the new episode can be considered as car-following episode. 

The hazard at time u is defined as the conditional probability of termination of the current episode at small time 
period  after u (Hamdar, 2009), 

),(
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         (20) 

where i indicates the driver, q represents the exit strategy of an episode, and iqT represents the duration of the episode 
for driver i and exit strategy q . q0λ is called the base line hazard value at timeu , iqx is the vector of explanatory 
variables for driver i at timeu  (Hamdar and Mahmassani, 2009), and qβ is the vector of corresponding parameters to 
be estimated. Hamdar and Mahmassani (Hamdar and Mahmassani, 2009) used the exponential form for the function of 
exogenous covariates.  

6.1.1. Lane-Changing Model 
If a driver decides to end his/her current episode through changing lane, the lane-changing model is utilized to 

simulate the lane-changing behavior. Unlike the calibration process where it was assumed that drivers’ are at 
equilibrium condition at the time of lane-changing decision, it is assumed that drivers seek an equilibrium condition 
throughout the simulation. In other words, each driver has experience about his/her previous lane-changing maneuvers 
and he/she starts engaging with the lag vehicles based on this experience. However, at the time of first evaluation, it is 
assumed that drivers are not at equilibrium. Therefore, a fictitious play approach is adopted to simulate the lane-
changing behavior. Figure 6 illustrates this approach. Once a driver decides to change lane, a decision-making and 
execution period is considered for the driver. It is assumed that this period follows a normal distribution with the mean 
and standard deviation set to 2 seconds and 1 second, respectively. At each simulation step during this decision-
making period, the driver in the target vehicle chooses his/her best response and watches the other driver’s reaction. 
Once this process identify a stable solution (a Nash equilibrium), the driver executes the lane-changing maneuver. 

6.2. Acceleration Framework 

(Talebpour and Mahmassani, 2014) presented a framework to model driver behavior in a connected environment. 
In this framework, different acceleration models are used to capture the underlying dynamics of car-following 
behavior in this new driving environment. This section provides an overview of this acceleration framework. 

6.2.1. Modeling Vehicles with No Communication Capability (Regular Vehicles) 
The drivers of these vehicles have a rough perception of their surrounding traffic and their acceleration behavior is 

probabilistic. In general, drivers select their acceleration based on the evaluation of the potential gains and losses. 
Talebpour et al. (Talebpour et al., 2011) modeled this decision making process using Kahneman and Tversky’s 
prospect theory (Kahneman and Tversky, 1979). Based on this theory, the decision maker first assigns different 
utilities to different alternatives considering corresponding gain and losses (framing or editing phase); and in then 
he/she evaluates these alternatives based on the prospect index (evaluation phase). The prospect index is calculated 
similar to the expected utility using subjective decision weights instead of expected probability of each outcome. Note 
that this model is an extension to the car-following model of Hamdar et al. (Hamdar et al., 2008). This model 
recognizes two different driving regimes based on drivers’ different perceptions of surrounding traffic condition. 
Accordingly, they defined two value functions for congested and uncongested traffic regimes: 
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where UC
PTU  and C

PTU  denote the value function for the uncongested traffic conditions and congested traffic condition, 
respectively. 0>γ , 0' >γ , mw , and '

mw are parameters to be estimated. Drivers employ the corresponding value 
function based on their perception of surrounding traffic condition. They captured the underlying mechanism of this 
regime selection using the following binary probabilistic regime selection mechanism: 

 )().()().()( n
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PTn

C
PTnPT aUUCPaUCPaU +=           (23) 

where PTU is the expected value function. )(CP is the probabilities of driving in a congested traffic condition, and
)(UCP is the probability of driving in an uncongested traffic conditions (see Talebpour and Mahmassani, 2014 for 

more detail on calculating these probabilities). Once PTU ,is calculated, total utility function of acceleration can be 
formulated as follows: 

),()()1()( ,, vvkwpaUpaU cinnPTinn Δ−−=           (24) 

where inp , reflects the crash probability. ),( vvk Δ is the crash seriousness term and cw is a weighting factor. Finally, the 
logistic functional form specified by Hamdar (Hamdar, 2009) was adopted to calculate the probability density function 
and to reflect the stochastic response adopted by the drivers: 
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where PTβ reflects the sensitivity of choice to the utility )( naU . 

6.2.2. Modeling Vehicles with V2V Communications Capability (Connected Vehicles) 
These vehicles are expected to have the capability of communicating with other vehicles in their vicinity. 

Considering the flow of information in a V2V communications network, drivers are certain about other drivers’ 
behaviors. Moreover, they are aware of driving environment, road condition, and weather condition downstream of 
their current location. Therefore, a deterministic acceleration modeling framework is suitable for modeling this 
environment. They utilized Intelligent Driver Model (Kesting et al., 2010) to model this connected environment. 
While capturing different congestion dynamics, this model provides greater realism than most of the deterministic 
acceleration modeling frameworks.  

IDM specifies a following vehicle’s acceleration as a continuous function of the vehicle’s current speed, the ratio of 
the current spacing to the desired spacing, and the difference between the leading and the following vehicles’ 
velocities. Perceptive parameters such as desired acceleration, desired gap size, and comfortable deceleration are 
considered in this model (Kesting et al., 2010; Treiber et al., 2000): 
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Where nδ , nT , ns0 , na , nb , and nv0 are parameters to be calibrated. Note that the braking term in the IDM is designed to 
preclude crashes in the simulation. 

6.3. Simulation Results 

To investigate the model’s capability of simulating real-world situations, a set of simulations is conducted and a 
comparison between a simple gap-acceptance based lane-changing model and the MOBIL lane-changing model 
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(Kesting et al., 2007) with the proposed game theory based model is presented. The gap-acceptance model evaluates 
the lead and lag gap based on the acceleration required to avoid collision. If its value is higher than the maximum 
deceleration rate (-8 2s

m ), the model allows for lane-changing maneuver. The MOBIL lane-changing model, 
however, uses a more sophisticated approach. It combines a safety criterion for the lag vehicle with an incentive 
criterion, which includes the changes in the acceleration values of target vehicle, lag vehicle, and the original follower 
after the lane-changing maneuver. A politeness factor in this model is set to 0.2 in this study. 

 A four-lane highway on the eastbound direction of I–290 near Chicago, IL is simulated (see Figure 7). This 3.5-
mile long segment has 4 on-ramps and 3 off-ramps each with different characteristics and different merging length. 
Note that the model parameters are calibrated using NGSIM trajectory data (Federal Highway Administration, 2006). 
This data was collected on the 13th of April, 2005 on a segment of Interstate I-80 in Emeryville, California, USA from 
4:00 PM to 4:15 PM. Driver heterogeneity is considered based on the method of Kim and Mahmassani (Kim and 
Mahmassani, 2011). They suggested that the parameters of individual drivers in microscopic simulation models are 
correlated. Therefore, the parameters of each generated vehicle in simulation are the same as a particular vehicle in the 
NGSIM data. Unfortunately, this trajectory data does not contain any connected or autonomous vehicle; therefore, the 
calibrated values are adjusted according to the findings of the Talebpour and Mahmassani (2014). It should be noted 
that V2V communications is assumed to reduce drivers’ reaction time by 50%. 

Figure 8 shows the fundamental diagram for three different market penetration rates of connected vehicles (0%, 
50%, and 100%). This figure reveals that at high and low market penetration rates, the proposed lane-changing model 
creates less scatter and higher breakdown flow compare with the gap-acceptance model. However, at 50% market 
penetration rate, the resulting scatter and breakdown flow is not significantly different from the gap-acceptance model. 
Figure 9 illustrates the speed profile from simulation for 50% market penetration rate of connected vehicles. In the 
simulation segment, an on-ramp with a high flow rate is located between mile markers 2.0 and 2.5. The lane-changing 
maneuvers at this merging section result in shockwave formation and propagation. Note that the inflow rates at other 
on-ramps are not significant. This figure indicates that the proposed lane-changing model creates more realistic 
shockwave formation at the merging sections compared to the gap-acceptance model. The gap-acceptance model 
results in an unrealistic congestion pattern (shockwaves are formed along the segment at all on-ramp locations). The 
MOBIL, however, shows better performance and a more reasonable congestion pattern compared to the gap-
acceptance model. A comparison between the performance of the proposed lane-changing model and MOBIL reveals 
the importance of considering the flow of information in a connected environment. In general, accurate information is 
expected to reduce some unnecessary interactions among drivers and smooth out the traffic flow. Similar pattern can 
be observed in Figures 9.b and 9.c. In Figure 9.b, two major speed drop points can be identified (mile markers 1.75 
and 2.25). However, in Figure 9.c, with the addition of information, only one major speed drop point can be identified 
(mile marker 2.25).  

7. Conclusion 

Connected Vehicles technology is expected to improve drivers’ strategic, tactical, and operation decisions. At the 
operation level, this technology improves drivers’ awareness about their surrounding traffic condition. Acceleration 
and lane-changing decisions are drivers’ main operational decisions. However, unlike acceleration models, only few 
lane-changing models have been presented in the literature. Most of these models are rule-base models and do not 
explicitly take into consideration the dynamic interactions among drivers and the stochastic nature of lane-changing 
maneuver. Moreover, most of these models are not framed to consider the flow of information in a connected 
environment. Adopting a game-theoretical approach, this paper presents a lane-changing model that considers the flow 
of information in a connected vehicular environment. Accordingly, two game types are considered for modeling lane-
changing behavior: a two-person non-zero-sum non-cooperative game under complete information in the presence of 
connected vehicle technology and a two-person non-zero-sum non-cooperative game under incomplete information in 
its absence. A calibration approach based on the method of simulated moments (Bajari et al., 2010) is adapted and 
presented. Since calibrating the presented framework is computationally burdensome, a simplified version of the lane-
changing model is presented and calibrated; and developing a computationally efficient calibration approach has been 
left for future research. The validation results revealed the limited prediction capability of the simplified model.  

Finally, a simulation framework based on fictitious play is proposed and a segment in Chicago, IL is simulated 
based on this framework. The simulation results revealed that the presented lane-changing model provides a greater 
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level of realism than a basic gap-acceptance model and MOBIL. However, further analysis should be performed, the 
proposed model should be calibrated and included in the simulation framework. Moreover, considering “cognitive 
decision” features in this framework is essential and can be implemented through reformulating the game as an 
evolutionary game in which the outcome of a game depends on the drivers’ experience. The final goal is to develop a 
robust simulation framework to capture driving behavior in a connected vehicular environment. 

 

 

Fig. 6. Lane-changing simulation approach based on fictitious play. 

 

Fig. 7. Geometric characteristics of the selected segment in Chicago, IL. 

3.5 Miles
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