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Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity

by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate

on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to

provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of

ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an

arginine–citrulline conversion assay and HPLC analysis, respectively. Over a period of 4 h, ascorbate

steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to

untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate

dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphor-

ylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing

pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the

catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing

to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we

unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4

stabilization.

& 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Endothelial dysfunction is a primary cause of the development
of atherosclerosis, the main pathology underlying cardiovascular
diseases [1]. Endothelial dysfunction is characterized by impaired
endothelium-dependent vasodilation owing to decreased activity
of the enzyme endothelial nitric oxide synthase (eNOS)2 or reduced
bioavailability of its synthesis product, nitric oxide (NO) [1,2]. NO not
only is the main vasodilatory substance released by the endothelium
but also exerts important antiproliferative, antithrombotic, and
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anti-inflammatory functions in the vasculature [3]. The enzymatic
conversion of L-arginine and molecular oxygen to NO and L-citrulline
by eNOS is dependent on calcium and controlled by cofactors such as
tetrahydrobiopterin (BH4) and nicotinamide adenine dinucleotide
phosphate [4]. Further levels of regulation include eNOS expression
and posttranslational modifications [5]. Phosphorylation is a key
mechanism of eNOS regulation, allowing for rapid changes in eNOS
activity in response to diverse hormonal and metabolic cues [6].
Several kinases and phosphatases control eNOS phosphorylation,
including protein kinase C (PKC), Akt, AMP-activated kinase (AMPK),
protein phosphatase 1 and protein phosphatase 2A (PP2A) [6]. Tight
temporal and spatial regulation of NO production is essential because
of the short half-life of the NO radical.

Ascorbate, the deprotonated form of ascorbic acid (vitamin C),
acts as a water-soluble reducing agent and antioxidant in biolo-
gical systems and is an essential micronutrient for humans. Mean
plasma levels of ascorbate are between 50 and 60 mM for healthy,
well-nourished, nonsmoking individuals and can be increased up
to 100 mM by oral supplementation [7–11]. Low levels of plasma
ascorbate are observed in several diseases linked to increased
oxidative stress, such as cancer, diabetes mellitus, cataract, HIV
infection, and sepsis, or in smokers [12–19].
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In cultured endothelial cells ascorbate was shown to stabilize the
eNOS cofactor BH4 [20,21]. Low levels of BH4 compromise eNOS
function by promoting electron transfer to molecular oxygen instead
of L-arginine. As a result, eNOS generates superoxide instead of NO, a
situation commonly referred to as ‘‘eNOS uncoupling’’ [22,23]. The
therapeutic potential of ascorbate for the prevention of eNOS
uncoupling under conditions of oxidative stress has been investi-
gated in several clinical studies. Whereas oral supplementation of
vitamin C has proven largely unsuccessful [24], infusions rapidly
improved endothelial-dependent vasodilatation in conditions such
as diabetes [25,26], hypertension [27–31], hypercholesterolemia
[32,33], experimental sepsis [18,34], and smoking [35–37] without
affecting healthy control groups.

Whether the stabilization of BH4 can explain such rapid effects
of ascorbate is unknown. We therefore investigated the molecular
mechanisms underlying acute effects of ascorbate on eNOS in
cultured endothelial cells.
Materials and methods

Chemicals and cell culture reagents

Dulbecco’s modified Eagle’s medium (DMEM) without phenol
red containing 4.5 g/L glucose, endothelial growth medium EBM,
EBM SingleQuots, glutamine, amphotericin B, benzylpenicillin,
and streptomycin were purchased from Lonza (Belgium); HAT
supplement (100 mM hypoxanthine, 0.4 mM aminopterin, and
16 mM thymidine) was from Biochrom (Germany); and trypsin
was from Cambrex (Belgium). Fetal bovine serum (FBS) was
obtained from Gibco via Invitrogen (UK). A23187 and okadaic
acid were bought from Alexis Biochemicals (Switzerland) and L-
[14C]arginine (346 mCi/mmol) and L-[1-14C]ascorbic acid
(5.35 mCi/mmol) from New England Nuclear (USA). Hydrogen
peroxide was purchased from Roth (Germany). Antibodies were
obtained from the following companies: eNOS from BD (USA);
phospho-eNOS-Ser1177, phospho-eNOS-Thr495, phospho-AMPK-
Thr172, AMPK, and horseradish peroxidase-conjugated goat anti-
rabbit secondary antibody from Cell Signaling (USA); anti-tubulin
from Santa Cruz (USA); and horseradish peroxidase-conjugated
goat anti-mouse secondary antibody from Upstate (Millipore,
Austria). All other chemicals were bought from Sigma–Aldrich
(Austria). TLC plates were bought from Machery–Nagel (Austria).
Cell culture

The human endothelial cell line EA.hy926 [38] (kindly provided
by Dr. C.-J.S. Edgell, University of North Carolina, Chapel Hill, NC,
USA) was grown in DMEM without phenol red supplemented with
2 mM glutamine, 100 U/ml benzylpenicillin, 100 mg/ml streptomy-
cin, HAT supplement, and 10% heat-inactivated fetal bovine serum
until passage 26. For experiments, cells were seeded in six-well
plates at a density of 5�105 cells/well and treated with test
compounds at confluence after approximately 72 h. HUVECs were
obtained from Lonza and cultivated in EBM growth medium
supplemented with 10% FBS, EBM SingleQuots, 100 U/ml benzylpe-
nicillin, 100 mg/ml streptomycin, and 1% amphotericin until passage
5. For experiments cells were seeded in gelatin-coated six-well
plates at a density of 105 cells/well. Ascorbic acid was dissolved in
ultrapure water. The pH was adjusted to 7.4 with NaOH, and the
solution was filtered through a 0.22-mm filter and stored at �80 1C
as 1000-fold stock solution. Okadaic acid, STO 609, and compound C
were dissolved in dimethyl sulfoxide (DMSO) and stored at �80 1C.
Final DMSO concentrations did not exceed 0.1%, unless indicated.
Control cells were treated with an equal volume of solvent.
L-[14C]Arginine/L-[14C]citrulline conversion assay

The enzymatic reaction catalyzed by eNOS converts the amino
acid arginine into citrulline and NO. L-[14C]Citrulline production
can thus serve as a surrogate marker of NO production. The assay
was performed as previously described [39].

Determination of BH4 levels

BH4 was quantified by HPLC after oxidation with iodine in acid
and base as described [21], by methods modified from Fukushima
and Nixon [40]. Briefly, cells were homogenized using an Ultra
Turrax microhomogenizer (IKA, Stauffen, Germany) in distilled
water containing 5 mM dithiothreitol and centrifuged at 13,000g

for 10 min at 4 1C. To 100 ml of the supernatant, 20 ml of a 1:1
(v/v) mixture of HCl (0.1 M) and iodine (0.1 M in 0.25 M KI) or
NaOH (0.1 M) and iodine (0.1 M in 0.25 M KI) was added, mixed,
and incubated for 60 min in the dark. HCl (20 ml of 0.1 M) was
then added to the alkaline solution only, and insoluble material
was removed from both incubations by centrifugation (5 min,
13,000g), followed by addition of 20 ml of freshly prepared
ascorbic acid (0.1 M in water) to both incubations. The mixtures
were then analyzed on an Agilent 1200 HPLC System (Agilent,
Vienna, Austria). Twenty microliters of the final mixture was
injected onto a Nucleosil 10 SA column (Machery–Nagel) isocra-
tically eluted with 100 mM potassium phosphate buffer, pH 3.0,
at a flow rate of 1.5 ml/min, thermostated to 35 1C. Biopterin was
detected by fluorescence (Jasco FP 920; Jasco, Tokyo, Japan), with
excitation 350 nm and emission 440 nm and a detection limit of
1 nmol/L. The amount of tetrahydrobiopterin was calculated from
the difference between the oxidation in acid and base, respec-
tively. Values were normalized to the protein content of extracts
determined by the Bradford method.

Gel electrophoresis and immunoblot analysis

Preparation of cell extracts, SDS–PAGE, immunoblot analyses,
and densitometric evaluations were performed as described
previously [41]. For detection of multiple proteins with similar
molecular weights in one sample, two or more identical mem-
branes were processed in parallel.

siRNA-mediated knockdown of AMPKa

HUVECs were seeded in six-well plates at a density of
0.3�106 cells/well and transfected 1 day later with 33 pmol
AMPKa siRNA (Santa Cruz) or scrambled control (Invitrogen),
using the OptiMEM/Oligofectamine system (Invitrogen). Seventy-
two hours after transfection the cells were used for experiments.
Successful knockdown of the target proteins was confirmed by
Western blot analysis.

Overexpression of PP2Ac

HUVECs were seeded in six-well plates at a density of
0.3�106 cells/well and transfected 1 day later with 1 mg of an
expression vector for the catalytic subunit of PP2A (pCMV-HA-
PP2Ac; kindly provided by Dr. Verin, Medical College of Georgia,
Atlanta, GA, USA) or empty control vector (pCMV) using Fugene
HD transfection reagent (Roche Applied Science) according to the
manufacturer’s instructions.

Determination of hydrogen peroxide (H2O2) levels

Extracellular H2O2 levels were determined with the Amplex red
assay (molecular Probes/Invitrogen) according to the manufacturer’s
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Fig. 1. Time-dependent effects of ascorbate on eNOS activity and endothelial BH4 levels. (A) EA.hy926 cells were treated with 100 mM ascorbate for 0.5–24 h. Then an

L-[14C]arginine/L-[14C]citrulline conversion assay was performed as described. L-[14C]Citrulline production was normalized to the untreated control (nnnpo0.001; ns, not

significant; mean7SEM, n¼3). (B) HUVECs were incubated with 100 mM ascorbate for 0.5–24 h, and eNOS activity was determined as for (A) (nnnpo0.001; ns, not

significant; mean7SEM, n¼3). (C) EA.hy926 cells were treated for 2 h with the indicated concentrations of ascorbate and eNOS activity was determined as for (A)

(nnpo0.01; nnnpo0.001; ns, not significant; mean7SEM, n¼3). For (A–C), note the start of the y axis at 0.9 to better visualize the effect of ascorbate. (D) EA.hy926 cells

were treated with 100 mM ascorbate for 0–24 h. Then intracellular BH4 levels were assessed as described under Materials and methods. The values obtained (pmol BH4/

mg cellular protein) for each treatment condition were normalized to the cellular BH4 level at time point 0 (nnpo0.01; mean7SEM, n¼3).
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instructions. to ensure specificity of the assessed fluorescence signal,
all values were corrected for the non-catalase-blockable signal.

Ascorbate uptake assay

EA.hy926 cells or HUVECs were seeded in 12-well plates at a
density of 0.16�106 cells/well or 0.08�106 cells/well, respec-
tively, and were used for experiments at confluence after approxi-
mately 72 h. The cells were washed twice with KRH buffer
(20 mM Hepes, 128 mM NaCl, 5.2 mM KCl, 1 mM NaH2PO4,
1.4 mM MgSO4, 1.4 mM CaCl2). Then they were incubated for
the indicated time points at 37 1C with KRH buffer containing
5 mM D-glucose, 0.5 mM glutathione, and 100 mM L-[1-14C]ascor-
bic acid. The supernatant was aspirated and the cell layer was
washed twice with ice-cold KRH buffer before the cells were
treated for 30 min with 0.5 ml 0.05 N NaOH in phosphate-buf-
fered saline. The cell lysate (350 ml) was then added to 5 ml
Ultima Gold liquid scintillation fluid (PerkinElmer). The radio-
activity of duplicate samples was measured in a Packard TRI-
CARB 2100TR liquid scintillation analyzer after at least 1 h, to
allow decay of chemiluminescence. Results were normalized to
protein content of the cells as determined by the Bradford
method. L-[1-14C]Ascorbic acid was dissolved in 0.1 mM acetic
acid and stored in multiple aliquots at �20 1C.
Statistics

Statistical analysis was done using GraphPad Prism software
version 4.03 (GraphPad Software, La Jolla, CA, USA). One-way or
two-way ANOVA was used for comparison of different treatment
groups and Student’s t test for comparison of two groups. p values
o0.05 were considered significant. In figures with bar graphs,
these show means7SEM of at least three independent experi-
ments unless stated otherwise.
Results

Rapid elevation of NO synthesis in endothelial cells by ascorbate is

independent of chemical stabilization of BH4

To characterize the response of endothelial cells to ascorbate,
we first performed a time-course experiment and measured eNOS
activity in cultured HUVECs and HUVEC-derived EA.hy926 cells (a
stable endothelial cell line [38]). Cells were treated with 100 mM
ascorbate for up to 24 h. In line with published data, ascorbate led
to a gradual increase of eNOS enzyme activity (Fig. 1A and B) in
both cell types [42]. This increase was detectable in our assay
30 min after the addition of ascorbate and reached statistical



Fig. 2. Rapid activation of eNOS by ascorbate is linked to changes in eNOS

phosphorylation. (A) EA.hy926 cells and (B) HUVECs were treated with 100 mM

ascorbate for 5 min to 1 h. Western blot and subsequent densitometric analyses

were performed to detect and quantify (phospho-) eNOS protein levels. One

representative blot is shown. Band intensities are normalized to tubulin and

expressed as fold untreated control (npo0.05; nnpo0.01; nnnpo0.001; ns, not

significant; mean7SEM, n¼5 for (A) and n¼3 for (B)). (C) EA.hy926 cells were

treated for 1 h with the indicated concentrations of ascorbate and subjected

to Western blot analysis for the detection of (phospho-) eNOS levels. One

representative blot is shown. Band intensities are normalized to actin and

expressed as fold untreated control (npo0.05; nnpo0.01; nnnpo0.001; ns, not

significant; mean7SEM, n¼4).
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significance within 2–4 h, depending on the cell type. Experi-
ments with various concentrations of ascorbate revealed that the
rise in eNOS enzyme activity is already observable at concentra-
tions as low as 5 mM and that the effect of ascorbate saturates at
10–100 mM (Fig. 1C). Previous studies have shown that ascorbate
enhances eNOS activity after prolonged treatment of 24 h owing
to stabilization of the eNOS cofactor BH4 [20,21]. We therefore
investigated whether the gradual increase in enzyme activity
correlates with BH4 stabilization. As expected, intracellular BH4
concentrations were increased 24 h after addition of ascorbate to
EA.hy926 cells; total biopterin levels were unchanged. However,
BH4 levels did not change within the first four hours when eNOS
activity was already steadily increasing (Fig. 1D). Comparable
results were obtained in HUVECs (data not shown).

Rapid activation of eNOS by ascorbate is associated with changes

in eNOS phosphorylation

Fast changes in eNOS enzyme activity as seen in Fig. 1 could be
mediated by modulation of eNOS phosphorylation. We next inves-
tigated the phosphorylation of eNOS at Ser1177 and Thr495, two key
regulatory sites of eNOS activity [6]. Treatment of HUVECs and
EA.hy926 cells with ascorbate resulted in eNOS dephosphorylation
at Thr495 and increased phosphorylation at Ser1177 within 5 min
(Fig. 2A and B). This phosphorylation pattern, which is known to
increase eNOS activity, was maintained for at least 8 h and was
elicited in a dose-dependent manner by ascorbate (Fig. 2C). Ascor-
bate still altered eNOS phosphorylation when endothelial cells were
supplemented with the BH4 precursor sepiapterin, supporting the
notion that regeneration or stabilization of BH4, even of small
amounts, is unlikely to have a role in the observed rapid eNOS
activation (Supplementary Fig. 1).

Ascorbate does not alter cellular H2O2 levels or Akt activation

Ascorbate can promote formation of H2O2 in cell culture media
[43,44] and in interstitial fluids after infusion [45]. Micromolar
concentrations of H2O2, in turn, activate the PI3K/Akt/eNOS
signaling pathway in endothelial cells [46]. In view of the above,
we tested the hypothesis that ascorbate may alter eNOS-Ser1177

phosphorylation via modulation of extracellular H2O2 levels. Co-
incubation with catalase, which degrades H2O2, did not abrogate
the stimulatory effect of ascorbate on eNOS activity in EA.hy926
cells (Supplementary Fig. 2A). Moreover, extracellular H2O2 levels
produced by ascorbate in the medium were lower than 250 nM
under our experimental conditions and therefore unlikely to play
a role in the observed eNOS activation (Supplementary Fig. 2B).
The phosphorylation status of Akt at Ser473, indicative of PI3K/Akt
activity, was not altered by ascorbate and, consequently, inhibi-
tion of PI3K with wortmannin failed to overcome the changes in
eNOS phosphorylation elicited by ascorbate (Supplementary
Fig. 2C). All these data render extracellular H2O2 and the PI3K/
Akt pathway unlikely mediators of the altered eNOS phosphor-
ylation in response to ascorbate.

Modulation of eNOS phosphorylation seems to be dependent on

cellular uptake of ascorbate

Next we addressed the question whether our observations are
dependent on a rise in intracellular ascorbate levels. Assessing the
cellular uptake of ascorbate revealed that ascorbate rapidly
entered endothelial cells, with significant amounts detectable
already after 5 min. Intracellular ascorbate levels increased line-
arly over time. Values ranged thereby from �500 pmol/mg
cellular protein after 5 min up to �4 nmol/mg after 1 h with no
significant difference between EA.hy926 cells and HUVECs
(Fig. 3A). Moreover, administration of phloretin, used to interfere
with the sodium-dependent endothelial ascorbate transporter
(SVCT2; SLC23A2) [47,48], reduced the ascorbate uptake by 59%
and abolished the altered eNOS phosphorylation seen in control
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cells upon ascorbate treatment (Fig. 3B and C). Experiments per-
formed with ouabain, another reported ascorbate transport inhi-
bitor, yielded comparable results (data not shown). These data
indicate that ascorbate is rapidly entering endothelial cells to
modulate eNOS phosphorylation.

Ascorbate promotes phosphorylation of eNOS-Ser1177 via activation

of AMPK-Thr172

AMPK can phosphorylate eNOS at Ser1177 [49]. In EA.hy926
cells treated with compound C, an AMPK inhibitor, ascorbate
failed to increase phosphorylation of eNOS-Ser1177 (Fig. 4A),
suggesting that AMPK may be responsible for eNOS phosphoryla-
tion in response to ascorbate. However, compound C alone
already led to an unexpected elevated basal eNOS phosphoryla-
tion at Ser1177, presumably due to off-target effects or compensa-
tory mechanisms triggered by compound C. To unambiguously
corroborate involvement of AMPK in our findings we therefore
additionally chose an siRNA approach. In HUVECs in which AMPK
levels were successfully downregulated by transfection with a
specific siRNA, ascorbate failed to elicit enhanced eNOS-Ser1177

phosphorylation (Fig. 4B). To investigate whether ascorbate
activates AMPK, phosphorylation of AMPK at Thr172 was deter-
mined at various time points after treatment. Ascorbate led to a
visible increase in AMPK-Thr172 phosphorylation as early as 5 min
after exposure in EA.hy926 cells (Fig. 4C) and in HUVECs (Fig. 4D).
Moreover, activation of AMPK by ascorbate occurred in a dose-
dependent fashion (Fig. 4E). Based on these findings one can
conclude that ascorbate rapidly changes AMPK and consequently
eNOS phosphorylation and activity.

Ascorbate inhibits PP2A

PP2A is known to dephosphorylate both AMPK-Thr172 and
eNOS-Ser1177 [50,51] and can be inhibited selectively by okadaic
acid (when used in concentrations below 1 mM [52]). Okadaic acid
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Fig. 3. Uptake of ascorbate into cultured endothelial cells occurs within minutes and is

were treated with 100 mM L-[1-14C]ascorbic acid for 5 min to 1 h. Ascorbate uptake w

protein content (nnnpo0.001; mean7SEM, n¼4). (B) EA.hy926 cells were pretreated w

assay was performed as for (A) (nnnpo0.001; mean7SEM, n¼3). (C) EA.hy926 cells we

1 h. Western blot and subsequent densitometric analyses were performed to detect an
elicited a phosphorylation pattern of AMPK and eNOS strikingly
similar to that of ascorbate (Fig. 5A). Moreover, treatment with
okadaic acid concentration-dependently increased eNOS enzyme
activity (Fig. 5B). These findings suggested that PP2A inhibition by
ascorbate might explain the observations in ascorbate-treated
cells. Overexpression of the HA-tagged catalytic subunit of PP2A
(PP2Ac) in HUVECs completely blocked the enhancing effect of
ascorbate on both eNOS-Ser1177 and AMPK-Thr172 phosphoryla-
tion (Fig. 5C) as well as on eNOS enzyme activity (Fig. 5D).
Compared with untreated cells, HUVECs transfected with the
empty control vector display an attenuated response to ascorbate,
possibly owing to cellular stress imposed by the transfection
procedure. The stimulatory effect of ascorbate on eNOS activity,
however, was fully abrogated when cells overexpressed PP2Ac.
This finding indicates that inhibition of PP2A activity or activation
is a crucial event that mediates the rapid changes in AMPK and
eNOS phosphorylation and the subsequent increase in eNOS
activity induced by ascorbate in the endothelium.
Discussion

Our study reveals a novel mechanism by which ascorbate
rapidly enhances eNOS activity in cultured endothelial cells
through alterations in eNOS phosphorylation. These alterations
are dependent on PP2A and AMPK and clearly precede increases
in endothelial BH4 levels. The extent of the ascorbate-triggered
changes is in a range comparable with that of known eNOS
activators (see Supplementary Fig. 3).

Pioneering work by Heller and Huang showed about a decade
ago that long-term ascorbate exposure of endothelial cells in
culture (for 24 h) enhances eNOS activity because of chemical
stabilization of the essential eNOS cofactor BH4 [20,21]. However,
the question whether this mechanism can also explain rapid
increases in eNOS activity observed in cell culture experiments
or improved endothelial-dependent vasodilatation upon infusion
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Fig. 4. Ascorbate leads to increased eNOS phosphorylation via AMPK activation. (A) EA.hy926 cells were pretreated with 20 mM compound C for 30 min and then

incubated with 100 mM ascorbate for 1 h. Western blot and subsequent densitometric analyses were performed to detect and quantify (phospho-) eNOS protein levels. One

representative blot is shown. Band intensities were normalized to tubulin and expressed as fold untreated control (npo0.05; ns, not significant; mean7SEM, n¼3).

(B) HUVECs were transfected with AMPKa siRNA or scrambled control before treatment with 100 mM ascorbate for 1 h as indicated. Western blot and subsequent

densitometric analyses were performed to detect and quantify (phospho-) eNOS and AMPK protein. One representative blot is shown. Band intensities were normalized to

actin and expressed as fold untreated control (npo0.05; ns, not significant; mean7SEM, n¼4). (C) EA.hy926 cells or (D) HUVECs were treated with 100 mM ascorbate for

5 min to 1 h. Western blot and subsequent densitometric analyses were performed to detect and quantify (phospho-) AMPK protein levels. One representative blot is

shown. Band intensities were normalized to tubulin and expressed as fold untreated control (npo0.05; nnpo0.01; ns, not significant; mean7SEM, n¼3). (E) EA.hy926

cells were treated for 1 h with the indicated concentrations of ascorbate and subjected to Western blot analysis for the detection of (phospho-) AMPK levels. One

representative blot is shown. Band intensities were normalized to actin and expressed as fold untreated control (nnnpo0.001; ns, not significant; mean7SEM, n¼4).
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of ascorbate has so far escaped attention. Here we show that in
response to elevated intracellular ascorbate, eNOS is rapidly phos-
phorylated at eNOS-Ser1177 in cultured endothelial cells. Using
pharmacological inhibitors and knockdown approaches we identi-
fied AMPK as the responsible upstream kinase and ruled out
participation of the PI3K/Akt pathway. Both events were blocked
successfully upon overexpression of the phosphatase PP2A, sug-
gesting that a decrease in PP2A activity may underlie these
phenomena. Consequently, pharmacological inhibition of PP2A by
okadaic acid induced a strikingly similar phosphorylation pattern.
Given that AMPK and eNOS are dephosphorylation targets of PP2A,
our findings imply that ascorbate mediates its effects on the
endothelium at least partially by reducing PP2A activity or activa-
tion. This hypothesis is supported by two recent studies in which
ascorbate improved endothelial barrier function in an experimental
model of sepsis through inhibition of PP2A activation [53] and
increased NO production [54]. Our data could provide a molecular
explanation for the ascorbate-mediated PP2A inhibition and the
elevated NO levels observed in the context of endothelial perme-
ability and sepsis. The impact of PP2A on endothelial function and
whether this protein holds potential for manipulation in a ther-
apeutic context should not be overlooked.

As PP2A is activated by oxidative stress [53], incubation with
ascorbate might interfere with PP2A activation by antagonizing



Fig. 5. Interference with protein phosphatase 2A activity is involved in the ascorbate-induced alterations in AMPK and eNOS phosphorylation. (A) EA.hy926 cells were

treated with 30 nM okadaic acid (OA) for 1.5 h before total cell lysates were subjected to Western blot determination of (phospho-) AMPK and (phospho-) eNOS levels. One

representative blot is shown. Band intensities were normalized to tubulin and expressed as fold untreated control (npo0.05; nnpo0.01; mean7SEM, n¼3). (B) EA.hy926

cells were treated for 4 h with the indicated concentrations of OA. Then an L-[14C]arginine/L-[14C]citrulline conversion assay was performed as described. L-[14C]Citrulline

production was normalized to the untreated control (nnpo0.01; mean7SEM, n¼3). (C) HUVECs were transfected with empty vector or HA-tagged PP2Ac expression

vector before treatment with 100 mM ascorbate for 1 h as indicated. Western blot and subsequent densitometric analyses were performed to detect and quantify

(phospho-) eNOS and (phospho-) AMPK protein. One representative blot is shown. Band intensities were normalized to tubulin and expressed as fold untreated control

(npo0.05; ns, not significant; mean7SEM, n¼3). Successful transfection was ensured by a positive signal in the HA immunoblot. (D) HUVECs were transfected with

empty vector or HA-tagged PP2Ac expression vector before treatment with 100 mM ascorbate for 4 h as indicated. Then an L-[14C]arginine/L-[14C]citrulline conversion assay

was performed as described. L-[14C]Citrulline production was normalized to the untreated control (npo0.05; ns, not significant; mean7SEM, n¼3). Note the start of the y

axis at 0.9 to better visualize the small but significant effect of ascorbate in the vector-transfected control cells.
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increased levels of oxidative stress often observed in cell culture,
especially when the ascorbate levels in the culture medium are
low [55]. Interestingly, these conditions resemble the situation in
patients with endothelial dysfunction and this mechanism could
explain why infusions of ascorbate have no effect in patients with
normal endothelial function. However, how such a rapid effect on
cellular reactive oxygen species (ROS) production would be
mediated on the molecular level remains unclear. One possibility
would be a general antioxidant action of ascorbate by which
preferential oxidation of ascorbate preserves stores of the intra-
cellular antioxidant glutathione and thereby counteracts pro-
oxidant signaling [56,57]. Nonetheless, neither did we observe
reduced intracellular ROS levels in our experimental settings
(100 mM ascorbate, short incubation times, and assessed by
oxidized dihydrofluorescein) nor did other antioxidants (such as
N-acetylcysteine, trolox) mimic the effect of ascorbate.

In addition to these acute actions, ascorbate also corrects the
BH4 deficiency after longer incubation periods, thereby alleviating
oxidative stress due to eNOS uncoupling [55]. Although ascorbate
and other antioxidants can promote generation of H2O2 in some cell
culture media [44], H2O2 is unlikely to mediate the effects observed
in our system. This is because, first, the amount of H2O2 generated
in the medium was in the nanomolar range and therefore 2–3
orders of magnitude below the concentrations needed to activate
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eNOS [46], and, second, addition of catalase, which detoxifies H2O2,
to the medium did not avert the rapid increase of eNOS activity
upon addition of ascorbate.

Whereas we identified the signaling pathway behind phos-
phorylation of eNOS-Ser1177, the mechanism mediating parallel
dephosphorylation at eNOS-Thr495 remains enigmatic. Although
PP2A is reported to directly dephosphorylate eNOS at Thr495,
PP2A inhibition had no enhancing effect on the Thr495 phosphor-
ylation state (as expected from a phosphatase inhibitor) of eNOS
in our experiments. This finding indicates that PP2A is predomi-
nantly acting on eNOS-Ser1177 and AMPK-Thr172 rather than on
eNOS-Thr495, which is line with previous reports [41,50]. We also
found no evidence for modulation of PKC, a common regulator of
this phosphorylation site, by ascorbate (data not shown).
Although at least one study identified pharmacological means to
selectively alter eNOS phosphorylation at Thr495 [41], this site is
often considered to be intrinsically linked to Ser1177, mirroring its
phosphorylation status reciprocally through mechanisms that are
incompletely understood [58].
Summary

This study provides evidence for a novel mechanism for how
ascorbate rapidly activates eNOS independent of its effect on BH4
stabilization. The enzymatic activation of eNOS is achieved by
modulating activities of PP2A and AMPK, resulting in specific
changes in eNOS phosphorylation at Ser1177 and Thr495. Based on
our observations we propose a new model according to which
activation of eNOS in response to ascorbate occurs in two phases:
first, rapid changes in eNOS phosphorylation enhance eNOS
activity within minutes; second, long-lasting improvements of
eNOS function are achieved through chemical stabilization of BH4
after several hours. Whether these effects are uniquely observed
in cells in culture or also in vivo upon ascorbate infusion warrants
further investigation.
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