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SUMMARY

Endoplasmic reticulum (ER) stress-mediated apo-
ptosis may play a crucial role in loss of pancreatic
b cell mass, contributing to the development of
diabetes. Here we show that induction of 4E-BP1,
the suppressor of the mRNA 50 cap-binding protein
eukaryotic initiation factor 4E (eIF4E), is involved in
b cell survival under ER stress. 4E-BP1 expression
was increased in islets under ER stress in several
mouse models of diabetes. The Eif4ebp1 gene en-
coding 4E-BP1 was revealed to be a direct target
of the transcription factor ATF4. Deletion of the
Eif4ebp1 gene increased susceptibility to ER stress-
mediated apoptosis in MIN6 b cells and mouse islets,
which was accompanied by deregulated translational
control. Furthermore, Eif4ebp1 deletion accelerated
b cell loss and exacerbated hyperglycemia in mouse
models of diabetes. Thus, 4E-BP1 induction contrib-
utes to the maintenance of b cell homeostasis during
ER stress and is a potential therapeutic target for
diabetes.

INTRODUCTION

Recent studies have shown decreased pancreatic b cell mass to

be a common feature of subjects with type 2 diabetes mellitus

(Butler et al., 2003). Susceptibility to stress-induced apoptosis

may underlie b cell loss. Translational regulation is an essential

strategy by which cells cope with stress conditions (Clemens,

2001). Translation of eukaryotic mRNA is regulated primarily at

the level of initiation. Translational initiation begins with formation

of a ternary complex composed of the methionine-charged initi-

ator tRNA, eukaryotic initiation factor 2 (eIF2), and GTP (Holcik
and Sonenberg, 2005). The ternary complex then binds to

the 40S ribosomal subunit and several other initiation factors,

generating the 43S preinitiation complex. The mRNA 50 cap-

binding protein eIF4E associates with eIF4A and eIF4G to form

the eIF4F complex and interacts with the 50 cap structure of

the mRNA. The eIF4F complex then recruits the 43S preinitiation

complex to the mRNA, allowing the complex to scan toward the

initiator AUG codon. The two best characterized regulatory steps

in this translational control are formation of the ternary complex

and assembly of the eIF4F complex. Phosphorylation of the

a subunit of eIF2 (eIF2a) prevents ternary complex formation

and thereby suppresses global translation. In addition, eIF4E-

binding proteins (4E-BPs) inhibit eIF4F assembly by competi-

tively displacing eIF4G from eIF4E. Global translational suppres-

sion through eIF2a phosphorylation is a mechanism shared

among different stress-response pathways. Depending on the

nature of the stress stimulus, eIF2a can be phosphorylated by

four different kinases (Holcik and Sonenberg, 2005). Global

attenuation of protein biosynthesis then paradoxically increases

expression of several proteins, including the transcription factor

ATF4 (Harding et al., 2000).

Because of their high insulin secretory activity, b cells are

vulnerable to endoplasmic reticulum (ER) stress, a condition of

disrupted ER homeostasis due to accumulation of misfolded

proteins (Schroder and Kaufman, 2005). Cells respond to ER

stress by activating an adaptive cellular response known as

the unfolded protein response (UPR). Under ER stress condi-

tions, global translation is suppressed through eIF2a phosphor-

ylation by an ER-resident kinase, PERK. The importance of

PERK-mediated translational suppression has been demon-

strated in infancy-onset diabetes and skeletal defects caused

by loss of PERK in humans (Delepine et al., 2000) and mice (Har-

ding et al., 2001; Zhang et al., 2002). However, the roles of

translational control through inhibition of eIF4F assembly by

4E-BPs under stress conditions, including ER stress, have yet

to be fully clarified. Herein, we have studied roles of 4E-BP1,
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Figure 1. ER Stress Induces 4E-BP1 Expression

(A) Expression of 4E-BP1 protein in isolated islets treated with vehicle (0.05% DMSO) control (Con) or 0.5 mM thapsigargin (Tg) for 12 hr. 4E-BP1 expression was

also examined in the livers and kidneys of mice that had received intraperitoneal injections of tunicamycin (Tm) 96 hr previously.

(B) Expression of 4E-BP1 protein in islets from wild-type (WT), Ins2WT/C96Y, Lepr�/�, and Wfs1�/� mice.

(C) Immunostaining of pancreatic sections from WT and Ins2WT/C96Y mice using anti-insulin and anti-4E-BP1 antibodies. Scale bars = 50 mm.

(D and E) Time courses of 4E-BP1, 4E-BP2, ATF4, and CHOP expression (D) and 4ebp1 mRNA expression (E) in MIN6 cells treated with thapsigargin (left panel) or

tunicamycin (right).

(F) Inhibition of 4E-BP1 induction by actinomycin D (1 mg/ml) in MIN6 cells treated with thapsigargin for 12 hr.
one of three isoforms of the 4E-BP family, in b cells under ER

stress.

RESULTS

ER Stress Induces 4E-BP1
4E-BP1 protein is present in three forms with different phosphor-

ylation states. The hypophosphorylated a and b forms are active

and the hyperphosphorylated g form is inactive in terms of eIF4E

binding. Expression of 4E-BP1 protein, especially the hypophos-

phorylated forms, was markedly induced, with an increase in

CHOP, a stress marker protein, in isolated islets treated with

thapsigargin (an ER Ca2+ pump inhibitor causing ER stress)

(Figure 1A). 4E-BP1 induction was also observed in liver and kid-

neys of mice administered tunicamycin (a protein glycosylation

inhibitor), another ER stress inducer (Figure 1A).

Furthermore, 4E-BP1 protein expression was markedly in-

creased in Ins2WT/C96Y islets (Figures 1B and 1C), in which mis-
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folded insulin molecules with a C96Y mutation cause ER stress

(Wang et al., 1999). Islets from leptin receptor null (Lepr�/�)

mice, which have been shown to suffer from ER stress (Laybutt

et al., 2007), also exhibited increased 4E-BP1 expression

(Figure 1B). The Wfs1�/�mouse (Ishihara et al., 2004) is a model

of Wolfram syndrome, which is characterized by juvenile-onset

diabetes mellitus and optic atrophy and is caused by WFS1

mutations (Inoue et al., 1998; Strom et al., 1998). WFS1-deficient

islets are affected by chronic ER stress (Ishihara et al., 2004;

Riggs et al., 2005). Again, 4E-BP1 protein was increased in

Wfs1�/� islets (Figure 1B).

Induction of 4E-BP1 by ER stress was also observed in insuli-

noma MIN6 cells (Miyazaki et al., 1990) (Figure 1D). Expression

of 4E-BP2, another member of the 4E-BP family, remained

unchanged. While expression of ATF4 and CHOP peaked at

12 hr after treatment with thapsigargin or tunicamycin, 4E-BP1

protein was further increased at 24 hr posttreatment (Figure 1D).

4E-BP1 protein induction appeared to result from transcriptional
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Figure 2. Eif4ebp1 Is a Direct Target of ATF4

(A) Suppression of thapsigargin (Tg, 0.5 mM)-induced 4E-BP1 expression by dominant-negative ATF4 (DN-ATF4). MIN6 cells were infected with an adenovirus

expressing either lacZ or DN-ATF4. Two days later, the cells were treated with vehicle (0.05% DMSO) control (Con) or Tg for 12 hr.

(B) 4E-BP1 expression in MIN6 cells infected with an adenovirus expressing wild-type ATF4 at the indicated multiplicity of infection (moi).

(C) 4ebp1 mRNA levels in wild-type and Atf4�/� MEFs treated with thapsigargin.

(D) C/EBP:ATF composite sites in intron 1 of the Eif4ebp1 gene. Mouse, rat, and human Eif4ebp1 gene segments are aligned with ATF4 binding sequences in

several genes. Numbers are positions relative to A of the initial ATG codon. Asns, asparagine synthetase; Herp, homocysteine-induced ER protein; Runx2, runt-

related transcription factor 2.

(E) Chromatin immunoprecipitation assay of MIN6 cells treated with thapsigargin. DNAs precipitated with nonspecific or anti-ATF4 IgG were amplified using

primers for the Eif4ebp1 intron 1 region.

(F) ATF4 induction of luciferase reporters with the SV40 promoter and an Eif4ebp1 gene segment with C/EBP:ATF composite sites or their mutants shown in (D).

MIN6 cells were transfected with luciferase reporters together with either pCMV-empty or pCMV-ATF4. Error bars represent SEM. n = 4; *p < 0.05, **p < 0.01.
activation since 4ebp1 mRNA levels were also increased by

these ER stress inducers (Figure 1E) and the transcriptional

inhibitor actinomycin D completely blocked 4E-BP1 induction

by thapsigargin (Figure 1F).

ATF4 Directly Activates the Eif4ebp1 Gene
MIN6 cells were infected with recombinant adenoviruses ex-

pressing dominant-negative (DN) forms of transcription factors

involved in the UPR. Expression of DN-ATF4 (He et al., 2001)

(Figure 2A), but not DN-ATF6 or DN-XBP1 (see Figure S1

available online), suppressed 4E-BP1 induction by thapsigargin.

Conversely, expression of wild-type ATF4 dramatically in-

duced 4E-BP1 expression (Figure 2B). Furthermore, 4ebp1

mRNA levels were not increased by thapsigargin in Atf4�/�
murine embryonic fibroblasts (MEFs) (Harding et al., 2003)

(Figure 2C).

A survey of the mouse Eif4ebp1 gene using a luciferase assay

identified a segment in intron 1 that conferred thapsigargin

sensitivity to a luciferase reporter (Figure S2). Indeed, we found

two potential ATF4 binding sequences (C/EBP:ATF composite

sites) in this segment (Figure 2D). Chromatin immunoprecipita-

tion (ChIP) assays revealed that ATF4 binds this segment (Fig-

ure 2E). Furthermore, cotransfection of a luciferase reporter con-

taining the C/EBP:ATF sites with an ATF4-expressing plasmid

increased luciferase activity by 4.3-fold (Figure 2F). Disruption

of the upstream C/EBP:ATF site (mutant 1) or the downstream

site (mutant 2) decreased the ATF4-mediated increase in lucifer-

ase activity by 83% or 47%, respectively, and disruption of both

(mutant 3) completely abolished the increase (Figure 2F).
Cell Metabolism 7, 269–276, March 2008 ª2008 Elsevier Inc. 271
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Figure 3. 4E-BP1-Deficient Cells Exhibit Increased Apoptosis Susceptibility with Deregulated Translational Control

(A) Viability of MIN6WT and MIN6Eif4ebp1�/� cells treated with 0.5 mM thapsigargin (Tg) or 1.0 mg/ml tunicamycin (Tm) for 36 hr, normalized to MIN6WT cells

treated with vehicle (0.05% DMSO). n = 3–4.

(B) Immunoblot of cleaved caspase-3 in MIN6WT and MIN6Eif4ebp1�/� cells treated with vehicle control (Con) or thapsigargin for 24 hr.

(C) Immunoblot analysis of 4E-BP1, 4E-BP2, eIF4E, and eIF4G in whole-cell lysates (left) or in a complex associated with 7mGTP-Sepharose (right) in cells treated

with thapsigargin for 24 hr.

(D) [35S]methionine/cysteine incorporation during a 15 min pulse labeling in MIN6WT and MIN6Eif4ebp1�/� cells pretreated with thapsigargin for the indicated

periods. Ten percent of the lysates were also probed with an anti-actin antibody. A representative autoradiogram is shown in the upper panel; data from three

experiments are summarized in the lower panel.

(E) Increased CHOP induction in MIN6Eif4ebp1�/� cells treated with thapsigargin. Representative blots are shown in the upper panel; data from four experiments

are summarized in the lower panel.

(F) Chop mRNA levels in MIN6WT and MIN6Eif4ebp1�/� cells treated with thapsigargin.

(G) Greater Chop translation in MIN6Eif4ebp1�/� cells treated with thapsigargin. MIN6WT and MIN6Eif4ebp1�/� cells treated with vehicle (C) or thapsigargin (Tg)

for 12 hr were labeled with [35S]methionine/cysteine. Lysates were either directly subjected to SDS-PAGE or immunoprecipitated with anti-CHOP antibody. Rep-

resentative autoradiograms are shown in the left panel; data from four experiments are summarized in the right panel.

Error bars represent SEM. *p < 0.05, **p < 0.01.
272 Cell Metabolism 7, 269–276, March 2008 ª2008 Elsevier Inc.
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4E-BP1-Deficient b Cells Are More Vulnerable
to ER Stress
A 4E-BP1-deficient b cell line, MIN6Eif4ebp1�/�, was estab-

lished by crossing Eif4ebp1�/� mice (Tsukiyama-Kohara et al.,

2001) with IT6 mice expressing SV40 large T antigen in b

cells (Miyazaki et al., 1990). MIN6 cells with wild-type Eif4ebp1

alleles, established in parallel, were designated MIN6WT cells.

MIN6Eif4ebp1�/� cells were more vulnerable to ER stress in-

ducers than MIN6WT cells (Figure 3A). 4E-BP1 re-expression

restored this diminished viability of MIN6Eif4ebp1�/� cells to

control levels (Figure S3A). The increased susceptibility to ER

stress-induced cell death was accompanied by enhanced cas-

pase-3 cleavage (Figure 3B), indicating that the reduced viability

of MIN6Eif4ebp1�/� cells was due at least in part to increased

apoptosis. In addition, DNA fragmentation under ER stress was

greater in Eif4ebp1�/� islets than in wild-type islets (Figure S3B).

These results suggest that 4E-BP1 induction contributes to b cell

survival under ER stress.

We then examined the impact of 4E-BP1 deficiency on the

integrity of the eIF4F translational initiation complex. Pull-down

assays of eIF4E and its binding partners with a cap analog,

7-methyl-GTP, revealed that thapsigargin-induced 4E-BP1 ex-

pression resulted in marked increases in the amounts of hypo-

phosphorylated 4E-BP1 a and b forms bound to eIF4E, displac-

ing eIF4G from eIF4E in MIN6WT cells (Figure 3C, compare lane

5 with lane 6). The amount of eIF4G bound to eIF4E was reduced

to 63% ± 3% (n = 4, p < 0.05) of that in vehicle-treated MIN6WT

cells. In contrast, levels of eIF4G bound to eIF4E were not de-

creased by thapsigargin in MIN6Eif4ebp1�/� cells (Figure 3C,

compare lane 7 with lane 8). Thus, eIF4E availability for transla-

tional initiation was greater in MIN6Eif4ebp1�/� cells than in

MIN6WT cells under ER stress. Measurement of the global trans-

lation rate revealed that recovery from translational suppression

by thapsigargin was more rapid in 4E-BP1-deficient cells (Fig-

ure 3D).

Translation of newly synthesized mRNA molecules is report-

edly much more dependent on eIF4E availability than that of

preexisting mRNAs (Novoa and Carrasco, 1999). Expression of

CHOP, a mediator of ER stress-induced apoptosis, was thus

studied in MIN6Eif4ebp1�/� cells since Chop mRNA is one of

the transcripts most abundantly synthesized during ER stress

(Pirot et al., 2007). Eif4ebp1 deletion caused greater CHOP

protein induction by thapsigargin in MIN6 cells (Figure 3E), with

unaltered Chop mRNA accumulation (Figure 3F). Pulse-labeling

experiments demonstrated enhanced CHOP translation (Fig-

ure 3G). Thus, CHOP expression during ER stress was aug-

mented via increased translation in 4E-BP1 deficiency.

Eif4ebp1 Deletion Accelerates b Cell Loss
in Mouse Diabetes Models
To examine the roles of 4E-BP1 under ER stress in vivo,

Eif4ebp1�/� mice on the 129S6 background were fed a high-

fat diet (HFD), which is thought to produce ER stress in b cells

through peripheral insulin resistance (Scheuner et al., 2005).

Eif4ebp1�/� mice developed glucose intolerance (Figures S4A

and S4B), which was associated with blunted insulin secretion

(Figure S4C) and reduced pancreatic insulin content (Figure S4D)

as compared to HFD-fed wild-type mice. These data suggest

that Eif4ebp1�/� mice have a b cell defect. However, HFD-fed
Eif4ebp1�/� mice gained more weight and were more insulin

resistant than HFD-fed wild-type mice (Figures S4E and S4F).

Therefore, the possibility remains that b cell failure in HFD-fed

Eif4ebp1�/� mice resulted from greater ER stress rather than

from a defect in b cells lacking 4E-BP1.

We next crossed Eif4ebp1�/�mice with two genetic models of

diabetes in which b cells are under ER stress, Ins2WT/C96Y and

Wfs1�/� mice on the 129S6 background. 4E-BP1 deficiency

did not alter body weight (Figures S5A and S5B) or insulin sensi-

tivity (Figures S5C and S5D) but worsened hyperglycemia

in Ins2WT/C96Y (Figure 4A) and Wfs1�/� (Figure 4B) mice. In

Eif4ebp1�/� Ins2WT/C96Y mice, pancreatic insulin content was

less than half of that in Ins2WT/C96Y mice at 5 weeks of age (Fig-

ure 4C), and the majority of islets in Eif4ebp1�/� Ins2WT/C96Y mice

were smaller as compared to those in Ins2WT/C96Y mice (Fig-

ure 4D). We also observed a 38% decrease in pancreatic insulin

content in Eif4ebp1�/� Wfs1�/� mice as compared to Wfs1�/�

mice (Figure 4E). Importantly, the insulin-positive area was

smaller in pancreatic sections from Eif4ebp1�/� Wfs1�/� mice

than in pancreatic sections from Wfs1�/� mice at 27–30 weeks

of age (Figure 4F), indicating that ER stress-mediated b cell

loss is exacerbated by 4E-BP1 deficiency in vivo.

Global protein synthesis was studied in these mouse islets.

A tendency toward decreased protein synthesis was observed

in both Ins2WT/C96Y (Figure 4G, hatched bar; p = 0.074) and

Wfs1�/� islets (Figure 4H, hatched bar; p = 0.079) as compared

to wild-type islets. Eif4ebp1 deletion ablated this regulation and

resulted in significantly increased protein synthesis in Eif4ebp1�/�

Ins2WT/C96Y (p = 0.013) and Eif4ebp1�/� Wfs1�/� (p = 0.045)

islets as compared to that in corresponding single mutants (com-

pared hatched with filled bars in Figures 4G and 4H). These data

suggest that accelerated b cell loss under ER stress is due to

deregulated translational control.

DISCUSSION

Our results implicate 4E-BP1, identified as a component of the

UPR, in b cell survival under ER stress. Important roles of 4E-

BPs under various stress conditions have been recently demon-

strated in yeast (Ibrahimo et al., 2006) and Drosophila (Teleman

et al., 2005; Tettweiler et al., 2005). These data suggest that

translational suppression by 4E-BPs is an evolutionarily con-

served strategy against stress conditions. Although we focused

on b cells, ER stress-mediated induction of 4E-BP1 was also

observed in the liver and kidneys, suggesting the general impor-

tance of the present findings.

Our results suggest that, in addition to translational regulation

by eIF2a phosphorylation due to PERK activation, another mode

of translational control mediated by 4E-BP1 plays a role in the

maintenance of b cell homeostasis under ER stress. Since trans-

lational suppression by eIF2a phosphorylation is transient owing

to feedback dephosphorylation by GADD34 (Novoa et al., 2001),

prolonged translational suppression by 4E-BP1 might be needed

in the later stages of the UPR. However, in contrast to PERK, 4E-

BP1 deficiency alone does not cause diabetes in mice under nor-

mal conditions, suggesting that 4E-BP1 protein is not a key reg-

ulator but rather functions with other molecules to maintain b cell

homeostasis under ER stress. The preferential role of 4E-BP1 in

the later stages of the UPR might be puzzling since expression of
Cell Metabolism 7, 269–276, March 2008 ª2008 Elsevier Inc. 273
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Figure 4. b Cell Loss Is Exacerbated by 4E-BP1 Deficiency in Mouse Diabetes Models

(A) Fed blood glucose levels of wild-type (n = 6), Eif4ebp1�/� (n = 5), Ins2WT/C96Y (n = 9), and Eif4ebp1�/� Ins2WT/C96Y (n = 11) mice. Data from three cohorts are

combined. *p < 0.05, **p < 0.01 versus Ins2WT/C96Y mice.

(B) Fed blood glucose levels of wild-type (n = 12), Eif4ebp1�/� (n = 8), Wfs1�/� (n = 15), and Eif4ebp1�/�Wfs1�/� (n = 10) mice. Data from three cohorts are com-

bined. *p < 0.05, **p < 0.01 versus wild-type mice; ##p < 0.01 versus Wfs1�/� mice.

(C) Pancreatic insulin content of mice of the indicated genotypes at 5 weeks of age. n = 3 for each genotype. *p < 0.05.

(D) Hematoxylin and eosin staining of sections showing representative islets from mice of the indicated genotypes at 5 weeks of age. Scale bars = 50 mm.

(E) Pancreatic insulin content of wild-type (n = 8), Eif4ebp1�/� (n = 4), Wfs1�/� (n = 15), and Eif4ebp1�/�Wfs1�/� (n = 12) mice at 27–30 weeks of age. **p < 0.01.

(F) Insulin-positive area in pancreatic sections of wild-type (n = 3), Eif4ebp1�/� (n = 3), Wfs1�/� (n = 4), and Eif4ebp1�/�Wfs1�/� (n = 5) mice at 27–30 weeks of

age. *p < 0.05.

(G) [35S]methionine/cysteine incorporation in islets of the indicated genotypes at 5–6 weeks of age. Ten percent of the lysates were also probed with an anti-actin

antibody. A representative autoradiogram is shown in the left panel. Lane 1, wild-type; lane 2, Eif4ebp1�/�; lane 3, Ins2WT/C96Y; lane 4, Eif4ebp1�/� Ins2WT/C96Y.

Data from four experiments are summarized in the right panel. *p < 0.05.
274 Cell Metabolism 7, 269–276, March 2008 ª2008 Elsevier Inc.
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ATF4, the primary inducer of Eif4ebp1 under ER stress, is acti-

vated by translational suppression by eIF2a phosphorylation

during the acute phase. We found that 4E-BP1 protein is stable

with a half-life of approximately 20 hr (Figure S6). Thus, 4E-BP1

protein seems to continue to be expressed abundantly during

the later stages of the UPR. This is consistent with the recent

observation that several prosurvival proteins involved in the

UPR are stable, while proapoptotic proteins are not (Rutkowski

et al., 2006). We found that global protein synthesis was higher

in 4E-BP1-deficient b cells than in wild-type cells under ER stress

conditions. In particular, expression of CHOP was augmented in

4E-BP1 deficiency. Enhanced CHOP expression in 4E-BP1-defi-

cient cells suggests that a reduction in eIF4E availability due to

4E-BP1 induction suppresses CHOP translation during ER stress

in wild-type cells, possibly accounting for one of the mechanisms

by which 4E-BP1 plays a role in adaptation to ER stress. Impor-

tant roles of translational control via eIF4E availability have also

been suggested in prolonged hypoxia (Koritzinsky et al., 2006).

However, the signaling mechanisms for translational control are

different: ER stress increases 4E-BP1 protein levels via ATF4 in

b cells, while hypoxia enhances 4E-BP1 activity via dephosphor-

ylation and also causes eIF4E nuclear localization in HeLa cells.

The present results also suggest that variations in genes

regulating eIF4E availability and/or eIF4F formation may have

an impact on susceptibility to diabetes. In this context, a recent

report demonstrating that a gene encoding eIF4A2, a component

of eIF4F, is possibly linked to type 2 diabetes in French families

(Cheyssac et al., 2006) is of great interest. Furthermore, our find-

ings raise the possibility that 4E-BP1 may be a potential target for

diabetes mellitus treatment.

EXPERIMENTAL PROCEDURES

Animal Experiments

All animal experiments were approved by the Tohoku University Institutional

Animal Care and Use Committee. Wfs1�/�mice were backcrossed to a 129S6

(Taconic) background for six generations. Ins2WT/C96Y mice (Charles River Lab-

oratories) were backcrossed to a 129S6 background for five generations.

Eif4ebp1�/� mice were maintained on a 129S6 background. Only male mice

were used. For the in vivo studies shown in Figures 4A, 4C, and 4D, littermates

fromcrossesof male Ins2WT/C96Y Eif4ebp1+/�and female Ins2WT/WT Eif4ebp1+/�

mice were used. For Figures 4B, 4E, and 4F, littermates from intercrosses of

Eif4ebp1+/� Wfs1+/+ mice and littermates from intercrosses of Eif4ebp1+/�

Wfs1�/� mice were used. For isolated islet experiments (Figures 4G and 4H),

age-matched nonlittermate mice were used. To induce ER stress in vivo, mice

were given a 0.5 mg/g body weight intraperitoneal injection of tunicamycin. After

96 hr, kidneys and livers were removed. Tissue sample processing, immunos-

taining of pancreatic sections, and determination of b cell area and pancreatic

insulin content were performed as described previously (Ishihara et al., 2004).

Cell Culture and Cell Viability Assay

Pancreatic tumors in Eif4ebp1�/�:SV40Tag mice on a mixed background were

excised, yielding MIN6Eif4ebp1�/�cells, which were used at 5–10 passages in

this study. MIN6 cells were cultured in DMEM supplemented with 15% FCS.

Atf4�/� MEFs were cultured in DMEM supplemented with a nonessential

amino acid mixture and 10% FCS. Cells seeded in 24-well plates 2 days

previously were treated with thapsigargin or tunicamycin and used for western

blotting or cell viability assay. Cell viability was determined with a cell prolifer-
ation assay kit (Promega). Construction of adenoviruses and infection of MIN6

cells were performed as described previously (Ishihara et al., 2004).

Northern and Western Blotting and Cap-Binding Affinity Assay

Total RNA extracted using ISOGEN (Nippon Gene) was probed with
32P-labeled cDNAs. Tissue homogenates and cell lysates were subjected

to SDS-PAGE and probed with primary antibodies against 4E-BP1, 4E-BP2,

eIF4E, eIF4G, cleaved caspase-3 (Cell Signaling), ATF4, CHOP (Santa Cruz),

and actin (Sigma). Cell lysates were incubated with 7-methyl-GTP (7mGTP)-

Sepharose (Amersham) overnight at 4�C. The 7mGTP-Sepharose was then

pelleted and boiled. Experiments were performed at least three times. Band

intensity was quantified using Scion Image software.

Metabolic Labeling

Due to the low islet yields from Ins2WT/C96Y, Ins2WT/C96Y Eif4ebp1�/�, Wfs1�/�,

and Eif4ebp1�/�Wfs1�/�mice, islets with these genotypes were pooled from

two or three mice. Fifty to eighty islets were cultured for 3 days in RPMI

supplemented with 10% FCS. Islets washed with methionine/cysteine-free

RPMI containing 10% dialyzed FCS were labeled with a protein labeling mix

(PerkinElmer) (1.0 MBq/tube) for 15 min and then resolved in sample buffer

(1.0 ml/islet for wild-type and Eif4ebp1�/� islets and 0.75 ml/islet for other geno-

types). The level of protein synthesis was quantified from autoradiograms. For

measurement of Chop translation, 4 3 106 cells treated with thapsigargin for

12 hr were washed with methionine/cysteine-free DMEM containing 15% dia-

lyzed FCS and labeled with [35S]methionine/cysteine (20 MBq/bottle) for 2 hr.

Cells were then resolved in lysis buffer (50 mM Tris [pH 7.5], 150 mM NaCl,

2 mM MgCl2, 0.1% Triton X-100, and protease inhibitors [Roche]). Lysates

were precleared with Protein A Sepharose Fast Flow (Amersham) and incu-

bated with anti-CHOP antibody (R-20, Santa Cruz) overnight.

Firefly Luciferase Reporter Assay

Oligonucleotides containing ATF4 binding sites were annealed and subcloned

into the pGL3-Promoter vector (BamHI-SalI, Promega). MIN6 cells were trans-

fected with luciferase reporters using Lipofectamine (Invitrogen). Luciferase

activity was assayed with a dual-luciferase system (Promega) using a lumino-

meter (Berthold).

Chromatin Immunoprecipitation Assay

Proteins bound to DNA were crosslinked with 1% formaldehyde at 4�C for 20

min. After sonication, the protein-DNA complexes were immunoprecipitated

using an anti-ATF4 antibody (C-20, Santa Cruz). After reversal of the crosslinks

at 65�C for 6 hr, DNA was purified on a DNA purification column (QIAGEN).

PCR was performed with the primers 50-GATGAGGAAGAGGAAGCTGAGT

TG-30 and 50-AGTTGTAAGAGGAGTAGTTGGGGG-30.

Statistical Analysis

Data are presented as means ± SEM. Differences between groups were

assessed by Student’s t test. p < 0.05 was considered significant.

SUPPLEMENTAL DATA

Supplemental Data include six figures and Supplemental References and can

be found with this article online at http://www.cellmetabolism.org/cgi/content/

full/7/3/269/DC1/.
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