
File: 582B 169401 . By:CV . Date:29:08:96 . Time:15:15 LOP8M. V8.0. Page 01:01
Codes: 4201 Signs: 2409 . Length: 50 pic 3 pts, 212 mm

Journal of Combinatorial Theory, Series B � TB1694

journal of combinatorial theory, Series B 68, 7�22 (1996)

Systems of Curves on Surfaces

M. Juvan, A. Malnic� , and B. Mohar*

University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

Received April 12, 1995

It is proved that for each compact (bordered) surface 7 and each integer k there
is a constant N with the following property: If 1 is a family of pairwise non-
homotopic closed curves on 7 such that any two curves from 1 intersect in at most
k points, then 1 contains at most N curves. � 1996 Academic Press, Inc.

1. INTRODUCTION

Let 7 be a (bordered) compact surface and k an integer. Suppose that
we have a set 1 of pairwise nonhomotopic simple (closed) curves in 7 with
the property that any two curves from 1 intersect in at most k points. It
is proved that 1 cannot contain too many curves; i.e., there is a number N
depending only on 7 and k such that |1 |�N (Theorems 3.3 and 3.4).
The same holds for nonsimple curves as well (Theorem 3.5). This simple
result does not seem to have a straightforward proof. It can be applied
in the study of properties of graphs on surfaces. An example of such an
application is presented in the last section. A special case when 7 is the
torus is considered in Section 4 where we find linear upper bounds on the
number of curves in 1. On the other hand, our bounds for surfaces of
genus greater than 1 are probably far from being optimal. However,
examples from Section 5 show that the bounds will not be very small, in
general. In the last part of the paper we add an application of Theorem 3.3.
We present a short proof of the fact that for each compact surface 7 and
an integer k�0, there are only finitely many minor minimal embeddings in
7 of face-width k. This result has been verified previously (only for closed
surfaces) with similar techniques but with longer proofs [MN, GRS].
Another application of Theorem 3.3 was obtained by Mohar and
Robertson [MR] who considered the structure of nongenus embeddings of
graphs in surfaces and proved that, up to certain generalized Whitney-type
switchings, there are only a bounded number of types of nongenus embeddings
in any fixed surface.
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Systems of simple closed curves on surfaces have been considered very
early from the homotopy or homology point of view. However, we were
not able to trace many results in the flavor of our work. The special case
when curves are disjoint was solved by Malnic� and Mohar [MM], while
Fisk and Mohar [FM] proved Theorem 3.3 under a stronger hypothesis
that each curve intersects other curves at most k times altogether.

Epstein [E] (extending the work of Baer [B1, B2]) proved that two
freely homotopic simple closed curves on a surface are indeed isotopic. In
particular, if they are disjoint, they bound a cylinder. It is also folklore that
the algebraic intersection number of two curves (that gives only a lower
bound on the number of points in the ``geometric'' intersection) depends
only on the homology classes of curves. It is interesting to mention that our
results (e.g., Theorem 3.3) are no longer true if we consider systems of
simple closed curves with bounded algebraic intersection.

2. THE COMPLEXITY OF GRAPH EMBEDDINGS

Let 7 be a compact surface. We denote its interior by int7 and its
boundary by �7. The Euler characteristic of 7 is denoted by /(7), and g7

is its genus (orientable or nonorientable). Graphs in this paper are finite
and undirected. Loops and multiple edges are permitted. By VG we denote
the vertex set and by EG the edge set of a graph G.

Let G be a graph (possibly disconnected) embedded in 7 such that
G & �7=<. A well-known consequence of the Schoenflies' theorem is that
G has a regular neigborhood NG in 7. This is a compact surface in 7,
formed by ``small'' disjoint discs around each vertex plus pairwise disjoint
connecting ``strips'' along the edges. By F1 , F2 , ..., Fr we denote the faces of
G, i.e., the connected components of 7"G, and by F� 1 , F� 2 , ..., F� r the corre-
sponding bordered compact surfaces obtained by cutting 7 along G, that is,
the closures of connected components of 7"NG . For each dissecting
component F� i and its corresponding face Fi we have F� i /Fi . Let

�7=max[0, 1&2/(7)].

We define the complexity ,7 (G) of the dissection of 7 along G as

,7 (G)= :
r

i=1

�F� i .

Clearly, ,7 (G)�0, and ,7 (G)=0 if and only if G is 2-cell embedded in 7.
We will need to know how the complexity is changed under various

operations on graphs, in particular under the addition or deletion of
vertices and edges. Let v be a vertex and e an edge of a graph G. Then
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G&v is the vertex-deleted subgraph of G and G&e is the subgraph with
the deleted edge e. Suppose that we cut 7 along G&e. Let F be the face
of G&e containing e. We may assume that the intersection ê=e & F� with
the dissecting component F� of F is a single arc. Note that ê connects two
distinct points on the boundary of F� even if e is a loop in the graph. The
edge e is separating w.r.t. G&e if the cutting of F� along ê disconnects F� . If
e is separating, then it is strongly separating w.r.t. G&e if none of the
dissecting components F� $ and F� " of F� is a disc, and it is weakly separating
w.r.t. G&e otherwise. If e is nonseparating, then it is strongly nonseparating
w.r.t. G&e if the cutting of F� along ê does not yield a disc, and weakly non-
separating w.r.t. G&e otherwise (the latter case can occur only if F� is a
cylinder or a Mo� bius band). Let v be an isolated vertex of G. We say that
v is planarly isolated w.r.t. G&v if v belongs to a disc in the dissection along
G&v.

Lemma 2.1. Let G be a graph embedded in a compact surface 7 such
that G & �7=<. If v is an isolated vertex of G, then

,7 (G )={
0,
1,
,7 (G&v)+2,
,7 (G&v)+1,

G=[v] and 7 is the 2-sphere
G=[v] and 7 is the projective plane
v is not planarly isolated w.r.t. G&v
v is planarly isolated w.r.t. G&v.

If e is an edge of G, then

,7 (G )={
,7 (G&e)&2,
,7 (G&e)&1,
,7 (G&e)&1,
,7 (G&e),

e is strongly nonseparating w.r.t. G&e
e is weakly nonseparating w.r.t. G&e
e is strongly separating w.r.t. G&e
e is weakly separating w.r.t. G&e.

Proof. The dissecting components of G&v and of G are the same,
except for one component F� for which the corresponding component F� $
w.r.t. G is obtained by removing an open disc around v. Hence
/(F� $)=/(F� )&1, and this yields the first part of the lemma.

To prove the second part, let ê�F� in the dissection w.r.t. G&e. Suppose
first that ê is nonseparating. Denote by F� $ the surface obtained after dissecting
F� along ê. Since ê connects two distinct boundary points of F� we have
/(F� $)=/(F� )+1. Also, F� is not a disc. It follows that

,7 (G)&,7 (G&e)=�F� $&�F� =�F� $&(1&2/(F� $))&2.

Hence the difference in embedding complexities is &1 if F� $ is a disc, and
&2 otherwise.
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Next, suppose ê separates F� into F� $ and F� ". Then /(F� $)+/(F� ")=
/(F� )+1 and

,7 (G)&,7 (G&e)=�F� $+�F� "&�F� . (1)

If none of F� $, F� " is a disc (and hence neither F� is a disc), (1) gives
�F� $+�F� "=�F� &1. Consequently, the difference in embedding complexities
is &1. Finally, let one of F� $, F� ", say F� $, be a disc. Then �F� $=0 and F� " is
homeomorphic to F� . Hence the complexity does not change. K

Let G and H be graphs embedded in 7 so that G and H intersect in
finitely many points. By G ? H we denote the graph obtained by subdividing
each edge of G at points where it intersects H, and the same in H, and
finally taking the union of these graphs.

Corollary 2.2. Let G and H be arbitrary graphs in 7 disjoint from �7,
such that VH �VG and such that G and H intersect in finitely many points.
Then ,7 (G ? H)�,7 (G), and the equality holds if and only if each edge e
of G ? H that is not contained in G is weakly separating w.r.t. G.

Proof. We can construct G ? H from G by first subdividing some edges
of G and then successively adding new edges that are not contained in
G. Edge subdivisions do not change the complexity of the dissection.
Successive application of Lemma 2.1 then shows that ,7 (G ? H)�,7 (G).

To show when the equality holds, let G0 , G1 , ..., Gk=G ? H be the
sequence of intermediate graphs, where G0 is a subdivision of G and other
graphs are obtained by successively adding edges e1 , e2 , ..., ek (in that
order). If some ei is weakly separating w.r.t. G, then it is obviously weakly
separating w.r.t. Gi&1. Hence, if all edges of H are weakly separating w.r.t.
G, then ,7 (G ? H)=,7 (G). For the converse observe that for each index
i, G+ei �G ? H. Hence ,7 (G ? H)�,7 (G+ei)�,7 (G). Thus ,7 (G ? H)
=,7 (G) implies that all edges of H that are not contained in G are weakly
separating w.r.t. G by Lemma 2.1. K

3. SYSTEMS OF SIMPLE CLOSED CURVES

Let # and #$ be simple closed curves in 7 with finitely many points of
intersection. The cardinality of the intersection is the ( geometric) inter-
section number of # and #$. As a consequence of the Schoenflies' theorem we
may classify each intersection as either a touching or a crossing. A finite
collection 1 of simple curves in 7 such that each pair of curves in 1 inter-
sects in finitely many points is called a system of simple curves in 7. We
define its complexity ,7 (1 ) as ,7 (1 )=,7 (G1), where G1 is the naturally

10 JUVAN, MALNIC8 , AND MOHAR



File: 582B 169405 . By:CV . Date:29:08:96 . Time:15:15 LOP8M. V8.0. Page 01:01
Codes: 3068 Signs: 2151 . Length: 45 pic 0 pts, 190 mm

defined graph of 1. (Note that if # # 1 is disjoint from other curves in 1,
then # gives rise to a vertex with one loop in G1 .) The following result is
an immediate consequence of Lemma 2.1 and Corollary 2.2. Let us recall
that a simple closed curve # # 7 is separating if 7"# is disconnected.

Lemma 3.1. Let 1 be a ( possibly empty) system of simple closed curves
in the interior of a compact surface 7 and let # � 1 be a noncontractible
simple closed curve in int 7 which intersects G1 in a finite number of points.

(a) If # & G1=<, then

,7 (1 _ [#])={,7 (1 )+1,
,7 (1 ),

# is separating
# is nonseparating.

(b) If # & G1 {<, then ,7 (1 _ [#])�,7 (1 ). The equality holds if
and only if each edge of G1 _ [#] contained in # is weakly separating w.r.t. G1 .

Let 1 be a system of simple closed curves. The curves from 1 are in
general position if no curve from 1 is freely homotopic to another curve
from 1 or to its inverse. A system of curves 1 is a k-system (k�0) if any
two curves from 1 intersect at most k times. We first extend a result from
[MM, Proposition 3.7] to bordered compact surfaces.

Lemma 3.2. Let 7 be a compact surface with b�0 boundary com-
ponents, and let 1 be a 0-system of noncontractible simple closed curves in
general position on 7. Then

|1 |�max[1, 3(g7&1)+2b].

Proof. Without loss of generality we may assume that 1 is disjoint from
�7. The lemma is obvious if b=0 and g7�1, when 1 consists of at most
one curve. Assume that either g7�2 or b>0, and let 11 , 12 be the sub-
families of one-sided and two-sided curves from 1, respectively. Dissecting
7 along 1 gives rise to a collection of bordered compact surfaces 71 ,
72 , ..., 7r with the total number of b+2 |1 |&|11 | boundary components.
Moreover, /(7)=�r

i=1 /(7i). By pasting discs to boundary components,
we get r closed surfaces. Hence

/(7)+b+2 |1 |�2r+|11 |. (2)

Suppose that 7 is orientable. Then 11=<. Moreover, r�b&/(7) since
the number of cylinders among the dissecting components with non-
negative Euler characteristic is bounded by b. Now (2) gives the claimed
bound. Suppose that 7 is nonorientable. Then |11 |�g7 . Moreover,
r�b+g7&/(7) since among the dissecting components with nonnegative
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File: 582B 169406 . By:CV . Date:29:08:96 . Time:15:15 LOP8M. V8.0. Page 01:01
Codes: 2993 Signs: 2294 . Length: 45 pic 0 pts, 190 mm

Euler characteristic there are at most b+g7 cylinders and Mo� bius bands.
Again, (2) implies the claim. K

Note that the bound of the above lemma is sharp if 7 is not simply
connected.

Let 10 be a 0-system of noncontractible simple closed curves in general
position on 7. By Lemma 3.2 we have |10 |�max[1, 3(g7&1)+2b]. Let
s0 be the number of separating curves in 10 . Lemma 3.1 shows that the
complexity does not change when we add |10 |&s0 pairwise disjoint non-
separating curves on the surface; by further adding s0 pairwise disjoint
separating ones we increase the complexity up to ,7 (10)=�7+s0�
�7+|10 |.

Our next theorem says that for a fixed k�0, a k-system of simple closed
curves in general position on a fixed surface 7 cannot be too large.

Theorem 3.3. Let 7 be a (bordered ) compact surface and k�0 an
integer. There is a constant Nk, 7 such that if 1 is a k-system of simple closed
curves in general position on 7, then

|1 |�Nk, 7 .

Proof. Without loss of generality we may assume that all curves in 1
are disjoint from �7. This can be achieved by a small homotopy change of
curves in 1 without changing the number of intersections. Furthermore, we
may assume that all intersections are crossings and that no three curves
intersect in a common point. Also, since there is at most one contractible
curve in 1 we henceforth assume that the curves in 1 are noncontractible
(and that 7 is not the 2-sphere).

Consider a maximal subfamily 10 �1 of pairwise disjoint curves. Let
n0=|10 | and c0=�7+max[1, 3(g7&1)+2b]. The remark after Lemma 3.2
shows that ,7 (10)�c0 .

Every remaining curve from 1"10 intersects at least one curve from 10 .
Now let us successively add to 10 curves from 1"10 such that, at each
step, the added curve contains an ``edge'' that is not weakly separating
relative to the graph of the previous curves. Since by Lemma 3.1 the
complexity strictly decreases, at most c0 such curves can be added. Denote
by 1 $ the obtained k-system of n$�n0+c0 curves. We can estimate the
number of edges of G1 $ recursively as follows: by adding a new curve to the
system of xi curves at i th step, we introduce at most kxi new vertices
(because all intersections are crossings by assumption), and hence at most
2kxi new edges. Therefore,

|EG1 $
|�n0+2k :

c 0

i=1

(n0+i&1)=n0+2kn0c0+kc0(c0&1).

12 JUVAN, MALNIC8 , AND MOHAR
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Finally, consider the curves from 1"1 $. Each such curve # has only
weakly separating edges w.r.t. G1 $ and intersects G1 $ at most kn$�
k(n0+c0) times. Therefore, # splits up into at most k(n0+c0) segments
which traverse the dissecting surfaces of G1 $ , and each of them separates a
disc from its corresponding dissecting surface. Let us think of the edges of
G1 $ as being ``doubled'' in the boundary components of the dissecting
surfaces of 1 $, that is, G1 $ gives rise to a disjoint union of cycles with the
total number of 2 |EG1 $

| edges. Suppose # is given an orientation describing
its traversal. Then each segment of # inherits an orientation which can be
identified by an ordered pair of boundary edges in the corresponding dis-
secting surface. Consequently, # defines a sequence of at most k(n0+c0)
such ordered pairs which is unique up to cyclic permutation or inverse
ordering. We declare two curves #, #$ # 1"1 $ to be similar if, up to cyclic
permutation or inverse ordering, the corresponding sequences of ordered
pairs are the same. Suppose that there are N pairwise similar curves from
1"1 $. If we compare ``the same segment in the sequence'' of three different
curves we see that at least two of these segments can be moved homotopically
onto each other, keeping the endpoints on the boundary; this holds
because each segment separates a disc from the corresponding dissecting
surface. It follows that out of N similar curves at least N�2 are ``locally
homotopic'' along the first segment, at least N�4 along the first two
segments, etc. Consequently, at least N�2k(n0+c 0) are ``locally homotopic''
along all segments. But this means that they are homotopic. Since our
curves are pairwise nonhomotopic by assumption, we have N�2k(n0+c0).
This gives a bound on the number of curves from 1"1 $ in the same
similarity class. But the number of equivalence classes of pairwise similar
curves in 1"1 $ is bounded because the sequences are bounded in length by
k(n0+c0), and the elements of each sequence are taken from the edge-set
of G1 $ which is also bounded by a constant. Hence |1 | is smaller than some
constant Nk, 7 , and the proof is complete. K

Instead of free homotopy classes we can also consider homotopy of
curves with fixed endpoints x0 , x1 (possibly x0=x1). The proof of
Theorem 3.3 goes through also in this case (except that we start with 10

consisting of a single curve from 1).

Theorem 3.4. Let 7 be a (bordered ) compact surface, let x0 , x1 # 7
( possibly x0=x1), and let k�0 be an integer. There is a constant N*k, 7 such
that if 1 is a k-system of simple curves from x0 to x1 that are pairwise
nonhomotopic relative to their endpoints, then

|1 |�N*k, 7 .

13SYSTEMS OF CURVES ON SURFACES
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Theorems 3.3 and 3.4 can be extended to systems of nonsimple curves.
Each closed curve # in 7 can be parametrized as a mapping #: S1 � 7,
where S 1 is the unit circle in C. If #, #$ are distinct closed curves, we define

cr(#, #$)=|[(z, z$) # S1_S 1 | #(z)=#$(z$)]|.

We also define the number of self-intersections of # as

cr(#, #)= 1
2|[(z, z$) # S 1_S1 | z{z$, #(z)=#(z$)] |.

We say that a finite collection 1 of closed curves is a k-system of closed
curves if cr(#, #)�k and cr(#, #$)�k for any curves #, #$ # 1. The curves in
1 are in general position if no curve of 1 is homotopic to another curve
from 1, or its inverse.

Theorem 3.5. Let 7 be a (bordered ) compact surface and k�0 an
integer. There is a constant N$k, 7 such that if 1 is a k-system of ( possibly
nonsimple) closed curves on 7 in general position (or pairwise nonhomotopic
relative to a fixed base point), then

|1 |�N$k, 7 .

Proof. We first consider homotopy with a fixed base point r # 7. Let
# # 1. Choose a spanning tree T in G[#] rooted at r # VG [ # ] . Each edge
e=xy of G[#] determines a simple closed curve #(e) which is obtained by
a small homotopy change from the closed walk in T _ e from r to x, then
along e to y and back to r along edges of T. If e1 , ..., el are edges of G[#]

in the same order as they appear on #, then # is homotopic to the product
#(e1) #(e2) } } } #(el ). Note that l�2k. Therefore, if #1 , ..., #s are simple closed
curves, there are at most (s+1)2k&1 pairwise nonhomotopic curves # in
1 such that each of the simple ``subcurves'' #(e1), ..., #(el ) is homotopic to
one of #1 , ..., #s . It follows that a k-system of pairwise nonhomotopic closed
curves with 1+22k+32k+ } } } +(s+1)2k elements determines a k-system
of pairwise nonhomotopic simple closed curves #1 , #2 , ..., #s such that each
of #i (i=1, ..., s) is a ``subcurve'' of a distinct element of 1. Now
Theorem 3.4 completes the proof.

Let us now show how we deduce the free homotopy case from the result
for homotopy with a base point. We may assume that G1 is connected.
Choose #0 # 1 and r # #0 . Let H be the intersection graph of 1, i.e.,
VH =1, and #, #$ are adjacent if they intersect. Let B be a breadth-first-
search spanning tree of H rooted at #0 . If #0 , #1 , ..., #2t is a path in B,
then #0 , #2 , ..., #2t are pairwise disjoint. Each #i contains a noncontractible
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simple ``subcurve'' #$i . If t�(k+2) max[1, 3(g7&1)+2b]=: d, Lemma 3.2
implies that k+3 curves among #$0 , #$2 , ..., #$2t are all homotopic to a simple
curve #. This implies that k+1 among the corresponding curves #i are
homotopic to powers of #, and since cr(#i , #i)�k, each is homotopic to one
of #, #2, ..., #k (or its inverse). Hence two of them would be homotopic.
Therefore, t<d.

If # # 1, let #0 , #1 , ..., #j=# be a path in the tree B. Then we define a
curve $ from # & #j&1 to r as follows: We follow #j&1 to a point of inter-
section with #j&2, next we follow #j&2 to #j&3 , etc. Let #� be the curve #
concatenated with $ and $&1. This can be done in such a way that the
curves $ for different curves # intersect only close to the vertices of G1 .
Using the above estimate on t, one can show that for #, #$ # 1 we have
cr(#� , #� $)�4d } 3k=12dk. The resulting system of curves [#� | # # 1] contains
pairwise nonhomotopic curves relative to their base point r, and this com-
pletes the proof. K

4. THE TORUS

In this section we derive almost sharp bounds on the size of k-systems
of simple closed curves in general position for the case when 7=71 is the
torus.

Let # and #$ be simple closed curves in 71 with finitely many intersecting
points. Each crossing of # with #$ can be classified either as positive or
negative with respect to a fixed chosen global orientation of 71 , and the
algebraic intersection number :(#, #$) of # and #$ is defined to be the number
of positive crossings minus the number of negative crossings. See, e.g.,
[ZVC] for details. It is well known that the algebraic intersection number
can be computed from the standard representation of curves relative to
some fixed chosen generators of the first homology group. Since the
fundamental group of the torus is commutative, it is isomorphic to the first
homology group H1(71). Moreover, the homology classes coincide with
the free homotopy classes. Let a and b be the generators of H1(71). We
write # # (m, n) to denote that # is in the same class as ma+nb, where
m, n # Z. If #$ # (m$, n$) then

:(#, #$)=det _m
m$

n
n$& .

Moreover, the class (m, n) contains a simple closed curve as a represen-
tative if and only if gcd (m, n)=1. Consequently, simple noncontractible
curves # and #$ are in general position if an only if :(#, #$){0.

15SYSTEMS OF CURVES ON SURFACES
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Proposition 4. Let 1 be a system of noncontractible simple closed
curves in general position on the torus. If |:(#, #$)|�k for each pair #, #$ # 1,
then

|1 |�2k+2.

Proof. Let 1=[#1 , ..., #N]. Denote by :ij=:(#i , #j), and let (mi , ni) be
the class of #i , i=1, 2, ..., N. We may assume that |:12 |=k, and that
(m1 , n1)=(1, 0). Also, by considering either a homology class or its
inverse, we may assume ni�0 for all indices. In fact, we have nj>0 for all
j�2 because the curves are in general position and simple.

Now |:12 |=k gives n2=k, and |:1j |�k gives 0<nj�k for all j�2.
Consider |:2j |=|m2 nj&kmj |�k. Then

m2 nj

k
&1�mj�

m2 nj

k
+1. (3)

If nj=k, there are three possibilities for mj , case j=2 being one of them.
Since gcd(m2 , k)=1, (3) implies that there are at most two possibilities for
mj if nj {k. Altogether there are at most 2k+2 possible classes. K

Corollary 4.2. Let 1 be a k-system of simple closed curves in general
position on the torus. Then

|1 |�2k+3.

The bounds 2k+O(1) of Proposition 4.1 and Corollary 4.2 are not
sharp. They can easily be improved to a bound 3

2k+O(1). On the other
hand, the homology representatives (1, i) (i=0, ..., k) show that the exact
bound is at least k+O(1).

It is worth mentioning that the same approach does not work on general
surfaces, even if they are orientable. Let 7 be an orientable closed surface
of genus g=g7 , and let # and #$ be simple closed curves in 7. Their homology
classes can be represented by a canonical system of generators (see [ZVC]
for definitions) as (a1 , b1 , a2 , b2 , ..., ag , bg) and (a$1 , b$1 , a$2 , b$2 , ..., a$g , b$g),
respectively. Then the algebraic intersection number of # and #$ equals

:(#, #$)= :
g

i=1

det _ai

a$i

bi

b$i&
[ZVC, Proposition 3.6.3]. If g�2, then it is easy to find examples of
arbitrarily many simple closed curves with pairwise bounded algebraic
intersection numbers that are pairwise nonhomologic and hence pairwise
freely nonhomotopic. All one has to do is to find appropriate vectors

16 JUVAN, MALNIC8 , AND MOHAR
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(a ( j)
1 , b ( j)

1 , ..., a ( j)
g , b ( j)

g ), j=1, 2, ... . In order to make sure that the chosen
vectors correspond to simple curves, one can use the result of Poincare� [P]
(cf. also [M, S]) who proved that there exists a simple closed curve as a
representative of the homology class (a1 , b1 , ..., ag , bg) if and only if
gcd(a1 , b1 , ..., ag , bg)=1.

5. EXAMPLES

The bound Nk, 7 on the cardinality of a k-system of simple closed curves
in general position from Section 3 is probably far from being sharp.
However, the following constructions show that the bounds are not small,
in general.

First we show that for a fixed k and a large enough g, there are k-systems
of simple closed curves in general position in the surface of genus g con-
taining at least ckgwk�4x curves, where ck is an appropriate constant.

Proposition 5.1. For every k>0 and g large enough there exists a
k-system of simple closed curves in general position on a closed surface of
genus g containing ( n

wk�2x) curves, where n=w(- 25+48(g&1)&5)�2x.

Proof. A construction for k�5 is easy and is left to the reader. Suppose
now that k�6 and g�(k2+12k+59)�48. Then n�k�2. Let h=g&n.
Simple arithmetic shows that h�(n&3)(n&4)�12 and, hence, the complete
graph Kn has an embedding in the closed orientable surface of genus h. Fix
such an embedding. For each vertex v of Kn cut out two discs which are
``close'' to v and in the same face of the chosen embedding of Kn . Connect
them by a handle. The resulting surface 7 has genus g. Finally, let #v be a
simple closed curve at v that is homotopic to a noncontractible curve in the
added handle.

Each cycle C of Kn determines a closed curve #$C on 7 that consecutively
follows the edges of C and at each vertex v # VC follows the curve #v . Note
that there is only one way to traverse #v such that #$C does not cross itself
at v. By a small perturbation at each vertex, #$C can be changed into a
simple curve #C . Moreover, by small changes of curves along the edges we
can achieve that any pair of curves #C , #C$ (C{C$) intersects only in small
neighborhoods of vertices in VC & VC$ , and at most twice for each such
vertex. Hence curves corresponding to all cycles of Kn of length at most k�2
form a k-system.

If C and C$ are cycles of Kn with VC {VC$ , then #C and #C$ are easily
seen to be nonhomologic in 7. Let l=wk�2x. For every l-subset U of VKn ,
choose a cycle CU with VCU=U. Hence, 1=[#C U | U�VKn , |U|=l] forms
a k-system of curves in general position, and |1 |=( n

l ). K
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Let us remark that the above construction can be slightly improved. By
inserting ( n&1

2 ) handles at each vertex of Kn , we can achieve that any two
curves in 1 intersect at most once at each common vertex of the corre-
sponding cycles. Now we can take all k-subsets of VKn and improve
the bound from c1gwk�4x to c2 gwk�3x (where c1 and c2 depend on k only).
Further improvements are possible.

Our second construction shows that for an arbitrary g>0 there exists a
k-system of simple closed curves in general position on a closed orientable
surface of genus g containing at least cgk g curves, where cg is an
appropriate constant.

Proposition 5.2. For each g>0 and k�0 there is a k-system of non-
contractible simple closed curves in general position on a closed orientable
surface of genus g containing more than (k�g) g curves.

Proof. Take a compact surface of genus 0 with 2g boundary components
Q1 , Q2 , ..., Q2g . Connect Q2i&1 with Q2i by adding a handle, i=1, 2, ..., g,
to obtain a closed orientable surface 7 of genus g. Let n=(n1 , n2 , ..., ng),
where 0�ni�wk�gx, and let Cn be disjoint ``concentric circles'' at the
``planar'' part of 7, indexed by the above g-tuples. To each of the
r=(wk�gx+1) g circles Cn we associate a simple closed curve #n as follows.
Fix a global positive orientation of 7. The curve #n traverses an arc on Cn

in the positive direction; then it goes to Q1 , wraps around the handle at Q1

n1 times in the positive direction. Then it goes along the added handle to
Q2 and returns to Cn ; then it goes on to the second handle, etc. It is easy
to see that the curves can be made simple. Moreover, the curves can be
chosen in such a way that the following holds. If n=(n1 , n2 , ..., ng),
m=(m1 , m2 , ..., mg), then #n and #m intersect at the i th handle at most
|ni&mi |�wk�gx times; the segments of these curves between the corre-
sponding circles and handles are ``parallel'' (close to each other) and have,
therefore, no other intersections. Hence, each pair of these curves intersects
at most k times. Since the curves are obviously pairwise nonhomologic,
they are also pairwise nonhomotopic. This completes the proof. K

6. MINIMAL TRIANGULATIONS

Let 7 be a compact surface. A curve # on 7 is essential if

(a) # is closed and homotopically nontrivial, or

(b) # is open with both endpoints in the same boundary component
B such that after pasting a disc DB to B and by extending # with a path in
DB connecting its endpoints, a noncontractible closed curve is obtained, or

(c) # is open with endpoints in distinct components of �7.
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A triangulation T of a compact surface is k-minimal (k�3) if each edge
is contained in an essential k-cycle or in an essential path of length k, and
all essential cycles and paths in T have length at least k. Barnette and
Edelson [BE1, BE2] proved that any closed surface admits only finitely
many 3-minimal triangulations. A simple proof of this result was independently
given by Gao, Richmond, and Thomassen [GRT] (unpublished), and later
by Nakamoto and Ota [NO], who obtained linear bounds on the size of
a 3-minimal triangulation in terms of the genus of the surface. Malnic� and
Mohar proved the finiteness of 4-minimal triangulations on orientable
closed surfaces [MM]. That the class of k-minimal triangulations is finite
for any k and all closed surfaces has first been proved by Malnic� and
Nedela [MN]. Recently, Gao, Richter, and Seymour [GRS] gave a
different and shorter proof. Results of our paper yield a very short proof for
an arbitrary k, generalized to bordered compact surfaces.

Theorem 6.1. For each compact (bordered) surface 7 and an integer k�3
there is a constant ck, 7 such that every k-minimal triangulation of 7 has at
most ck, 7 edges.

Proof. Let T be a k-minimal triangulation of 7. Let E0 be the set of
edges that belong to some essential k-cycle in T. Denote by E1 the set of
edges which belong to some k-cycle in the free homotopy class 1. Then
E0=E11

_ E12
_ } } } _ E1N for some N (depending on T), where each 1i

is nontrivial. Since each subgraph formed by E1 contains a k-cycle from 1,
the number N is bounded by Theorem 3.3. We shall prove that for every
1{1, |E1 | is bounded by some constant depending just on k. For each
e # E1 choose a k-cycle Ce # 1 containing e, and let C1=[Ce | e # E1].
Clearly, |E1 |�k |C1 |. We shall give a bound for |C1 |.

Consider an arbitrary pair of cycles C, C$ # C1 such that C & C${<.
There is a disc (with possibly some identifications on its boundary from the
outside) which is bounded by a segment of C and a segment of C$ (cf.
[E]). If both segments cross at their common ends, we perform a
homotopic switch of the segments across the disc to obtain k-cycles
C1 , C$1 # C1 such that C1 _ C$1=C _ C$. The number of crossings is
reduced by 2. (Note that C1 and C$1 are cycles and their length is k since
the triangulation is k-minimal.) Induction on the total number of crossings
in C1 makes possible to assume that any two cycles in C1 cross each other
(possibly along a segment) at most once. We claim that there is a constant
f (k) such that any k-cycle in C1 intersects at most f (k) other k-cycles in C1 .

Suppose that this is not the case. Then there is a cycle C # C1 and a
vertex v # VC such that more than f (k)�k of the k-cycles in C1 meet C at v.
Denote this family by Cv . Let 1 be one-sided. Since homotopic one-sided
curves cross an odd number of times, we may assume that each cycle from
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Cv crosses C at v (possibly along a segment), and this is the only crossing.
By a small homotopy change of these cycles we obtain a bouquet of simple
closed curves in 1. Each bounds an (open) disc with C (cf. [E]). Hence,
one of these discs contains at least half of the curves. Let 1 be two-sided.
Each pair of k-cycles in C1 is noncrossing. By a small homotopy change we
obtain pairwise disjoint simple closed curves in 1. Since each pair bounds
a cylinder (cf. [E]), there is a cylinder which contains all of them.
Moreover, there is a cylinder bounded by two of these curves, such that
after identification at v, the resulting disc contains at least half of the other
curves.

Consequently, there is a disc D bounded by segments a&b (a=v) of two
distinct k-cycles in Cv which contains a&b segments of at least f (k)�2k
other cycles from Cv . Let K be the subgraph in D formed by the above
a&b segments of length at most k. Assuming f (k) is sufficiently large, e.g.,
f (k)>(4k)2k&1 (2k&2)! (2k)!, it is easy to see (cf. [FM, Lemma 3.2] for
details) that K contains vertices A and B joined by (at least) 2k internally
disjoint paths L1 , ..., L2k in K. We may assume that in the local rotation at
A, the paths L1 , ..., L2k leave A in this order and that L1 _ L2k bounds
a disc DL (with a possible identification if A=B=v) such that
L1 , ..., L2k �DL . Consider an edge e # ET on the link(A) between Lk and
Lk+1. The cycle Ce through e cannot leave DL at A. Therefore, it intersects
L1 _ L2k in a vertex different from A and B. Hence, Ce is of length greater
than k, a contradiction. The claim is proved.

Each k-cycle in C1 intersects at most f (k) other k-cycles in C1 . Hence, at
least |C1 |�f (k) are pairwise disjoint. It is easy to see (cf. [MN]) that in a
k-minimal triangulation, there are at most k+1 pairwise disjoint k-cycles
in the same homotopy class. Hence, |C1 |�(k+1) f (k).

Let E1 be the set of edges of T that belong to an essential path of length
k with its endpoints on the same boundary component of 7. Two essential
curves of type (b) are homotopic if they have endpoints on the same boundary
component B and their extensions through DB are homotopic relative to
the base point in the ``center'' of DB . Theorem 3.4 (with x0=x1 being the
center of DB) shows that there is only a bounded number of homotopy
classes of such essential paths of length k in T. By considering an arbitrary
class 1, we can apply the same proof as above to show that |E1 | is bounded.
The same proof works also for the edge set E2 of those edges that belong
to some essential path of length k joining distinct boundary components.

Since by k-minimality |E T |�|E0 |+|E1 |+|E2 |, the proof is
complete. K

Let M be an integer. Theorem 6.1 can be extended to the case when for
each homotopy class 1 of simple essential curves in 7 we prescribe a number
k(1 )�M such that the following holds: Each essential cycle or path in T
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has length at least k(1), where 1 is its homotopy class, and each edge is
contained in an essential curve Q in the graph of length exactly k(1 ),
where 1 is the homotopy class of Q.

Let G be a graph embedded in a compact surface 7. We assume that the
interior of each edge is either disjoint from �7 or completely contained in
�7. If # is an essential curve in 7, we define cr(#, G) as |# & G| if # is of type
(a), and as |# & G|& 1

2 |�# & G| in cases (b) and (c), where �# consists of the
endpoints of #. The face-width (or representativity) fw(G) of G in a non-
simply connected surface 7 is defined as

fw(G)=min[cr(#, G) | # essential curve in 7].

Let us remark that it suffices to consider only simple essential curves which
intersect G in vertices only and that homeomorphic embeddings have the
same face-width.

An embedding of G in 7 is minor-minimal of given face-width fw(G)>0,
if for every e # EG we have fw(G�e)=fw(G)&1 and either fw(G&e)=
fw(G)&1 (if e is not on �7) or fw(G&e)=fw(G)& 1

2 (if e is on �7). Note
that we contract only edges e that do not change the surface, i.e., e is not
a loop, and not an edge in the interior of 7 with both endpoints on �7.

To each minor-minimal embedding G of face-width k>1 we associate a
triangulation T(G) by taking the barycentric subdivision of G. Recall that
the barycentric subdivision of an embedded graph is performed as follows.
In the ``middle'' of each edge we put an additional vertex. Also, we choose
an additional vertex in each open face F of G (if F & �7{<, we choose the
vertex from �7 & F ). In addition, we connect each vertex associated to a
face with all (new and old) vertices in its facial walk. Note that the two
new edges between a vertex in F & �7 and its neighboring old vertices in
�7 are both contained in �7.

By applying the barycentric subdivision as in [MM, MN], Theorem 6.1
gives an elementary proof that there are only finitely many minor-minimal
embeddings of given face-width on any compact surface (which otherwise
follows from the proof of the Graph Minor Theorem of Robertson and
Seymour [RS]).

Corollary 6.2. For any compact surface there are only finitely many
minor-minimal embeddings of a given face-width.

Proof. Let k be the given face-width. Cases k�1 are left to the reader.
For k>1, it is easy to see that the barycentric subdivision of a minor-minimal
embedding in 7 of face-width k is a 2k-minimal triangulation of 7. Now
Theorem 6.1 applies. K
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As pointed out in [GRS], Corollary 6.2 is equivalent to Theorem 6.1 for
closed surfaces. Let us remark that this equivalence holds for bordered
compact surfaces as well.
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