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ABSTRACT. — We study the Ginzburg—Landau energy of superconductors with astemodelling the
pinning of vortices by impurities in the limit of a large Ginzburg—Landau parametef/¢. The function
ag is oscillating between /2 and 1 with a scale which may tend to Okatends to infinity.

Our aim is to understand that in the largdimit, stable configurations should correspond to vortices
pinned at the minimum ai, and to derive the limiting homogenized free-boundary problem which arises
for the magnetic field in replacement of the London equation. The method and techniques that we use
are inspired from those of Sandier and Serfétynales Scientifiques de 'EN® appear) (in which the
casea, = 1 was treated) and based on energy estimates, convergence of measures and construction of
approximate solutions. Because of the terpix) in the equations, we also need homogenization theory
to describe the fact that the impurities, hence the vortices, form a homogenized medium in the material.
0 2001 Editions scientifiques et médicales Elsevier SAS
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1. Introduction

Superconducting materials have the property of expelling an applied magnetic field. In fact,
the behaviour of a superconducting sample varies according to the value of the applied field and
the value of the Ginzburg—Landau paramatevhich is characteristic of the material. When
is large, the superconductors are known as type-Il and display vortex patterns for intermediate
fields: for high magnetic fields, the material is normal and the magnetic field penetrates into
the sample, for low fields, the material is superconducting, that is the magnetic field is expelled
from the sample and for intermediate fields, there are vortices. The vortex state is a state where
the superconducting and the normal phases coexist: at the center of the vortex, the material is
normal and the vortex is circled by a superconducting current carrying a quantized amount of
magnetic flux. The motion of vortices generates an electric field hence energy-dissipation. In
order to have the desired property of dissipation-free current flow, the vortices have to be held
fixed or pinned. In practice, attempts are made to pin vortices either by varying the thickness
of the material or by introducing impurities or normal inclusions. Sufficiently strong pinning is
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necessary for functional superconductors capable of sustaining strong currents and high magnetic
fields. The new high-temperature (higif) superconductors are strongly type-1l superconductors,
that is their phenomenology is dominated by the presence and properties of vortices when
an exterior magnetic field is applied. The pinning problem is particularly intricate in High-
superconductors where it depends on specific structures such as layering and structural defects.
In this paper, we will be concerned with the case where the vortices are pinned by impurities in
the framework of the Ginzburg—Landau model. We will study the behaviour of global minimizers
of the Ginzburg—Landau energy when a term modelling the pinning of vortices by impurities is
added, in the limit of a large Ginzburg—Landau parametewhich describes extreme type-I|
materials.

1.1. The Ginzburg—Landau model with a pinning term

Recall that in the framework of the Ginzburg—Landau theory (see [33] for more details), the
state of the material is completely described by a vector potesAtiahd a complex-valued
functionu, which can be thought of as a wave-function of the superconducting electrons, and
is nondimensionalized such that < 1. The type of material is characterized by the Ginzburg—
Landau parameter and in the case of type Ik is large so that we define= 1/«, which will
be small. The energy is the following:

1 _ 1
(1.1) Jg(u,A):E/I(V—IA)uyz—l-@(ag(x)—|u|2)2+|h—hex|2.
2

Here, 2 is the domain occupied by the supercondugies curl A is the magnetic field anbley

is the exterior magnetic field which is constant in our problem. A common simplification is to
restrict to a two-dimensional problem corresponding to an infinite cylindrical domain of section
£ c R? (smooth and simply connected), for an applied field parallel to the axis of the cylinder.
ThenA: 2 — R2, i is real-valued and all the quantities are translation-invariant.

The energy/, that we are going to study here is slightly different from the classical Ginzburg—
Landau energy in the sense that there is a term penalizing the variations of the order parameter
We denote this function by, (x). In the case originally studied by Ginzburg and Landauz 1.

In this paper, a typical example far would be to oscillate betweery2 and 1 in the domain,
with a typical scale; which may tend to 0 witla. The minima ofz, correspond to the impurities
in the material. Hence it is expected that these minima will be the pinning sites for the vortices.

The modified Ginzburg—Landau functional (1.1) was first written down by Likharev [20].
Then, this model has been used and developed in [11] and [10]. Review articles on the topic
include [4,8,9] and [24]. Computational evidence that the vortices are attracted by the impurities,
that is the points of minimum af, (x) can be found in [10] or [16].

In this paper, we want to address the question of how the tgrmill modify the properties
of the superconductor in the presence of an exterior magnetic field. Recall that in the case where
a, = 1 and there is no magnetic field, Bethuel, Brezis, Helein [3] studied a functional with
a degree boundary condition and provided the understanding of vortices and their energetical
cost. Then, various authors [1,2,19] have introduced a fixed weight function (independgnt of
in front of the gradient term of the energy studied by [3]. This is to model variable tickness
pinning and is very different from our problem. The method and technigues that we are going
to use here are inspired from those of [28] (in which the ecase 1 was treated) and based on
energy estimates, convergence of measures and construction of approximate solutions. Because
of the terma, (x) in the equations, which can be a rapidly oscillating function, we will also need
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homogenization theory ([13,17,23]) to describe the fact that the impurities, hence the vortices,
form a homogenized medium in the material.

1.2. The equation for the magnetic field
The Ginzburg—Landau equations associated to the functional (1.1) when minimizing for

{(u, A) € HY(£2,C) x H(2,R?)} are:

—(V— |A)2u = 8—1214(08()6) - |u|2),
—Vth =(iu, (V —iA)u),

(G.L)

with the boundary conditions:

h = hex onos?
(Vu —iAu) -n=0 0nos2.

Here v+ denotes(—dy,, dx,), and (z, w) = Re(zw) for z, w in C. Recall that the problem is
invariant under the gauge transformations
{ u—>ud?,
A—> A+ VD,
where® e H?($2,R). Physically meaningful quantities are gauge invariant. These include the
energyJ., the magnetic field and the superconducting curregnt (iu, (V —iA)u).
Let us describe the properties of a superconductor. These phenomenaare described for instance
in [33]. The state of the material depends on the applied figldin the absence of pinning, that
is whena, = 1, there are two critical field#f., and H., for which a phase transition occurs.
Above H,, = O(1/¢?), superconductivity is destroyed and the material is in the normal phase
(u =0, h = hey). Below H,, = O(|loge|), the material is superconducting everywhere, that is

lu| ~ 1. This is the Meissner phase characterized by complete expulsion of the magnetic field: in
the limit whene goes to zero, the magnetic field satisfies the London equation:

{—Ah+h:0 in £,
BetweenH,, andH,.,, the material is in the mixed phase defined by the coexistence of the normal
and superconducting phases in the form of vortex filaments: the magnetic field penetrates into
the material in the form of flux lines at the center of whiclvanishes. The induced magnetic
field approximately satisfies:

—Ah+h=2rY);dis, in$2,
(1.3) {h:hex onas2,

where thep;’s are the centers of the vortices, and this their degrees, that is the topological
degree of the map/|u|. These filaments are of characteristic sizdhey are surrounded by a
superconducting region in whigh| ~ 1. In order to minimize their repulsion, the flux lines form

a triangular lattice, called the “Abrikosov lattice”. With increasing fields, the density of flux lines
increase until the vortices overlap affd, is reached. The generation of vortices by the external
field has been mathematically studied very recently in [29-31,25-27].
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In [27], it is proved among other things that, in the limit whetends to 0, equation (1.3) is
replaced by

(1.4) — Ahy + hy = i,

wherepu, is the density of vortices in units @fx andh, = h/ hex. The measurg, is supported
in an inner regionw depending on the value aty and is of uniform density iw.

Our aim is to give a rigorous proof that in the smallimit, stable configurations should
correspond to vortices pinned at the minimumagfand to derive the limiting homogenized
free-boundary problem which arises for the magnetic field in replacement of the London
equation (1.4).

Using the second equation in (G.L.), we notice that the energy can be rewritten

1
(1.5)  Je(u,A)= fl I2|Vh| +1h = hex® + = /|V|u|| +— (ag(x)—|u|2)2.

2

We will show that for a sequence of minimizérs, A.), the second integral in (1.5) is negligible.
Then, where tends to 0,u|? ~ a.(x) outside the vortices, and our main result will state that
he = curl A, satisfies roughly the following equivalent of (1.3) in the case of pinning:

/1
(1.6) —d|v(awg> + he =27 Zi:diap[.

The existence of pinning will modify the locatiops of the vortices and the value &f,.

Sinceq, is a rapidly oscillating function describing impurities, the framework for passing to
the limit whene is small is that of homogenization theory. When passing to the limit in (1.6), we
obtain a different limiting operator from (1.4), that is

(1.7) — diV(AVhy) + hy = 1,

where 1, is a positive measure which is supported in an inner domginand A is the
homogenized limit of the matrixd, = %I in the sense off -convergence, see definition below.

DEFINITION 1.— We say that the family & x 2 matrices.A. H-converges tady whene
tends to0, if and only if, for anyf in H~1(s2), the solutionv, in H}(£2) of

—div(A:Vue) +ve = f
satisfies
ve = vg  weakly inH(£2),
AV, —~ AgVug  weakly in(L3(22))?,
wherevy is the H}(s2) solution of
—div(AgVwo) + vo = f.

We refer to the work of Murat and Tartar [23] for more details on the notidfi-@onvergence;
one can also see [13,17]. In the following, we will always J&t = 1I ThenAg is also a
diagonal matrix. In the general case, the computatiovdgfis hard and not always known,
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see [17] for examples. But in some simple cases, this definition allows to corxpyut&or
instance, ifa; (x) = a(x/¢), anda(x) = a1(x1)az(x2) wherea; andaz are periodic, then

11 1
Ao:diag<—0,—o), with a,oza_,(—),
aj a aj

2

wherea; denotes the mean af over a period (see [17]). Note that even though the sequence
has no pointwise limit, the limiting problem andg are well defined.

An important property off -convergence (see [23]) is that if the sequedmcis bounded from
below and above by positive constants independestibfen there exists a subsequemte and
a matrix.Ag for which A, H-converges te4g. For us, it will imply in the following that up to
the extraction of a subsequence, the farolly H-converges to some limiflg, thus leading to
the limiting problem (1.7).

1.3. Main results

Let us now state our hypotheses and results. We assumighiata function ofs and that the
following limit exists and is finite:

. |loge|
(1.8) A= J'To hex(e)
Moreover, we make the following hypotheses on the functigm):
(H1) There exists a constabg > 0 such thabg < a.(x) < 1.
(H2) There exist a constaidt and a sequencg(e) (which may tend to 0 witke) such that
1/n(e) < hexand|Va;| < 155
(H3) There exist a continuous functidr(x) and a nonnegative functiorg (x) such that
ag(x) =b(x) + B:(x) and for anys > 0 and anyx € £2, Ming(, s.)) B = 0, where

1
é -
©) < log Tloge 172

(H4) The family of matricesd, H-converges to4o.

Note that, as we mentioned earlier, it follows from hypothesis (H1) and the compactness of
the set of matrices bounded from above and below that there exists a subsequdgagtoth
H-converges te4g [23]. Our hypothesis (H4) is there to restrict to this subsequence for ease of
notation and to impose that the whole sequence converges. Moreover, (H2) meapsémabe
a constant independent efbut can also oscillate very quickly with (but not too quickly, i.e.
not quicker tharhey). Note that in the case wherg does not depend on then A, = Ap is
constant.

Let us emphasize that becayse> 0, b can be thought of as the lower envelopezgfand
the local minima ofz, are the local minima ob. Henceb will be related to the pinning sites of
vortices and the oscillations ef are those of8.. Moreover, the hypotheses imply that: bg.

First, let us state the result concerning the limiting problem (1.7). We relasad ., to the
minimum of a variational problem. Let1 denote the space of Radon measureRin

THEOREM 1. — Let us assume thdH1) to (H4) are satisfied. Let us define for amy> 0,

A ) 1
(1.9) E(f)= 5/b(x>| —div(A4oV f) + f|+ > / Vf-AoVf+If—17

ko) ko)
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over
V ={f such thatf — 1€ Hj(£2), and — div(AoV f) + f € M}.
The minimizen, of E overV exists and is unique. It satisfies

hy — e H}($2),

wy = —div(AgVhy) + hy € M,

Ab
— in$2,
2

he 21—
A
(- (1-2)) =0 e

Moreoveru, > 0andu, € H ().

P

Problem (P) is a free-boundary problem, called in the literature an “obstacle problem”
(see [18]). Another way of considering problem (P) is to define the subget of

(1.10) wp ={x € 2, suchthati, =1— Ab/2}.

Thenu, =0in 2\ wy, andh, =1 — Ab/2 in wy, dw, being called the “free-boundary”,
because 4 is unknown and uniquely determined by the set of equations (P).

Note that if Ag andb are smooth enough then. is C1¢ (a < 1), us is in L, the free-
boundarydw 4 is regular for almost everyt (see [5]) and then we can write

Ab A .
/L*:l—?'f‘EdN(AOVb) Nwa.
Once we have proved Theorem 1 concerning the limiting problem, we can get convergence for
any sequence of minimizefg,, A.) of the energy/. (ue, A;) to E(hy) in a sense similar to
I'-convergence.

THEOREM 2. — Let us assume thdfL..8) and (H1) to (H4) are satisfied. Letu., A;) be a
family of minimizers of,, andh. = curl A, the associated magnetic field. Thengaends ta0,

h .
—~ > h, weaklyinH(£2),
ex

whereh, is the minimizer of. Moreover,

Y/ ,A A 1
(1.11)  lim M = E(hy) = —/b|u*| + —/Vh* - AoVhy + |hye — 12,
e—0 héy 2 2
2 2
|Vhe|? :
(1.12) 2 — Vh, - AgVh, + Abu,, inthe sense of measures.
exte

One can easily notice that i = 0 (i.e. if hex > |l0ge|), the solution of (P) ig:, = 1, and
E(hy) = 0. In this case, Theorem 2 asserts that:

h . . min/J,
—£ -1 stronglyind*, and lim—=~=0.
ex e=0 hgy

The proof of Theorem 2 is the main part of the paper (see Section 1.6 for a sketch).
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1.4. Thecased >0

Let us now present some stronger results in the case whasepositive, i.e.hey is Of the
order of|loge|. The first issue is to determine mathematically the location of vortices. From the
physics, we know that vortices are the zeroes ofvith non-zero winding number. Instead of
defining vortices, we isolate them in disjoint vortex balls covering the set whgres small.
The centers of these balls can be thought of as being the centers of the vortices. This method of
definition was first introduced by [3]. Here, we use the construction due to E. Sandier [25].

PROPOSITION 1.1. — Let us assume that > 0 and that(H1) to (H4) are satisfied, then there
existseg such that ife < eg and (ug, A;) is a minimizer of/,, there exists a family of balls of
disjoint closuregdepending om) (B;)ic1, = (B(pi, ri))iei, Satisfying

1
(1.13) {x € 2,V — e (ol > o } < U B,
ielg
(1.14) <1
- 27 S o
1 [ |Vhe|?
(1.15) 5/ '|u—|2' > b (p)ld; | logel (1 — o(1),
Bi

whereh, = curlA,, andd; = deg(u./|uc|, dB;) if B; C £2, and0 otherwise.

This proposition will be proved at the beginning of Section 2. Here is the meaning of the
different inequalities: (1.13) locates the set wherg differs from a., which is contained in
a union of disjoint balls; these balls represent the vortices or clusters of vortices. (1.14) gives
a control on the size of the balls and (1.15) gives a lower bound on the energy, which is the
contribution of vortices according to their degegeand their locatiorp;, appearing through the
valueb(p;). As opposed to the case @f = 1 (see [28]), the least energy is attained fpmat the
minimum ofb.

Using this proposition, Theorem 1 can be made more precise:

THEOREM 3. —Let us assume that > 0 and that(H1) to (H4) are satisfied. For any balls
B(p;, r;) and integersi; which satisfy(1.13)—(1.15)then

.27

(1.16) m S diastp) = [ bl

i€l Q

2
1.17 — d;i§, ,
( ) hexl.eXI; i0p; ;6#*

2
1.18 — d;|8, ,
( ) hexglllplé‘jau*

in the sense of measures, where
wy = — div(AoVhy) + hy.
1.5. Physical interpretations and consequences

Our results show thdt, ey is a good approximation of, and that, in the limitt — 0, the
vortices are scattered in an inner regiop with densityu.., whereh, =1 — Ab(x)/2. In the
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outer region2 \ @4, there are no vortices arid. satisfies— div(AgVh,) + ks = 0. Unlike the
caseu, = 1, the vortex-density i, is non-uniform in general. Moreover, asdecreases, the
vortex-region first appears at the minimumyafas defined by problem (1.19) below: as in [28],
we can derive a necessary and sufficient conditiomfpito be nonempty.

PrROPOSITION 1.2. — Let ¢ be the solution of

(1.19) {—diV(Aow)er:—l in 0,

¥ =0 onos2,

then

. hex 1
@ & lim > .
w4 7 e—0|loge] = 2maxy|
If we defineH,, as the field such that fdrex < H,,, the minimizer of the energy has no vortex
(i.e.|u| > bo/2) and forheyx > H,,, there exists a minimizer with vortices; then Proposition 1.2
gives a hint that

. lloge]
T 2max|y|’

Thus the presence of pinning modifies the values of the first critical field (see [29,26] for
the case without pinning). In fact, we could adjust the proof of [26] to obtain: there exists
ke = O(]log|loge||) such that for small enough and

|loge]

hex < —— —
& 2max|y|

&

then any minimizer has no vortex.

Furthermore, the position of the minimumwfdepends on the pinning potentialx). As A
further decreases, correspondingitq increasing, the vortex-regian, grows, until, forA =0
(hex > |logel), wa = £2. At this point there are so many vortices that the macroscopic density
of vortices and the induced magnetic field are no longer influenced by other words, the
strength of flux pinning is O fokex > | lOge].

In the case where, (x) = a(x) is independent of, a(x) = b(x) and.Ag = a—1Z. Hence the
limiting problem is a London equation with weight. We would like to point out that it is natural
to define a vortex velocity by = ﬁv}z (see [15]). In particular

1
Uy = —Vhy
a

can be defined as a limiting velocity (per unit’gk). Note that inw 4, sinces, =1 — %Aa, then

Vi = —%AV loga. It implies that whent is constanty, = 0 and there is no mean currentin the
vortex region. But when varies spatially, there is a nonzero limiting mean current and a nonzero
limiting velocity v,. Hencev =~ hexv, that is% logk Vloga. This is the result of Chapman and
Richardson [11] in the case where the three-dimensional vortex line has no curvature. They
describe the phenomenon saying that the variatienadnts as a pinning potential.

WhenA = 0, the velocity, is zero as well. Decreasirg means increasing the field. So when
a varies spatially, there is a critical exterior magnetic field above which the pinning potential has
no role and the current is destroyed.

In the general case whetg depends or, it would be interesting to prove a convergence
of the mean vortex velocity, = ﬁws. Still, one can observe two different effects coming
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from the presence of pinning in the tenh,|%/a. and resulting in the energi (k) in the
homogenization process:
— One effect is related to the concentration of energy in the vortices and the location of the
vortices. It appears through the term

A
E/bum
2

in the limiting energyE. This term is smaller ifc, is non-zero at points wheteis minimal.
(1.16) implies that vortices go to points whete= 0. These points will be called pinning
sites in the following. Becaus¥e) tends to 0, the number of such points is big. The effect
on the position of vortices is to séeand the minima ob. Moreover, since (1.17) and (1.18)
have the same limit, it means that vortices tend to have positive degrees.
If b does not depend onthenk, andu., are constantim,, and there is no change for the
location of vortices from the casg = 1. On the other hand, # is non-uniform, therv i,
is non-constant im 4 and there is a pinning current. If for example the domain is a disc and
the minima ofb, that is the impurities, are located at sites different from the center of the
disc, one expects that vortices, or the vortex-regignwill be closer to the minima ob,
but it seems difficult to give a rigorous proof of this qualitative fact.

— The other effect is due to the rapid oscillationsagfwith ¢ and comes from the energy
outside the vortices, converging to the homogenized term

1
> / Vhe - AoV + |hy — 12
22

in E. It changes the equation for the magnetic fieletcom the usual London equation. If

Be # 0, then the homogenization effect can be anisotropic. Thegiwe(which can be

related ton if B, is not identically 0) cannot be taken bigger than in (H3), otherwise each

pinning site would be too large and the vortices could push one another outside the pinning

site.

Let us also point out that we cannot allow stronger oscillations ¢fian in (H2), because the

second integral in (1.5) would become the dominant term. It would be interesting to investigate
what happens if (H2)—(H3) are relaxed.

1.6. Main steps of the proof

Let us now state the two steps of the proof of Theorem 2. It is obtained as in [28] by getting
first a lower bound on the energy, Proposition 1.3, proved in Section 2, and then an upper bound,
Proposition 1.4, proved in Section 3.

ProPOSITION 1.3. — Let us assume thatt > 0 and that(H1) to (H4) are satisfied. Let
(ue, A¢) be a minimizer of/,. Then

L. 1 A 1
(120)  limint - J e A > / blusal + 5 / Vihy - AoVhs + |hs — 112

E—> ex
2 2

wheren, is the solution of P).
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PROPOSITION 1.4. — Let us assume that > 0 and that(H1) to (H4) are satisfied. Let. be
a positive Radon measure, and {gt, A;) be a minimizer of/,. Then

. 1 A 1
(1.21) lim sup-—-Je (ue, Ae) < —/bdu + = / Vh-AoVh+ |h — 12,
es0 hZ, 29 29

wheret is the solution of

—div(AoVh) +h=p in 2,
h=1 onos2.

Section 2 is devoted to the proof of Proposition 1.3. (et A;) be a sequence of minimizers
andh, = curlA;. The energyJ. (u., A¢) gives two contributions: inside the vortex balls and
outside. Thus, first we prove Proposition 1.1 where the vortex lRllgvith centersp; are
constructed and where the vortex energy is bounded from below. We define

(1.22)

2

(1.23) He =~ Zdia,,i.
ielg
Then, Proposition 1.1 implies
1 1 [loge|
1.24 = —|Vhe|? > blpel,
(1.24) iz | Ve S o
Bi 2

iel

which gives the lower bound inside the vortex balls. The next step is to pass to the limit in
the energy outside the vortex balls. Lettihg be the weakH ! limit of ./ hex, we obtain the
following, which is similar to a standard result in homogenization theory

. |Vh|?
(1.25) liminf > | Vho- . AoVho.
e—0 aghgx
£2\U; B

This requires to introduce an auxiliary problem before applying the homogenization theory result
and it works because the vortex balls are small and thus can be taken out of the first integral.
Finally we derive from the Ginzburg—Landau equations the crucial fachthsatisfies

(1.26) hi(—divc}”) +hs> = e + Ve,

ex de

wherey, tends to 0 ang., defined in (1.23) tends to some&, both convergences being strong
in W—L" for r < 2. The notion ofH -convergence and a priori estimates allow us to pass to the
limitin (1.26) in order to get that the weal® limit of 4,/ hey, that we callig, solves

(2.27) —div(AoVho) + ho = wo.

Combining the lower bounds of the energy inside and outside the vortex balls (1.24)—(1.25), we
find

1
liminf - J (ue. Ae) > E(ho) > E(h).

e—0 &x
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The last inequality is true because (1.27) implies thais in V.
Section 3 is devoted to the proof of Proposition 1.4. The proof holds for any positive Radon
measurg:. We apply it tou, to get that:

1
I|msuph Je(ue, Ag) < E(hy),

e—0 ex

which will imply the desired results of convergence.

The upper bound of Proposition 1.4 is obtained by constructing test configurations as follows.
First, given a positive Radon measurgwe construct approximate measugeswhich converge
weakly tou:

ne

Me heleus’

wherepl is the line element on the circhB(p!, ¢) normalized so that’ (3 B(pt, ¢)) = 27. The
measureg., describes the vortices of our test-configuration. The difficulty is to choose the points
p'. satisfying a number of properties. We tilwith square’ of sizes(e). In each square, there

is at least a poinpx Wheref, = 0. We choosex points p. regularly scattered aroungk in

a ball of radius 1hex. The numbeng is chosen depending Qn(K) so thatu, converge tqu.

Once the vortices are constructed, the rest follows easily: the magnetia fieddlefined to be

the solution of

1 \Y%
(1.28) —(—div( h€> +h€> = lp.
hex ag

Then, we are the able to construct a configuration A.) such that curh, = h, andu, has
vortices at the pointg,. Moreover, we obtain

1 1
Js(us,As)wE/Q—|th|2+|hs—1|2.
£

2

Finally we are able to show that

. 1 A 1

lim sup / |Vhe|? + |he — 1|2<—/b du+—/Vh-.A0Vh+|h—1|2,
es0 | 2h2, 2 2

2 2 2

whereh solves— div(AgVh) +h = pu andh =1 0nds2.

2. Lower bound

In the following, we will denoteV u = Vu — iAu. We will often drop the subscripts We
consider(u,, A;) a family of minimizers ofJ,, thus a family of solutions of (G.L.). We can
state a few a priori bounds. Firstly, by the maximum principlg| < maxa. < 1. Secondly, by
minimality, comparing witha,, 0), we get

Je(ug, Ag) < Je(ae, 0).
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But, by hypothesis (H2) oan,,
Je(a 0)—}/|Va 12+ 0(h3,) < £+o(h2 ) < Ch
e\leg, - 2 3 ex) X nz ex) = ex:
2

Hence, we have the a-priori estimate
(2.1) Je(ue, Ag) < Ch,.

In addition, by applying a gauge-transformation(iQ, A.), we can choose the Coulomb-gauge
divA, =0in £2, with A;,.n =0 ona£2. With this choice of gauge, we are easily lead (see [29,
26]) to the a priori bounds

(2.2) |AcllLoo(2) < Chex,
(2-3) ”VM&‘”LZ(_Q) < Chex.
We begin with the proof of Proposition 1.1.

2.1. Proof of Proposition 1.1

Step 1 Let (u, A) be an energy-minimizer. Denoting| by p, since/, [Vul? > [, [Vp|?, we
deduce from (2.1):

1 2
(2.4) [ 190+ 5 (07 - ) < i
2
But,

[ 9ol = [ 1960 = @) + |V V@l - 29(p - va) - Vv

2 2
> [19(0 - @) P~ 219(o - var) ||V .
2

Hence, in view of (2.4),

[ 19060 = V@) P < i+ 190 = van) | e ezl
2

C
<Chet S 1¥(o ~ Va1
and, since 1n(e) < hex,
2 > C 2
/[V(p — Jag)|” < max{ Chg,, 7 < Chigy.
2
In view of (2.4), we thus have:

1

2
@(ag — p?)° < Ch3, < C|loge|?.

(2.5) %/ V(o — vaz) | +
2
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Step 2 Foranyr e R, let 2; = {x € 2/|p — \/a.|(x) > t} andy; = 0£2;. Applying the coarea
formula and arguing as in Lemma IV.2 of [27],

1
Cllogel?> [ 9(p = ) P+ 5 5 (a: — p2 /|v Ja)|[ae — 7
2

c +00
2—/r(yt)tdt.
€
0

Here, asin [27]r(y,) is defined as the infimum over all finite coveringspby ballsB1, ..., By
of the sumvrq + - - - 4 rx wherer; is the radius oB;. Combining the previous inequality with the
mean-value theorem we find that there exist&40, oG s‘] such that (y;) < Ce|loge|3.

Step 3 The next step is to construct the vortex-balls: starting from the chgsesovered
by balls By, ..., B; (whose sum of the radii is controlled hye|loge|2), we use the method
of growing and merging of balls used in [25,27]: one needs to grow these Balleeeping
a suitable lower bound on the energy they contain, until the desired size is reached, with the
desired lower bound. When some balls happen to intersect during the growth process, they are
merged into a larger one. We refer the reader to [27], and here we only need to apply the result
of Proposition IV.1 of [27] toA, andv = 7 = €9 in £2\£2;, o = e V9%l We then obtain the
existence of ball8; = B(p;, ;) such that &1.13) and (1.14) hold, and

1 1
26) 5 [ 1V6— P+ [ Ihhed? > xldlogel(1- o).
Bi\$2; Bi

with d; = deg(u, 3 B;) if B; C £2, and 0 otherwise. But we also have, from the Ginzburg—Landau
equation—V-+h = p%(Vy — A), and fromp < 1,

/|Vh|2=/,04|V<P—A|2</|VAM|2§Chng
2 2 2

hence

/ |h = hex|? < Crillh — hexllZ 4 ) < Crillh = hexl3y1 o)
B;

< Ch,eVIogel — (1),

Thus, (2.6) becomes

1
(2.7) > / |V¢—A|2>nldiII|098|(l—0(1)).
Bi\$2
Now,
1 1
= Vaul2> = 2V — A2
> / |Vau| > / P IVe |
Bi\$2 B\,

1 1
>3 f ac|Vg — AP + 5 / (0% — ae) Vg — AI?

B[\Qt Bi\gt
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1 C
> = (min ) Vo — A2 - / Vo — A2,
s(minac) [ vo—af— o= [ 1vo-al

Bi\§2 Bi\$2;
where we have used (1.13). In view of (2.7),

1 .
> / |vAu|2>n(rr;!_na8>|di|||ogs|(1—o(1)).
B,'\.Q,

So, using the hypotheses (H2) and (H3)wnwe are led to the two following lower bounds

1

(2.8) - / Vaul? > 7as(po)ld; 1| 10gel (L — (L),
Bi\$2;
1

(2.9) ; / Vaul2 > b(p)ld; | 10gel (1 — o(D)).
B,'\.Q,

This proves (1.15). O
2.2. Deriving the limiting equation

For any(p;, d;) satisfying (1.13)—(1.15), we can define

21
(210) He = h_exzdi(spiv

ielg
a measure of vorticity per unit of applied field. We will see that it remains a bounded family of
measures.

LEMMA 2.1.—-If A >0, and (u., A¢) is a family of minimizers of; with 4, = curlA,, we
can extract a sequeneg — 0 such that there existgy — 1 € Hol(Q), anduo € M with

he,

hex
He, — Lo iN the sense of measures

—1—~ho—1 inH}Q),

Proof. —As seen in the previous proof, sin¢e., A;) is a solution of the second Ginzburg—
Landau equation

/IVhSIZS/WAgungCth
2 2

and

/ |he — hex|* < Chy

2
Hence i, /hex — 1 is bounded i} (£2), and we can find a sequengg— 0 such that,, /hex
converges weakly inHOl to somehg — 1. On the other hand, from Proposition 1.1,

lo
Chex| ge|

> Je(ue, Ae) 2 Y wldi|b(pi)|loge|(1—o(1))

ielg

>boy_ 7ldi|lloge|(1— o(D),

1
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wherebg is given by hypothesis (H1) an.. Hence,

/| ﬂZIdI
sn— hex <C,

thus(u,,) is a bounded sequence of measures, and extracting again if necessary, we can assume
thatu,, converges to someg in the sense of measures

PrROPOSITION 2.1. —Let g and g be the measures and fields defined in LenflaThen
there existsg < 2 such thatug € W17 (£2) Vr € (ro, 2), andhg is the unique solution inyL"
of

—div(AoVho) + ho=puo in $2,
(2.11) {hozl onog.

The proof of this proposition requires the following lemma, a slight refinement of the result
stated in [26], Lemma I.3.

LEMMA 2.2.—Under the hypotheses of Lem24, for anyq > 2,

1 iug, V .
h—curlM — e —60 strongly |n(W01"’(.Q))/.
E—>

ex de

Proof. —Denote2 = 2\ |J; B;. On $2, |u.| > bo > 0 andv, = u./|u.| is well-defined. Let
g >2,and € W&’q. We need to show that:

1 (iug, Vug) 2w A '
. fscu = lZd@(p,)

e
2

Dropping again some of the subscripts, we have

(2.12) /5 g (i Vu) _L/VLS.(iu,Vu)'
hex X

he de
2

Then, the method consists in splitting this integral into the integral over the vortex-balls (which
is going to be negligible because the balls are small enough) and the integra2ovtbe
complement of the balls.

Step 1 We prove that

(2.13) |/h ViE (Iua )|—0(1)||V§||Lq<9)
UB[ ex e

Indeed, since, > bg > 0,

/‘ l (iu, Vu)
hex de
Ul Bl

1 [IVull 20 Yp
<—7HV§”L(1(VOI( B)) .
bo hex L;J l



354 A. AFTALION ET AL. / J. Math. Pures Appl. 80 (2001) 339372

where ¥ p + 1/¢g = 1/2 and we have used Hdélder’s inequality twice. Using (2.3),
(i, Vi) Yp
‘ / . ViE C<Zr,~2> IVEllLa(2)-
ex ag

i
In addition,(}"; 127 < (3, r)?? = o(1) since we know tha}_,; r; — 0. Therefore, (2.13) is
proved.
Step 2 We observe that

2
i/Vlé (iu, Vu) 1 lu| (iv. Vo) - Ve
X

he ag hex as
2 Q
1 1 2
(2.14) = —/(iv, Vv) - V41 + —/<|“| — l)(iv, Vo) - V%&.
hex hex ag
5 o)
We claim that
1 |u|? . n
(2.15) — — 1) (v, Vo) - VYE| < 0o(1) | VE|l Lo
hex dag
o)
Indeed,
= /('”'2 —1)(|v Vo) - Vg < /(lulz—a )IV||VE|
hex| ) \ ac bohex ’
2 Q
Vol 2a
< C— 2 NVE s |1l — e | -
X

with 1/p + 1/¢q = 1/2. From the a priori estimate (2.1),

/(|u|2 —a:)’ < c/(lm2 —a:)? < Ce?h2 = o(1),

2 2

hence, using|Vv||L2(fz) < ClVull 2¢o) < Chex, We obtain (2.15). Combining (2.12)—(2.15),
we have

(2.16) — / o 4 V”) / (iv, Vv) - vLs+o(1)||sn

Step 3 We evaluatgfg(iv, V) - VL&, Noticing that curliv, Vv) = 0 on§2, we have

[ v [(u3)- | o)

There remains to prove that

.0
(2.17) > f 5(“)’%):Zﬂzdig(ai)+0(hex)||5||wg,q(9)~

i aB;N$2
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Let f be aC* function defined ofR ;. such that

fx)=x for x < bg/2,
(2.18) fx)y=1 forx > bo,
|f'(x)|<C foranyx >0.
We can define the complex-valued function:
(2.19) w = f(ul)v.

It has a meaning everywhere by setting= u where|u| < bg/2. Then, it is easy to check that

(2.20) [Vw| < C|Vu| in £,
and
e L)L [ o)
L 3B;NS2 L 9BiNgR2
Using Stokes theorem, we have
(2.22)
) : .
Z/(é —S(m))(lw, %)’ = }Z/v%g-ow,w)ﬂs —&(pn)eurl (iw, Vw)|.
Y i B

But, on the one hand,

Z/vis (iw, Vw)| <

v 1/p
c! "’”LZ LG (Zvol (B: >)

e

hex

IVull2 Yp
<O L vell, (Z 2)

ex X
(2.23) <O(DIIVE]lLa

as in the proof of (2.13). On the other hand, using the fact that, ginee, Wol’q embeds in
%5 for someg < 1, and|curl(iw, Vw)| < C|Vw|? < C|Vul|?, we have:

P |Vu|?
< (maxri) HEXEDS “hex
; ; o, ex

1 -
ZE/(g_g(Pi))CU“(Iw,Vw)
i XaB,'

IVullZ
< e VIR —— = g e
ex

(2.24) < hexe PVI00¢] 51y, L4 =0(1)||€||
sincehex < Cllogel. As in [26], the proof remains valid even B; mtersectsaQ Combin-

ing (2.23), (2.24), (2.21), and (2.22), (2.17) is proved. Consequently, in view of (2.16), we can
conclude that

1 iu, vV 2
—efscurl ('”a o ”st(p, )| <olElly;
2
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hence tha;liexcurl(i“;l—gv“) — j1e — O strongly in(Wy?)’ as stated. 0

Proof of Proposition 2.1—- For the sake of simplicity, we writeinstead of,,.
Step 1 We prove that:, satisfies

(2.25) i(—div(m> +hg> = fe.
hex e

with fo = ue + ¥, wherey, — 0 strongly in(Wc}"’)’ for ¢ > 2. Indeed, we start from the
second Ginzburg-Landau equation:

—Vthe = (iue, Va,ue),

divide it by a. and take the curl:
Vh g, V 2
—div< S):curl((lug’ ne) g, el )
de dg dg
hence

i 2
(2.26) - div<wzs) +he = curt e V8e) | oy (As<1— e ))

dg dg dg

Now consider a test-functiohe W&"’(Q), q > 2,

(oo 2E))|<|fren o)

< CllAelre@) IVEN 200 las — 1] 2q)-

The a-priori bound (2.2)|| A¢ || L~ () < O(hex) and the energy boundla, — |u|2||L2 < Cehey,

yield
‘/ ( < |M|2>>
Ecurl|{ A [ 1—
de
Q

Consequently, cutld, (1 — |Z—‘Z)) — 0 strongly in(Wc}"’)’ for ¢ > 2. Combining this with (2.26)
and Lemma 2.2, we get the desired result.

Step 2 We prove thatf, converges tquo, the weak limit ofu, in W17 (£2) for anyr < 2.
Indeed, from the upper bound on the energy, we know %th is bounded inL2(£2),

hence, in view of (2.25)f; is bounded inH 1, hence inW 17 for p < 2. But, on the other
hand,f, = s + V., with ¥, bounded inW —1-7 for p < 2, henceu, remains bounded i 1.7
for p < 2. Furthermorey. is also bounded in the sense of measures, therefore we can apply
a theorem of Murat (see [22] and the annex of the paper by Brezis who gives a simpler proof)
which asserts that such/a., bounded in the sense of measures andvin:? for p < 2, is
necessarily compact i —1" for r < p. Since this is also the case f¢t, which converges to
zero, this implies thaif, is compact inW =27 for r < 2. In addition, its limit in the sense of
distributions isuo, hence it must converge jog in W17,

Step 3 We wish to pass to the limit in (2.25), but it is not possible directly because the
H-convergence requires a right-hand sidedn'. So we are going to pass to the limit in the

<O(D[IVE]l 2.
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duality sense for a fixed right-hand side. leeg W14 for ¢ > 2. Using the hypothesis (H1)
ona,, (which implies in particular the uniform ellipticity of;l’), we can apply a theorem of

Meyers [21]: there existsg > 2, such that ifg is in W14 with 2 < ¢ < g0, then equation

. (Vv .
(2.27) - d|v< o ) +v,.=g Ing,
v, =0 onos2,

has a unique solution, in Wol’q. Thus, we have

he
2.28 — =1, = 14 -1, 4
( ) ng‘/<hex g>W—1,q w-14 (fe Us)qu

where Yq’ + 1/¢g = 1, and we want to pass to the limit.

More precisely, Meyers’ theorem yields that the oper&owhich maps to v,, is a bounded
linear operator fronWw 14 to W&’q (for 2 < g < qo), hence up to extraction of a subsequence,
ve has a weak limitg in W&"’. We assumed in hypothesis (H4) thal;ttr H-converges tQ4y.

By the definition of H-convergence (see [23]), and sinﬁ@g’q - Hol’ this implies thatg is the
solution of:

—div(ApVuwg) +vo=g in 2,
(2.29) {uozo onas?.

Since this possible weak limify is unique, the whole sequeneg converges tag weakly in
W&’q. In addition, f, converges strongly tag in w14 thus we have

W*]-»q/(fé‘ - 17 US)Wg'q g </~'L0 - 17 UO)'

On the other hand;= — 1 converges weakly tho — 1 in H}. Thus,

h
. /<h—€—1,g> — (ho—1, g).
Wy 1 \fex w—Lla

Therefore, we can pass to the limit in (2.28), and we are led to
(2.30) Wg*‘/ (ho—1,8)w-14 = w—ld (o —1, U0>Wévq~

Meyers’ aforementioned theorem, also yields thatfpK ¢ < 2, (2.11) has a unique solution
in W14'. Since (2.30) holds for any in W24, it implies thathg is this solution. O

2.3. Deriving a lower bound outside the vortex balls

Next, we would like to deduce from (2.11) a lower bound like

- Vh|?
liminf / l hzl >/Vh0._AOVh0.
2

e—0 Aeligy
£2\U; B;
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But this is impossible to derive straightforwardly because the domain of integration in the left-
hand side integral is na2. To remedy this, we replade. by an auxiliary fieldh,, a sort of
truncated of:, in the balls. This is a trick that was already used in [27] Proposition IV.1, Step 1.

LEMMA 2.3.-There exist&, such thati, — 1€ H3(£2) and
(1) 7= —1—ho—1in H}(2),

(2)
|Vh|? |Vhe|?  —
/ +/|hs—hex|2>f S+ |he — hexl? — 0(2),
Ae dg
2\U; Bi 2 2
(3)
o Vh,|?
liminf Ve >/Vho-.A0Vh0.
e—0 dag
2 2

Proof. —~We consideA, a solution of the following minimization problem:

(2.31) min / as|Vo — A2 +/ lcurlA — hey|?,
AeHL(2,R?),divA=0
2\U; Bi 2

whereVe denotes the gradient of the phaseipfvhich is well-defined in2\ |; B;. If we write
he =curlAg, and we test (2.31) with,, we have

(2.32)
/ a8|V<o—A_s|2+/|E—hex|2< / ag|V<o—As|2+/|hs—hex|2<Ch§X.
2\U; Bi Q 2\U; Bi 2

In addition,z, and A, satisfy the following equations:

:VLh_s =a,(Vo — Ay) in 2\ U Bi,
(2.33) he =cst =¢; onB;, Vi,
he = hex onas.

Thus, it satisfies

Vhe he
(2.34) —div( £ ) + = =,

aghex hex

wherev, is the measure defined by:

l.q 1 ap 1 /
2.35 VE € Wy (82), 2), = — — — [ ci&.
@3)  veew '@, @2, [ue=Y = [ef e [at
2 ! 9B, ! B;
On the other hand, using Cauchy—Schwartz inequality,

1 1 _
o [ =l [ e
7 U; B

i Di

he

hex

<&l Lo

<Zt: ri)l/z’

L2
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In view of (2.32),] ,f’::x || .2 is bounded, andy_; r:)Y/? < 3", r; — 0 from Proposition 1.1. Hence,

=05z

1
o2 s
i B

On the other hand, the same proof as for Lemma 2.2 shows that
1 dp
— | —&-— d
i | et o
! 9B, 2

Hence, in view of (2.35)y, — . converges strongly to 0 ifwol’q)/. The same argument as in
Proposition 2.1 allows to conclude from (2.34) that

= 0D M y2a-

e .
£ _1-ho—1 inHIR),
hex

using the uniqueness of the solution of (2.11).
Using (2.32) and (2.33), we get

IVhe|2 — _ _
/ e — hexl® = ae|Ve — A2+ [ [he — hex|?
£

a
2 2\U; B; s
< / as|V¢—Ag|2+/|hs—hex|2.
-Q\U,‘Bi 2

As in the proof of Proposition 1.1, we have

Vh,|?
/ 0V — A2 < / VReI" | o),

dg
2\U; Bi 2\U; Bi

Thus, assertion (2) is proved. In additidn /hex — 1 is bounded irH&(Q) and the convergence

to hg — 1 is weak inH&. There remains to prove the third assertion. But it is a classical result
in homogenization theory (see [17]) that, Sirgghex — 1 — ho — 1 in Hol(Q) and iI H-
converges todg, '

liminf | —

o(5)
hex

e—0 dag
2

2
> / Vho - AgVho.
2

This completes the proof of the lemman
We recall that we definefl in (1.9).

LEMMA 2.4. -With the same notations,

Je(ue, As) _ A 1
Jelue, Ac) 2E/MMOH_E/VhO-AOVholeho—lIZ:E(h0)~

2 2

liminf 5
e—0 hex



360 A. AFTALION ET AL. / J. Math. Pures Appl. 80 (2001) 339372

Proof. —The energy can easily be bounded from below as follows, splitting between the
contribution inside the vortex-balls and the contribution outside:

1 2 2
Je(ue, Ag) > 2 [Vaul|®+ |h — hex|

1 1 1
>3 / |vAu|2+§ / p2|V<o—A|2+5/|h—hex|2.
UiEIBi Q\U,‘B,‘ 2

As previously, since for the energy-minimizef&/-h = (iu, Vau), and|p? — a.| < C/|loge]
in 2\ J; Bi, we have

Vh|?
/ p?IVe — Al = f VA (1 - o).

dg
2\U; Bi 2\U; Bi
Therefore, in view of Proposition 1.1,

|Vh|?

dg

Jetus, A2 > 7w Y ldib(pollogel(L- o) + [

£\U; B

(1—o(D) + / I — hexl?,
22

and with assertion (2) of Lemma 2.3,

Jo(ue, As) _ 1]loge| 1 /|Vh_s|2 / he
b — — = 1 —0(1).
hgx 2 Frex [el + héx @ + Frox (1)
2 2
We thus obtain, using assertion (3) of Lemma 2.3 that:
J , o
(2.36) liminf F(L;j 5) (' gg'/m 8|) /Vho.AOVho—i-lho—llz.
ex
Similarly, using (2.8), we obtain
) lo
(2.37) liminf =—2—2 (”8 8) f—(l gg'/ Fms) /Vho AoVho+ |ho — 1.

Then, using the weak convergenceiof to ug in M, and the weak lower semi-continuity of
n > [o blu|, we conclude from (2.36) that

N/ ,
nmmf% > /bluol+/Vh0-.A0Vho+|ho—1|2:E(h0). O
ex
2 2

The final convergence result will then follow from the combination of this result with the upper
bound of Section 3, leading to the fact that necessaglhas to be:,, the minimizer ofE, and
MO = s
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3. Upper bound

In this section we prove Proposition 1.4. First we remark that ifs the solution of
—div(AVh) + h = u with boundary value 1, then

h(x) —1= / G(x,y)d(u =1,

whereG (-, y) is the solution of- div(AVh) + h = §, vanishing ord£2 andu — 1 denotes the
difference between the measureand the Lebesgue measuresth From this it follows easily
that

(3.1) /VhAVh+m-1F:[/GuJ0MM—DQOMM—D@)
2

This last expression will be the one we use.

To prove Proposition 1.4 we will then need some properties of the Green funcfigns
Go associated to the operatorsdiv(A,Vu) + u and —div(AoVu) + u respectively. These
properties will be proved at the end of this section.

LeEmmMA 3.1.-Leta. = b+ B, be a sequence of functions satisfy{hti) to (H4), and.Ag be
the homogenized limit of the matricgk = a, 17 ase goes to zero. Forany € £2, let G, (., y)
(resp.Go(-, y)) be the solution of-div(.A:;VG;) + G, = §, (resp.—div(AgVGo) + Go = §)
that vanishes oA s2.

The following properties hold

(1) Ge(x,y), Go(x, y) are positive functions, and symmetricirand y.

(2) A denoting the diagonal irR?, there existsC > 0 such thatG.(x, y), Go(x, y) are

bounded by

C(|loglx — y|| +1)

forall x,ye 2 x 2\ A.
(3) For any compackK C §2, there exist€ > 0 such that for any, y € £2

C
ae(x) loglx — y| < ——,

Ga(x’y)"‘ 27_[ T](E‘)

wheren (¢) is defined i(H3). o
(4) G, converges td@g locally uniformly in£2 x 22\ A.

PROPOSITION 3.1. —Assume thatd > 0 and that(H1) to (H4) are satisfied. Lej. be a
positive Radon measure with supporth and (p!)i<i<,, be families of points in2 such
thatVi # j

(3.3) ’pé—pg’ > 4g, d(pé,8[2)>ot0>0,
whereqg is independent of,

ne
Z(Spé —> u, inthe sense of measures
im1

2

(3.4) o
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and
. llog|pi — pll|
3.5 lim —f " 1—0.
( ) s—>0( ; hgx a—0
Ipi—pll<a

Then there exist configurationis,, B.).-o such that

B, 2y e
(3.6) limsu pw+) < Zimsu up L zi=1 9 (Pe) uDY 1%(1?8 //God(u Dd(u -1,
e—0 hex 2 e—0 hex

whereGy is defined in Lemma.1.

This proposition states that under reasonable hypotheses on pbjntse can construct a
good test configuration with prescribed vorticespat Moreover, (3.4) implies that, / hex iS
bounded. The following proposition asserts that the construction of ppinsspossible.

PROPOSITION 3.2. —Assume thatA > 0 and that(H1) to (H4) are satisfied. Then given
any positive Radon measuge of the formo (x) dx whereos is a positive continuous function
compactly supported if2, there exist families of point!)1<;<», satisfying(3.3), (3.4), (3.5)
and such that

2 e i
(3.7) lim sup—z’:1 e (Pt)

e—0 hex

< / b(x) dut(x).

2

The proof of Proposition 1.4 follows easily from these two propositions. First, taking any
positive Radon measure supported in2, we may approach it in the weak-* topology by
measureg., = o, (x) dx whereo, € C.(R2) is a positive function such théitn 7 (i,,) < I ().

This is done using a mollifier and convolution. Applying Propositions 3.1 and 3.2, we may
construct test-configuratioris”, B”).~o such that

Je(v2, BY) o A

lim sup 2 / b(x) dyan () + % / / God(1n — 1) d(in — 1).

e—0 héx

Therefore the same inequality is satisfied if we replag¢e B)) by the minimizing configuration
(ue, Ag). This proves that for eaoh,

. J ,A
lim supw
e—0 hex

< I (),

and then,

. Je(ug, Ag) A 1
(3.8) |ImSUIOL < —/bdu+§// Go(x, y)d(u — 1)(x) d(p — D) (y).

e—0 hgx 2

Using (3.1) we get the conclusion of Proposition 1.4.



A. AFTALION ET AL. / J. Math. Pures Appl. 80 (2001) 339-372 363

3.1. Proof of Proposition 3.1

The method for constructing a test configuration B.) with prescribed vorticeSpg)lgigng
follows closely that of [28]. First we define. to be the solution of:

(3.9) —div(AVhe) +he =Y pnl in 82,
e = hex onas,

wherey! is the line element on the circB(pL, ) normalized so that’ (3 B(p, €)) = 2.
Then we letB, be any vector field such that clt} = &.. Finally, we definev, = p. €% as
follows: first we let

0 if [x — pf| < e for somei,
_ e —
(3.10) Pe(x) = «/ag(x)w if & <|x —a| < 2e for somei,
1

Vag(x) otherwise,
and for anyx € 2. = 2\ |J; B(p;. ¢),
(3.11) @e(x) = f (B: — AVt h,).Tde,

(x0,x)

wherexg is a base point in2., (xg, x) is any curve joiningrg to x in 2, andr is the tangent
vector to the curve. From (3.9), we see that this definitiopafc) does not depend modulo
27 on the particular curvéxo, x) chosen. The fact that, is not defined on J; B(p!, ¢) is not
important sincep, is zero there. Thug, satisfies

(3.12) —A,Vth, =V, — B, in £2,.
Having defined; = p, €% we estimate/, (v., B.). Recall that
1 2 2 2 2 1 2\2
(3.13)  Je(ve, Be) = 2 IVpel”+ 0 |Vpe — Be|” + |he — hex|” + ?(as — Qe ) .
Q

Using the fact thatVa.| < hex (hypothesis (H2)) and that the number of poipisis less than
Chex — Which follows from (3.4) — it is not difficult to check that

1 1 2
(3.14) > / |V |? + ?(as - ,Osz) < h,.
2

Also, from (3.10), (3.12),
2 2 2 _
P IVoe — Be|“ < ag| Vo — Be| =Vh, - A:Vh,

in £2¢. Therefore, replacing in (3.13) and in view of (3.14)

. J, , B, . 1
(3.15) lim supw <limsup—- / Vhe - AeVhe + |he — hexl?.
e—0 hex e—0 2hex.Q
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Becausé, is the solution of (3.9), we may rewrite the right-hand side of this inequality as

limsup= //G (x, y) d(pee — D (x) d(pe — D) (y),

e—0

where

ne

A
(3.16) e hexZus,

andy! is defined in (3.9). It follows from (3.4), (3.9) and (3.16) that— u ase — 0. Thus, to
finish the proof of the proposition, it remains to show that:

lim sup; // Ged(pue — D d(ue — 1)

e—0

(3.17) < %Iimsup 2 glaF(Ps // God(n — 1) d(u — 1).

e—0

Proof of (3.17)— Leta > 0 and letA, = {(x, y) | |x — y| < «}. Recall thatu, — . Hence,
it follows that (u, — 1) ® (ue — 1) —> (0 — 1) ® (u — 1) ase — 0. But from Lemma 2.1¢G,
tends toGo uniformly in 2 x £2 \ A, therefore

(318) i 2 // Ged(ue — D e~ 1) = // God(i — 1 d(u — 1),
2x2\Ay Q2x2\Ay

Now we treat the integral on,. More precisely we prove that

(3.19) lim sup// Ged(pue —Dd(ue — 1) < I|m supM + 0, (1),

e—0 e—0 hex

where limy,_,00,(1) = 0. Adding (3.18), (3.19) and letting — 0 yields (3.17). We are left with
proving (3.19). First we use the boup@; (x, y)| < C|log|x — y|| from which one easily gets

// ngwa—l)d(ug—l)g// G dyte de + Ca?[logal.
A A

Therefore (3.19) will follow if we prove

ne i
(3.20) lim SUp// G:.du.due < — I|m supM

e—0 e—0 hex

+ 04 (1).

To prove this, we come back to the definitiongaf. From this definition, we have

1
(3.21) //Gsduadusgh—z< 3 //GsdugduéJrE://Gsdugdus)
ex
Ay

1I<i#j<ne
Ipi—pl|<2a
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Let us first estimate the first sum on the right-hand sidex & Suppy,g =93B(pL,e), y €
Suppug andi # j, smce|p€ — p€| > 4e, then |x — y| > 2|p€ — pl|. Using the bound

|Ge(x,y)| < C|log|x — y|| together with the fact thaps p8| < 2« anda is small enough, we
get

//ngu;dug' < Cltog|p; = p!|-

Then, by hypothesis (3.5),

1 . )
(3.22) limsup— Y~ Gedul du <0y().
=0 hex 4 T,

\pi—pll<2a

As for the second sum in the right-hand side of (3.21), we use property (3) in Lemma 3.1 to get
that for any 1< i <n,, and anyx, y € Suppu.,,

C
@ (x) y| < — < |loge|.

(3.23) Ge(xy) o v,

But x € Suppul is equivalent tgx — p| = . Then property (H2) of:. implies thata, (x) ~
a.(pl) ase — 0. Replacing in (3.23) and integrating with respectfo® . yields

[ G- du dut < 2a (o) logel (2 + 0.(1)

and then, summing overd i < n, and dividing byhey,

2r S i
(3.24) |ImSup Z// Geduldul < = ImamM_

e—0 e—0 hex

Here we have used the fact thdbge| ~ Ahex. Thus (3.20) is proved and the proposition
follows. O

3.2. Proof of Proposition 3.2
Letu =o0(x)dx, C = ||lulls andag = dist(suppu, 02). Also, let
(3.25) 2={xeR|dx 382)>ao/2}.

Recall that from hypothesis (H3) an there exists a positive functidie) such that

(3.26) 3(e) K and foranyx € 2, min g, =0.

(log |loge|)1/?’ B(x,5(c))

For anye > 0, we tileR2 with open squares of sidelength(2) and letC(e) be the family of
those squares that are entirely inside We denote by x the center of a squark. Sincepu is
absolutely continuous with respect to the Lebesgue measure, weiayes C52.
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Now the family of pOintSpé)lgigng is defined as follows: for ani € K(¢), we let

K

(3.27) n(K, )= [7}"**(8)“( )},
21

where[x] is the biggest integer no greater thanUsing (3.26) there is a poinix € B(ck, §)
such thaiB. (px) = 0 (pk is a pinning site). We now pick(K, ) points evenly scattered in the
ball B(pk, 1/ hex), and we callP(K, €) their union. By evenly scattered we mean that for any
P-4 €P(K,¢),

C
3.28 lp—q|l > ————.
(3:28) A NV TT o)

We let

(3.29) ne= Y n(K.e), and Ple)= |J P&, o =(p)icic,,
KeK(e) KeK(e)

be our family of points. We now check that this family satisfies (3.3), (3.4), (3.5) and (3.7).
(3.3) is clear from (3.28) ifpL, p£ belong to the same pinning site. It is even more true if
pg, pg' do not belong to the same site since in this case their mutual distance is atleast-z.
Moreover from (3.25) we havé(p., 952) > ag/2.
For (3.4), let

ne

2
3.30 He=-—) 8,
(3:30) i 2

and f be a continuous function if2. We lety, = SUPk ec(e) SUR yek | f (X) = F(0I. Then since
the size of the squares k() tends to zero witla, so doeg,. Let K, be the union of the squares
in K(g), then fore small enough supp C K. and

’/fdﬂ_/fdﬂa

Itis clear that the second term on the right-hand side goes to zerawhtr the first term we
note that from (3.27), (3.30), we have(K) — s (K)| < 27/ hex While the number of squares
in KC(¢) is of the order of 152. From (3.26) it then follows thal g o) 11 (K) — e (K)| tends
to zero withe. We thus have lim.o [ f du. = [ f du and (3.4) follows.

We easily deduce (3.7) from (3.4). Indeed from (H2) and the fact that each pointis at a distance
at most ¥ heyx from a pinning site, we get that. (p) ~ b(p) ase — 0, uniformly in p € P(e).
Moreover, since:. / hey is bounded,

<o Y 1K) = pe(B)| + ¥e (e + 1) (Ke).
KeK(e)

i 2 20 b

e—0 ex e—0 I’lex

_ / b(x) due (),

by the convergence qf; to .
It remains to prove (3.5). We split the sum in (3.5) as followsZlet) be the set of pairs of
indices(i, j) such that i i # j < n. and pi, p! belong to the same square of the subdivision
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K(e). Let J (¢) be pairs(i, j) such thatpi, p£ belong to different squares. Then

331) Y loglpi—pill= ) lloglpi-pill+ D |log|pl—pll|
i#] (i,)eZ(e) (i,))eT (e)
Ipi—pil<a |pi—pll<a |pi—pl|<a

The first sumin (3.31) is estimated as follows. For eviérg K (), u(K) < €82 thus the number
of points of P(¢) in K is less tharC§2hex. The number of squares being of the ordes of, the
cardinal ofZ(e) is less tharC$2h2,. Using (3.26), (3.27) and (3.28), we find

(3.32) > |log|pi - pi|| < ChZs%log |loge| < hiy.
(i.))eZe)
Ipi—pll<a

To treat the second sum in (3.31), we note tha ibnd K’ are distinct squares iki(¢) and
p<€K,qeK' then
Vxe K, VyeK', |x—y|<4p—ql

Thus we may write, using the fact thatK) < C82:

> ||og|p:;—pg'||<Ch§X//(||og|x—y||+1)dxdy.
i#] KxK’
péeK,péeK’

Summing over pairs of squard§ K’ € K(¢) such thatk x K’ intersectq(x, y) | |x — y| < a}
we get fore small enough

(3.33) > |log|pi — pi|| < Ch, // (|loglx — y|| + 1) dx dy.
(iw.j)EJ(S) [x—y|<20
|pi—pi|<a

Summing (3.32), (3.33), dividing bﬂgx and lettinge and thena tend to zero yields (3.5).
Proposition 3.2 is proved. O

3.3. Proof of Lemma 3.1

The fact thaitG, and G are positive is a simple consequence of the maximum principle, that
they are symmetric is standard and follows from Green'’s identity.
The inequality

Ge(x,y),Go(x,y) < =Clog|x — y|+C

is a well known property of Green functions for elliptic operators in divergence form, a proof can
be found in [32].
To prove property (3), we let:

as(y)
T

Ve(x,y) = Ge(x, y) +

log|x — y|
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andL. be the operatai > — div(A,Vu) + u. Then lettingf. = L.v.(-, y), we have

as(y) ag(y)
=y v —y|— =27 _—
o o oglx — y| o oglx — y|

(334) fS(-x’y):_

Thus for any 1< g < 2, there is & independent of ande, such that| f: (-, ¥)||e < C/n(e).
On the other handy, (-, y) is bounded inw14(£2) independently of andy (see [32]).

Now, Theorem 2 of [21] implies that there exist> 2 and p’ < 2 such that ifu satisfies
L.u = f, then for any compadk c 2,

IVulliey < CEYIVUll Ly o) + 1 f llw-10(2))-

We may choosg < 2 such thaW—1» ¢ L7 andp’ < ¢g. Thus, we find that, (-, y) is bounded
in WL7(K) by C/n(e). Sincep > 2, this yields the uniform boundx € K, Vy € £2,

C(K)

(X, WIS ——
Ve (x, ¥ ©)

i.e. property (3).

To prove property (4), we note that for amy> 0, L.G.(-, y) = 0in 2\ B(y, @) while G.(-, y)
is bounded inW1-4(£2) independently of andy (see [32]). Using the aforementioned result
of [21], we find thatG. (-, y) is bounded inWli’cp(Q \ B(y, ), for somep > 2, independently
of y ande, thusG, converges locally uniformly in2 x £ \ A, whereA is the diagonal. The
limit is necessarilyGo, sinceGo(-, y) satisfiesLoGo(-, y) = —div.AgV Go + Go =8, and L,
H-convergestd.g. Lemma 2.1 is proved. O

4. Convergence results

We can then proceed as in the rest of Section Il in [28].

PROPOSITION 4.3. —The minimum of£ is uniquely achieved by, € C17(2) (Vy < 1)
satisfying

Ab .
hey >1— - in $2,
hey =1 onos2,

(4.1) s = — diV(AVhy) + hy > 0,

o 9)jece

As in [28], we divide the proof of this proposition into several lemmas.
LEMMA 4.1.-Letu] andu, be the positive and negative parts of the meagureThen
Ab

h* =1- 7 /.L: a.e,
Ab _
h* = l+ 7 2% a.e,

1 Ab<h <1+Ab
2\*\ 2
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Proof. —As in [28], the minimum ofE is achieved by somé,, by lower semi-continuity.
Performing variationgl + ¢/ ). where f € C9(£2), and looking at the first order in— 0, we
find similarly as in [28] that

Ab
7|M*| + (hx — s =0.

Hence,
Ab
he=1-" ul ae,
2
Ab _
I’l* = 1+ 7 /L* a.e.

As in [28], considering variationg, + v, wherev € M N H~1 andv and i, are mutually
singular, we are ledto+ 42 <h, <1+ 4. O

LEMMA 4.2. —u, is a positive measure.
Proof. —
/MAM—D+=/MHM—D+—/MHM—D+
2 2 2
Since(hy, — 1)+ =0 uf-a.e., we have

/M*(h*_1)+:_/l/‘;(h*_1)+

2

2
= | (—div(AoVhy) + hy) (he — D)
£2

_ /'Vh*«JMth-%hAh*—1>>o,
he>1

becauseAy is a symmetric positive matrix (this follows from the compactness of the set of
matrices bounded from above and below). We deduce that

/uam—n+=q

£2

but sinceh, — 1= Ab/2, u, a.e., we have

Ab
/7”* :07

£2

hencen, =0, andu, >0. O

Thus,h, satisfies all the properties listed in (4.1).
We can now complete the convergence results. From the upper bound of Proposition 1.4 and
Lemma 2.4, we deduce that for our family of minimizéss, A;),

Je(ug, Ag)

o > E(ho) > E(hy).
ex

MiNE = E(hy) > liminf
\% e—0
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h being the unique minimizer af, we conclude thatig = &, and thuguo = .. We also obtain

(4.2) jim 22%eA0) _ pa.

e—0 hgx

Since the possible limits are unique, the whole fankilyheyx converges tdi,, and the same
for we.
In view of (2.37), we have

o (e, Ag) 1 |Ioge|/ 1/ 5
liminf ————= > liminf = = | Vhye- AgVh he —1
v} héx eL0 2( Frox aglpie] +2 * AO |y |
2 2
A 1
> E/bm*wé/vm-AOVh*+|h*—1|2,
Q Q
while
. J(ug, A A 1
ImsupM < —/bIM*IJr—/Vh*-.AOVh*+|h*—1|2.
0 héy 29 29

Thus, we deduce that

lim /as|,uvs|=/b,u«*'
e—0
2 2

|iminf/aslug| >|iminf/blual >/blu*|,
e—0 e—0
2 2 22

On the other hand,

hencef,, blue| — [ bus, while [, bue — [, bus. We conclude thal, b(|we| — pe) — 0
and thugu.| andu, have the same limiting measuysg. This proves (1.16), (1.17), and (1.18).
Following [28], Section IV, we can also prove easily the following:

PrROPOSITION 4.2. —If A =0, thenh, =1 and }f’—; — 1 — 0 strongly in Hol(Q). If A >0,
then}f’—;x —1—hy—1in H&(Q), the convergence is not strong and

|Vhe|?
hgxas

— Vhy - AgVhy + Abpy  in M.

Proof. —First, it is easy to get, as seen in Lemma 2.4 for example, that

Vhe|?
/|vAgus|2>/@(1—o(1>),
2 2 de

thus, we have

T e Ay 1 (1 [ |Vh|? 2
(4.3) Ilgn_lgf 2 > I|£n_)|51f " (5/ ” + |he — hex|
Q

ex ex

A 1
(4.4) >3 [buet 5 [ Vo AgVh 4. - 12
2 2
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The caseA = 0 follows easily from the upper bound mip(u,, A;) < o(hgx) of Section 2

combined with (4.4).
The convergence df; /hex t0 h4 is weak inH?, in general, thus strong ib2($2), and

2
Iim/ :/|h*—1|2.
e—0

2 2

Combining this to the convergence result (4.2), we have

1 [ |Vhe|? A/‘ 1/

4.5 lim = =— b — | Vhy - AgVh,.

(45) "2 ) hza ~2) et Ve AVhs
2

2 2

h_g_]_
hex

Then, we argue as in [28], Proposition IV.1. Roughly speaking, one considers any open set
U C £2, and gets a lower bound

. Vhe|? . Vhe|? Vhe|?

I|m|nf/| eI” _ liminf / V| + / [Vhe|

e—0 hgxag e—0 hgxag hgxag
U

UN(Y; B) U\VU; B;

>A/blua|+/Vh*-Ath*>A/bu*+/Vh*-Ath*.
U U U U
Since this is true for any/ C £2, comparing this to (4.4) and (4.5), we obtain as in [28],

|Vhe|?
h&ae

— Vhy - AgVhy + Abpy  in M. O

This completes the proof of Theorems 1, 2 and 3.
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