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On a reflexive Banach space X , if an operator T admits a functional calculus for the
absolutely continuous functions on its spectrum σ(T ) ⊆ R, then this functional calculus
can always be extended to include all the functions of bounded variation. This need no
longer be true on nonreflexive spaces. In this paper, it is shown that on most classical
separable nonreflexive spaces, one can construct an example where such an extension is
impossible. Sufficient conditions are also given which ensure that an extension of an AC
functional calculus is possible for operators acting on families of interpolation spaces such
as the Lp spaces.
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1. Introduction

Given an operator T on a Banach space X , it is often important to be able to identify algebras of functions U for
which one may sensibly assign a meaning to f (T ) for all f ∈ U . In many classical situations, the possession of a functional
calculus for a small algebra is enough to ensure an extension of the functional calculus map to a large algebra. For example,
many proofs of the spectral theorem for normal operators on a Hilbert space first show that such an operator T must
admit a C(σ (T )) functional calculus, and then proceed to extend this functional calculus to all bounded Borel measurable
functions.

Whether a functional calculus for an operator T has a nontrivial extension depends crucially on the space on which
T acts. For example, the operator T x(t) = tx(t) has an obvious C[0,1] functional calculus on both X = C[0,1] and on
X = L∞[0,1], but only in the latter case does a nontrivial extension exist. Many of the positive theorems that exist in this
area come as easy corollaries of theorems which show that a particular functional calculus is sufficient to ensure that an
operator admits an integral representation with respect to a family of projections. The integration theory for these families
then provides a natural extension of the original functional calculus. Often however, it is sufficient to know that one has
a large family of projections which commutes with T , and one is less concerned with the topological properties which are
typically required of such families in order to produce a satisfactory integration theory. In this case, what one is interested
in is whether one can show that T has a functional calculus for an algebra which contains a large number of idempotent
functions.

An operator with a (norm bounded) functional calculus for the absolutely continuous functions on a compact set σ ⊆ C
is said to be an AC(σ ) operator. (We refer the reader to [2] for the definitions of the function spaces AC(σ ) and BV(σ ).) In
the case where σ ⊆ R, such operators have been more commonly referred to as well-bounded operators (see [6]), although
we prefer the more descriptive term real AC(σ ) operators. In this case, as the polynomials are dense in AC(σ ), the AC(σ )
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functional calculus is necessarily unique. Real AC(σ ) operators were introduced by Smart and Ringrose [9,8] in order to
provide a theory which had similarities to the theory of self-adjoint operators, but which dealt with the conditionally
convergent spectral expansions which are more common once one leaves the Hilbert space setting.

If X is reflexive, or more generally if the functional calculus has a certain compactness property, then every real AC(σ )

operator T ∈ B(X) admits an integral representation with respect to a spectral family of projections on X . A real AC(σ )

operator with such a representation is said to be of type (B). The integration theory for spectral families shows that one
may extend the functional calculus to the idempotent rich algebra BV(σ ) of all functions of bounded variation on σ . That
is, there exists a norm continuous algebra homomorphism Ψ : BV(σ ) → B(X) such that Ψ ( f ) = f (T ) for all f ∈ AC(σ ). The
extent to which this theory can be extended to the case where σ � R is not yet known, and so in this paper we shall
restrict our attention almost exclusively to case where σ ⊆ R. (We refer the reader to [6] for the basic integration theory of
real AC(σ ) operators.)

There are many examples of AC(σ ) operators on nonreflexive spaces which admit a BV(σ ) functional calculus despite
failing to have a spectral family decomposition. It is natural to ask whether there are any nonreflexive spaces on which every
AC(σ ) operator admits an extended functional calculus, or whether there are any easily checked conditions which might
ensure that such an extension exists. The aim of this paper is twofold. First we show that if X contains a complemented
copy of c0 or a complemented copy of �1, then there is an operator T ∈ B(X) which admits an AC(σ ) functional calculus
which does not have any extension to BV(σ ). In the second half of the paper we shall give sufficient conditions for an
extension of the functional calculus which apply to linear transformations that act as operators on a range of L p spaces.

It was shown in [4] that if (Ω,Σ,μ) is a finite measure space and T is a real AC(σ ) operator on L1(Ω,Σ,μ) and
L p(Ω,Σ,μ) for any p > 1 then T admits a spectral family decomposition on L1(Ω,Σ,μ) and consequently T has a BV(σ )

functional calculus on that space. The hypothesis that T be an AC(σ ) operator on some L p space other than L1 is vital here;
the operator

T u(t) = tu(t) +
t∫

0

u(s)ds, t ∈ [0,1],

is a real AC[0,1] operator on L1[0,1], but it does not admit a BV[0,1] functional calculus [5, p. 170]. As we shall show
in Section 3, the hypothesis that μ(Ω) be finite can be omitted if one only wishes to deduce the existence of a BV(σ )

functional calculus.
More delicate is the situation for operators acting on L∞ , and there are several open questions that remain. In practice,

however, concrete operators on this space often have additional properties which enable one to establish that an extended
functional calculus exists. This will be examined in more detail in Section 4.

Some care needs to be taken in addressing these questions. Even on Hilbert space, extensions need not be unique. For
example, the operator T on �2,

T (x0, x1, x2, . . .) =
(

0, x1,
x2

2
,

x3

3
, . . .

)
admits an AC(σ (T )) functional calculus, but both the maps

Φ1( f )(x0, x1, x2, . . .) =
(

f (0)x0, f (1)x1, f

(
1

2

)
x0, . . .

)
,

Φ2( f )(x0, x1, x2, . . .) =
(

lim
n→∞ f

(
1

n

)
x0, f (1)x1, f

(
1

2

)
x0, . . .

)
are bounded algebra homomorphisms from BV(σ (T )) to B(�2) which extend the AC(σ (T )) functional calculus.

2. Nonreflexive spaces on which an extension need not exist

There are various examples of real AC(σ ) operators in the literature which do not admit any BV(σ ) functional calculus
extension (see, for example, [5]). We are not aware however of any places where the impossibility of an extension is
explicitly proven. Note that this requires more than just showing that the formula defining f (T ) for f ∈ AC(σ ) doesn’t work
for f ∈ BV(σ ).

Suppose that T ∈ B(X) is a real AC(σ ) operator which has a BV(σ ) functional calculus. Suppose λ ∈ σ . The following
standard calculation is based on results such as Theorem 15.8 of [6], or Theorem 1.4.10 of [7].

Let χL = χσ∩(−∞,λ] and χR = χσ∩(λ,∞] so that χL +χR = 1 in BV(σ ). Let P = Pλ = χL(T ) and Q = I − P = χR(T ). Define
subsets Lλ, Rλ ⊆ AC(σ ) by

Lλ = {
f ∈ AC(σ ): f (t) = 0 for t � λ

}
,

Rλ = {
f ∈ AC(σ ): f (t) = 0 for λ � t

}
.
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Proposition 2.1. The ranges of the projections P and Q satisfy

P X ⊆ {
x ∈ X: f (T )x = 0 for all f ∈ Lλ

}
,

Q X ⊆ {
x ∈ X: f (T )x = 0 for all f ∈ Rλ

}
.

Proof. Note that f ∈ Lλ ⇔ f χL = 0 ⇔ f = f (1 − χL). Thus

P x = x ⇔ (I − P )x = 0 ⇔ (1 − χL)(T )x = 0

and so if P x = x and f ∈ Lλ , then f (T )x = f (T )(1 −χL)(T )x = 0. Since f ∈ Rλ ⇔ f χR = 0 ⇔ f = f (1 −χR), the proof for Q
is identical. �

Throughout what follows let σ0 = {0} ∪ {(−1)k/k}∞k=1.

Proposition 2.2. There exists an operator T on c0 , which admits an AC(σ0) functional calculus but no BV(σ0) functional calculus.

Proof. First note that the map U : c0 → C(σ0),

U (x0, x1, x2, . . .)(t) =
{

x0, t = 0,

x0 + xk, t = (−1)k

k ,

is an isomorphism, so it suffices to construct an example on X = C(σ0). Define T ∈ B(X) by T x(t) = tx(t). Note that
σ(T ) = σ0. For f ∈ AC(σ (T )), f (T )x = f x and so∥∥ f (T )

∥∥ � ‖ f ‖∞ � ‖ f ‖AC(σ0).

That is, T has an AC(σ0) functional calculus. Suppose now that this functional calculus can be extended to a BV(σ0)

functional calculus. Let Y = {x ∈ C(σ0): x(0) = 0}. Define complementary projections P = χσ0∩[−1,0](T ) and Q = I − P =
χσ0∩(0,1/2](T ). Then (as in the proposition)

P X ⊆ {
x ∈ C(σ0): f (T )x = 0 for all f ∈ L0

}
.

If f (T )x = 0 for all f ∈ L0, then x( 1
2 ) = x( 1

4 ) = · · · = 0, and so the continuity of x implies that x(0) = 0. Thus P X ⊆ Y . Similar
reasoning shows that Q X ⊆ Y too. But this implies that every element x = P x + Q x in C(σ0) actually lies in Y which gives
the required contradiction. �

One can construct an example on �1 in a similar way, although in this case we need to use the less standard space
AC(σ0) in order to represent the operator in a simple form.

Lemma 2.3. �1 is isomorphic to AC(σ0).

Proof. Define U : AC(σ0) → �1 by

U (g) =
(

g(−1), g

(
1

2

)
− g

(
1

4

)
, g

(
−1

3

)
− g(−1), g

(
1

4

)
− g

(
1

6

)
, . . .

)
.

It is clear that∥∥U (g)
∥∥

1 �
∣∣g(−1)

∣∣ + varσ0 g � ‖g‖AC(σ0).

The inverse map is, writing x = (x1, x2, . . .),

U−1(x)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
j=1 x2 j−1, t = −1

2n−1 ,∑∞
j=1 x2 j−1, t = 0,∑∞
j=1 x j − ∑n−1

j=1 x2 j, t = 1
2n (n �= 1),∑∞

j=1 x j, t = 1
2 .

Note that for this particular set σ0, we have that AC(σ0) = BV(σ0) ∩ C(σ0). (One can readily verify this using the results
from [2].) Thus in order to check that a function g is in AC(σ0), one need only check that it is of bounded variation, and that
limt→0 g(t) exists and equals g(0). It is easy to check then that the image of U−1 is inside AC(σ0). Indeed ‖U−1(x)‖AC(σ0) �
2‖x‖1, and hence U−1 is continuous. �
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The argument given in Proposition 2.2 goes through more or less unchanged if one replaces C(σ0) with AC(σ0). Thus
there is an example of a real AC(σ ) operator on �1 whose functional calculus does not extend to BV(σ ).

Lemma 2.4. Suppose that T ∈ B(X) is a real AC(σ ) operator whose functional calculus does not extend to a BV(σ ) functional calculus.
Let Y contain a complemented copy of X . Then, for a suitable compact set σ ′ , there is a real AC(σ ′) operator on Y whose functional
calculus also fails to extend to BV(σ ′).

Proof. Let σ ′ = σ ∪ {ω} where ω = 1 + maxσ . Write Y = X ⊕ Z and define T ′ ∈ B(Y ) by T ′ = T ⊕ ωI Z . Then T ′ clearly has
an AC(σ ′) functional calculus f (T ′) = f (T ) ⊕ f (ω)I . Suppose that this functional calculus admits an extension to BV(σ ′).
The important point to note is that the characteristic function χσ ∈ AC(σ ′) and hence the projection onto X , P = χσ (T ′) =
I X ⊕ 0, commutes with f (T ′) for all f ∈ BV(σ ′). This implies that we can write f (T ′) = U ( f ) ⊕ V ( f ). Now BV(σ ) embeds
in a natural way into BV(σ ′), and we shall write f̃ for the image of f under this embedding. It is easy to check that the
map ψ : BV(σ ) → B(X), f �→ U ( f̃ ) is a continuous Banach algebra homomorphism which extends the original functional
calculus for T , contradicting our hypothesis. Hence the AC(σ ′) functional calculus for T ′ cannot extend. �
Theorem 2.5. If X contains a complemented copy of c0 or a complemented copy of �1 , then there exists a real AC(σ ) operator on X
for which the functional calculus does not extend.

Remark 2.6. This result bears a resemblance to Theorem 4.4 of [5] which shows that under similar hypotheses on X , there
exists a real AC(σ ) operator on X which is not of type (B). The operators constructed in that paper however, do have a
BV(σ ) calculus. Theorem 4.4 of [5] has been extended to cover an even wider range of nonreflexive spaces [3], but is it not
clear to us how one might adapt these construction to the present situation.

The hypotheses of the theorem cover most of the classical separable nonreflexive spaces, but leave the situation for
operators on spaces such as �∞ unclear. At present we do not have any examples of nonreflexive spaces on which every
real AC(σ ) operator does have a BV(σ ) functional calculus.

3. Extrapolation to L1

Let (Ω,Σ,μ) be a positive σ -finite measure space, and write L p for L p(Ω,Σ,μ). A linear transformation T defined on
equivalence classes of measurable functions x : Ω → C will be said to define a bounded operator on L p if L p ⊆ Dom(T ) and
there exists K p < ∞ such that ‖T x‖p � K p‖x‖p for all x ∈ L p . In this case we shall often write T p for the restriction of T
to L p .

There are two main issues that need addressing when transferring information about the functional calculus properties
of an operator acting on one space L p to a second space Lq . One concerns the consistency of the functional calculus. As the
earlier example shows, the nonuniqueness of extensions means that one cannot expect too much in general.

Suppose that p,q �= ∞. In the case when the extended functional calculus comes from a spectral family representation
on each space, then these functional calculi must agree. To see this, suppose that σp and σq are compact subsets of R. Note
that if T defines an AC(σp) operator on L p and an AC(σq) operator on Lq , then T has an AC[a,b] functional calculus on
both spaces for any compact interval [a,b] containing both σp and σq (see [2, Section 2]). Lemma 3.3 of [4] then can be
applied directly to ensure that the spectral families agree on L p and Lq . A consequence of this is that

(a) σ(T p) = σ(Tq) (= σ say), and
(b) T defines an AC(σ ) operator on both spaces.

Furthermore, if one uses the spectral family to define BV(σ ) functional calculi Ψp : BV(σ ) → B(L p) and Ψq : BV(σ ) → B(Lq),
then Ψp( f )x = Ψq( f )x for all f ∈ BV(σ ) and all x ∈ L p ∩ Lq . (Further details of the constructions using BV(σ ) rather than
BV[a,b] are available in [1].)

The following proposition records some standard facts about operators which act on L p spaces.

Proposition 3.1. Let 1 � r < s � ∞ and let K be a positive constant. Let S be a linear transformation which, for all p ∈ (r, s), defines
a bounded operator S p on L p with ‖S p‖p � K . Then

(a) there is a unique operator U ∈ B(Lr) with U x = Sx for all x ∈ ⋂
r�p<s L p , and

(b) there is an operator V ∈ B(Ls) with V x = Sx for all x ∈ ⋂
r<p�s L p .

The operator U in (a) satisfies ‖U‖r � K . The operator V in (b) is unique if s < ∞ and can be chosen to satisfy ‖V ‖s � K .

Remark 3.2. In what follows we shall talk about the ‘extension’ of S to Lr or Ls , but it should be noted that this extension
need not be proper, nor need it (if s = ∞) be unique. In particular, if L∞ was in the original domain of definition of S , one
might have that V �= S∞ (see Example 4.1).
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Proof. This is a standard exercise except for the case s = ∞.
Suppose then that s = ∞. We shall use p′ to denote the conjugate exponent to p. We shall write 〈x, y〉 for

∫
Ω

x(t)y(t)dμ.

Let Dr = ⋂
r<p<∞ L p and D′

r = ⋂
1<q<r′ Lq . For each p ∈ (r,∞), (S p)∗ is a bounded linear operator on L p′

. A short calculation
shows that for all x ∈ Dr and y ∈ D′

r〈
x, (S p1)

∗ y
〉 = 〈

x, (S p2)
∗ y

〉
for all p1, p2 ∈ (r,∞). Thus there exists a unique linear mapping T : D′

r → D′
r such that 〈Sx, y〉 = 〈x, T y〉 for all x ∈ Dr and

y ∈ D′
r . Clearly ‖T y‖q � K‖y‖q for all y ∈ D′

r and q ∈ (1, r′).
Suppose now that y ∈ ⋂

1�q<r′ Lq . Then

‖T y‖1 = lim
q→1+ ‖T y‖q � lim

q→1+ K‖y‖q = K‖y‖1.

One may therefore extend T to a bounded linear operator T1 on all of L1. Let V = (T1)
∗ ∈ B(L∞). Clearly ‖V ‖∞ � K . We

want to show that V is an extension of the linear map S .
Suppose then that x ∈ ⋂

r<p�∞ L p . For any y ∈ ⋂
1�q<r′ Lq ,

〈Sx, y〉 = 〈x, T y〉 = 〈V x, y〉. (3.1)

The norm density of
⋂

1�q<r′ Lq in L1 is now sufficient to deduce that (3.1) is true for all y ∈ L1, and therefore that
V x = Sx. �

The main issue then in wanting to extend the definition of f (T ) from one L p space to another is showing that one does
not lose the property that the map f �→ f (T ) is an algebra homomorphism.

Theorem 3.3. Let 1 � r < s � ∞ and let T be a linear transformation defining real AC(σ ) operators, necessarily of type (B), T p on L p

for all p ∈ (r, s). If the AC functional calculi for the operators T p are uniformly bounded (by M say) for p ∈ (r, s) then the domain of T
can be extended (if necessary) so that T defines a real AC(σ ) operator on Lr . Furthermore, the AC(σ ) functional calculus for Tr extends
to a BV(σ ) functional calculus.

Proof. The hypotheses imply that for each p ∈ (r, s), T p has an integral representation with respect to a spectral family and
consequently a BV(σ ) functional calculus Ψp . As noted at the start of this section, these maps can be chosen so that

(a) ‖Ψp‖ � M for all p ∈ (r, s), and
(b) Ψp( f )x = Ψq( f )x for all p,q ∈ (r, s), all f ∈ BV(σ ) and all x ∈ L p ∩ Lq .

Thus, for each f ∈ BV(σ ), there is a linear transformation Ψ ( f ) that defines the operators Ψp( f ) for all p ∈ (r, s). By
Proposition 3.1, the domain of each Ψ ( f ) may be extended so that it defines an operator U f ∈ B(Lr) with ‖U f ‖ � M‖ f ‖BV.
As L p ∩ Lr is dense in Lr , it is easy to verify that the map f �→ U f is an algebra homomorphism from BV(σ ) into B(Lr). For
example, if f , g ∈ BV(σ ) and x ∈ L p ∩ Lr ,

U f g x = Ψp( f g)x = Ψp( f )Ψp(g)x = Ψp( f )U g x = U f U g x

as U g x ∈ L p ∩ Lr .
Hence Ψr : BV(σ ) → B(Lr), Ψr( f ) = U f defines a BV(σ ) functional calculus for T on Lr (and this does extend the uniquely

determined AC(σ ) functional calculus for Tr ). �
We note that in [4, Theorem 4.3], it is shown that the conditions of the above theorem are necessary and sufficient for

the extension of the map T to Lr to be a real AC(σ ) operator.
As we shall see in the next section, in the L∞ version of this result the uniform boundedness is not necessary. Exam-

ple 5.2 of [4] gives an operator which has a BV(σ ) functional calculus on �p for p ∈ (1,∞], but for which the AC functional
calculus is not uniformly bounded on these spaces.

The Riesz–Thorin interpolation theorem gives the following application of the theorem. This corollary covers, for example,
the case where T is a real AC(σ ) operator on L1 and is self-adjoint on L2.

Corollary 3.4. If, for some s > 1, a linear map T defines real AC(σ ) operators T1 and Ts on L1 and Ls respectively, then the operator T1
on L1 has a BV(σ ) functional calculus.

Proof. The hypotheses imply that T defines a real AC(σ ) operator on L p for all p ∈ (1, s) with a uniform bound on the
AC(σ ) functional calculus on these spaces. The result now follows by Theorem 3.3. �
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4. Operators on L∞

The situation for operators on L∞ is quite different to that for operators on L1. The main problem is not that operators
cannot be extended to L∞ , but rather that the extensions need not be unique. In particular, transformations that give rise
to different operators on L∞ may give identical operators on another L p space.

Example 4.1. Choose a Banach limit in L ∈ (l∞)∗ . For x ∈ �∞ , define T x := (Lx,0,0, . . .). Let 1 � r < ∞; then T defines a
bounded linear operator on �r and on �∞ . On �r , T is the zero operator; on �∞ , ‖T ‖∞ = 1. The (nonproper) extension
of T to �p for r < p < ∞ is the zero operator and applying Proposition 3.1 to this map on �p for r � p < ∞ yields the
zero operator on �∞ . Of course, the zero operator is a real AC({0}) operator with a BV({0}) functional calculus. The original
map T is not a real AC(σ ) operator on �∞ however, since it is a nonzero nilpotent operator.

Theorem 4.2. Let 1 < r < ∞ and let T be a linear transformation defining real AC(σ ) operators (of type (B)) T p on L p for all p ∈
(r,∞). If the AC(σ ) functional calculi for the operators T p are uniformly bounded (by M say) for p ∈ (r,∞) then there exists an
operator T̃ ∈ B(L∞) such that

(a) T̃ is a real AC(σ ) operator,
(b) T̃ x = T x for all x ∈ ⋂

r<p�∞ L p , and

(c) the AC(σ ) functional calculus for T̃ extends to a BV(σ ) functional calculus.

Proof. As in Theorem 3.3, for each f ∈ BV(σ ) there exists a linear transformation Ψ ( f ) defining operators Ψp( f ) for all
p ∈ (r,∞), and Ψp : BV(σ ) → B(L p) is a functional calculus for T p .

Using the construction in the proof of Proposition 3.1, we extend the domain of each map Ψ ( f ) so that it defines an
operator V f ∈ B(L∞). By this construction, each V f is the adjoint of an operator U f ∈ B(L1), and it may be readily verified
that for each f , g ∈ BV(σ ), U f +g = U f +U g and U f g = U f U g . It follows that the map f �→ V f is an algebra homomorphism:
for example, for f , g ∈ BV(σ ), y ∈ L1, x ∈ L∞ ,

〈y, V f g x〉 = 〈U f g y, x〉 = 〈U g f y, x〉 = 〈U g U f y, x〉 = 〈U f y, V g x〉 = 〈y, V f V g x〉,
so that V f g = V f V g . Let T̃ = V e where e(z) = z. Again the construction ensures that T̃ satisfies (a) and (b).

It follows then that Ψ∞ : BV(σ ) → B(L∞), Ψ∞( f ) = V f , defines a BV(σ ) functional calculus for T̃ on L∞ . �
Remark 4.3. As was shown in Example 4.1, on an infinite measure space T̃ may be a different operator to T∞ . In the case
that (Ω,Σ,μ) is a finite measure space, property (b) ensures that this does not occur.

From a practical point of view, the problem is more often to determine whether a given real AC(σ ) operator on L∞ has
a BV(σ ) functional calculus. There is in fact no known example of a real AC(σ ) operator without a BV functional calculus
on any L∞ space. A candidate for such an operator is

T x(t) = tx(t) +
1∫

t

x(s)ds, x ∈ L∞[0,1].

Showing that this operator does not have a BV[0,1] functional calculus would require a different sort of proof to those
provided in Section 2 since the functional calculus does extend to the algebra of left-continuous functions of bounded
variation whose continuous singular part is zero. In particular, and unlike the examples in Section 2, the functional calculus
can be extended to include the characteristic functions χ[0,λ] . It might be noted that this extension is not constructive.
Further details can be found in [6, Chapter 15].

Proving an “L∞ version” of Corollary 3.4 is problematic. Given a linear transformation T which defines real AC(σ )

operators on L∞ and Lr for some r < ∞, extrapolating the operators Ψp( f ) = f (T p) (r � p < ∞) to L∞ using Theorem 4.2
may not give a homomorphism which even matches the AC(σ ) functional calculus for T∞ .

Example 4.4. As a variant of Example 4.1, consider the linear transformation Sx := (Lx, Lx, Lx, . . .). In this case S p is a
real AC({0,1}) operator on each �p space. Indeed each S p is of type (B). For p < ∞, the BV(σ ) functional calculus for S p

is given by f (S p) = f (0)I . This has many extensions to �∞ , only one of which is the BV(σ ) functional calculus for T∞ ,
f (S∞) = f (0)(I − S∞) + f (1)S∞ . Note that this example shows that the spectral consistency results listed at the start of
Section 3 do not hold when one of the spaces is an L∞ space. In particular, in this example σ(S p) �= σ(S∞).

We finish with two positive results which cover a wide range of concrete examples.
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Proposition 4.5. Let 1 � r < ∞ and let T be a linear transformation defining real AC(σ ) operators Tr ∈ B(Lr) and T∞ ∈ B(L∞). If
T∞ = S∗ for some operator S ∈ L1 , then T∞ has a BV(σ ) functional calculus.

Proof. By the Riesz–Thorin interpolation theorem, T defines real AC(σ ) operators T p ∈ B(L p) for all p ∈ [r,∞), with a
uniform bound on the AC functional calculi of these operators. Using Proposition 3.1 to construct an operator U ∗ ∈ B(L∞),
we see that U = S , as the extension of the family (T p)∗ to L1 is unique. Thus U∗ = T∞ , and by Theorem 4.2, T∞ is a real
AC(σ ) operator with a BV functional calculus. �

Proposition 4.5 would apply, for example, to the case where T x = Ax for some self-adjoint infinite matrix A acting
on x ∈ �2. If this matrix multiplication defines a real AC(σ ) operator on �∞ and is bounded on �2, then T satisfies the
hypotheses of Proposition 4.5 (since every self-adjoint operator on �2 is an AC(σ ) operator) and so T must admit a BV(σ )

functional calculus on �∞ .

Proposition 4.6. Suppose that (Ω,Σ,μ) is a finite measure space. Let 1 � r < ∞ and let T be a linear transformation defining real
AC(σ ) operators Tr ∈ B(Lr) and T∞ ∈ B(L∞). Then T∞ has a BV(σ ) functional calculus.

Proof. By interpolation T defines a real AC(σ ) operator of type (B) on L p for all p ∈ [r,∞). Let Ψp denote the BV(σ )

functional calculus for T p . Then there exists a constant M such that ‖Ψp( f )‖p � M‖ f ‖BV for all p ∈ [r,∞). Suppose now
that f ∈ BV(σ ). As L∞ ⊆ ⋂

r�p<∞ L p , there exists an operator U f ∈ B(L∞) such that Ψp( f )x = U f x for all x ∈ L∞ . Further
‖U f ‖∞ � M‖ f ‖BV. As in the proof of Theorem 4.2, one can show that the map f �→ U f is a BV(σ ) functional calculus
for T∞ . �
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