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Utilizing in-medium vector spectral functions which describe dilepton data in ultra-relativistic heavy-ion
collisions, we conduct a comprehensive evaluation of QCD and Weinberg sum rules at finite temperature.
The starting point is our recent study in vacuum, where the sum rules have been quantitatively satisfied
using phenomenological vector and axial-vector spectral functions which describe hadronic τ -decay data.
In the medium, the temperature dependence of condensates and chiral order parameters is taken from
thermal lattice QCD where available, and otherwise is estimated from a hadron resonance gas. Since little
is known about the in-medium axial-vector spectral function, we model it with a Breit–Wigner ansatz
allowing for smooth temperature variations of its width and mass parameters. Our study thus amounts to
testing the compatibility of the ρ-broadening found in dilepton experiments with (the approach toward)
chiral restoration, and thereby searching for viable in-medium axial-vector spectral functions.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

The structure of the QCD ground state is reflected in its ob-
servable hadron spectrum. In vacuum, the formation of quark and
gluon condensates leads to the generation of hadron masses and
the spontaneous breaking of chiral symmetry (SBCS). The latter in-
duces mass splittings of ca. 0.5 GeV for chiral partners in the light-
hadron spectrum, e.g., between π–σ and ρ–a1. In a hot medium,
chiral symmetry is restored across a region around a pseudo-
critical temperature of Tpc � 160 MeV [1,2]. A long-standing ques-
tion is how this restoration manifests itself in the hadron spec-
trum, i.e., what its observable consequences are. Dilepton data
from ultra-relativistic heavy-ion collisions (URHICs) [3–5] are now
providing strong evidence that the ρ resonance “melts” when the
system passes through the pseudo-critical region [6], while exper-
imental access to the in-medium a1 spectral functions (e.g., via
a1 → πγ ) remains elusive. Thus, to test whether the ρ melting in
the vector channel signals chiral restoration, a theoretical evalua-
tion of the in-medium axial-vector spectral function is needed.

A straightforward approach to calculate the in-medium axial-
vector spectral function, by using a chiral Lagrangian paralleling
the treatment of the ρ meson, turns out to be challenging [7].
For example, the widely used scheme of implementing the ρ and
a1 mesons into the pion Lagrangian through a local gauging pro-
cedure causes considerable problems in describing the vacuum
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spectral functions as measured in hadronic τ decays [8,9], which
led some groups to abandon the local gauging procedure [10,11].
In the present work, we adopt a more modest approach to this
problem, by utilizing in-medium sum rules. Specifically, we adopt
the well-known Weinberg sum rules (WSRs) [13,12,14] which re-
late (moments of) the difference between vector and axial-vector
spectral functions to operators signifying SBCS. Using available cal-
culations of the in-medium ρ spectral function together with tem-
perature dependent order parameters as an input, we ask whether
a (not necessarily the) axial-vector spectral function can be found
to satisfy the in-medium sum rules. To tighten our constraints, we
simultaneously employ finite-temperature QCD sum rules (QCD-
SRs) [15,16] in vector and axial-vector channels, which additionally
involve chirally invariant condensates. Related works have been
carried out, e.g., in the low-temperature limit [17,18], for heavy-
quark channels [19], or focusing on chirally odd condensates in
the vector channel only [20].

The present analysis builds on our previous work [21] where
QCD and Weinberg sum rules have been tested in vacuum
with vector and axial-vector spectral functions that accurately fit
hadronic τ -decays. The combination of four WSRs turned out be
a rather sensitive probe of the spectral functions, allowing, e.g.,
to deduce the presence of an excited axial-vector meson, a′

1. This
makes for a promising tool at finite temperature (T ), aided by
an experimentally tested in-medium vector spectral function and
in-medium condensates from lattice QCD (lQCD). In the absence
of reliable microscopic models for the a1 and the excited states,
the price to pay is the a priori unknown in-medium behavior of
these states. However, with guidance from model-independent chi-
ral mixing theorems to constrain the T dependence of the higher
Funded by SCOAP3.
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states, one can still hope for a sensitive test of the in-medium a1
spectral function, and to gain novel insights into (the approach to)
chiral restoration in the I J P = 11± chiral multiplet. This is the
main objective of our work.

The Letter is organized as follows. We recall the in-medium
QCDSRs and WSRs in Section 2 and specify the T dependence of
their “right-hand sides” (condensates) in Section 3. The finite-T
axial-vector spectral functions (“left-hand sides”) are detailed in
Section 4, followed by quantitative sum rule analyses in Section 5.
We conclude in Section 6.

2. Finite temperature sum rules

The basic quantity figuring into WSRs and QCDSRs is the isovec-
tor current–current correlator in the vector (V ) and axial-vector
(A) channels,

Π
μν
V ,A

(
q2) = −i

∫
d4xeixq〈T �JμV ,A(x)�JνV ,A(0)

〉
. (1)

In the quark basis with two light flavors, the currents read �JμV =
q̄�τγ μq and �JμA = q̄�τγ μγ5q, (�τ : isospin Pauli matrices). From here
on, we focus on charge-neutral states (isospin I3 = 0) and drop
isospin indices. In vacuum, the currents can be decomposed into
4D transverse and longitudinal components as

Π
μν
V ,A

(
q2) = Π T

V ,A

(
q2)(−gμν + qμqν

q2

)
+ Π L

V ,A

(
q2)qμqν

q2
. (2)

Vector-current conservation implies Π L
V (q2) = 0, while the pion

pole induces the partial conservation of the axial-vector current
(PCAC),

Π L
A

(
q2) = f 2

πq2δ
(
q2 − m2

π

)
. (3)

Lorentz symmetry breaking at finite T splits the 4D-transverse po-
larization functions into 3D-transverse and 3D-longitudinal parts.
From here on, we focus on vanishing 3-momentum (�q = 0), for
which the 3D components are degenerate. We define pertinent
spectral functions as

ρV ,A = − Im Π T
V ,A

π
, ρ Ā = ρA − Im Π L

A

π
. (4)

The QCDSRs equate a dispersion integral on the left-hand-side
(LHS) to an operator product expansion (OPE) on the right-hand-
side (RHS); for the axial-vector channels they read [22–24]

1

M2

∞∫
0

ds
ρV , Ā(s)

s
e−s/M2

= 1

8π2

(
1 + αs

π

)
+ mq〈q̄q〉

M4
+ 1

24M4

〈
αs

π
G2

μν

〉

− παs

M6

(56,−88)

81

〈
OV ,A

4

〉 + ∑
h

〈Od=4,τ=2
h 〉T

M4

+ 〈Od=6,τ=2
h 〉T

M6
+ 〈Od=6,τ=4

h 〉T

M6
. . . , (5)

where the space-like q2 is traded for the Borel mass M2 by a stan-
dard Borel transform. On the RHS, we include all operators up to
dimension-6, i.e., the common scalar operators already present in
the vacuum (quark, gluon, and 4-quark condensates, 〈q̄q〉, 〈αs

π G2
μν〉,

and 〈OV ,A
4 〉, respectively), as well as non-scalar operators induced

by thermal hadrons (h), organized by dimension (d) and twist (τ ).
The T dependencies are detailed in Section 3.
The WSRs relate moments of the difference between the vec-
tor and axial-vector spectral functions to chiral order parameters.
Their formulation at finite T was first carried out in Ref. [14]. Sub-
tracting the two channels of the finite-T QCDSRs from one another,
Taylor-expanding the Borel exponential, and equating powers of
M2 on each side of the sum rule yields

(WSR1)

∞∫
0

ds
�ρ(s)

s
= f 2

π , (6)

(WSR2)

∞∫
0

ds �ρ(s) = f 2
πm2

π = −2mq〈q̄q〉, (7)

(WSR3)

∞∫
0

ds s�ρ(s) = −2παs
〈
OSB

4

〉
, (8)

where �ρ = ρV − ρA . The chiral breaking 4-quark condensate is
given by the axial-vector ones as

〈
OSB

4

〉 = 16

9

(
7

18

〈
OV

4

〉 + 11

18

〈
OA

4

〉)
. (9)

Since the WSRs only contain chiral order parameters, they are
particularly sensitive to chiral symmetry restoration, whereas the
QCDSRs are channel specific thus providing independent informa-
tion.

3. In-medium condensates

We now turn to the T dependence of each condensate figuring
into the QCDSRs. To leading order in the density of a hadron h in
the heat bath, the in-medium condensate associated with a given
operator O can be approximated by

〈O〉T � 〈O〉0 + dh

∫
d3k

(2π)32Eh

〈
h(�k)

∣∣O∣∣h(�k)
〉
nh(Eh), (10)

where 〈O〉0 is the vacuum value of the operator, 〈h(�k)|O|h(�k)〉 its
hadronic matrix element, E2

h = m2
h + �k2, and dh , mh , and nh are the

hadron’s spin–isospin degeneracy, mass, and thermal distribution
function (Bose (nb) or Fermi (n f )), respectively. Working at zero
baryon chemical potential (μB = 0), we absorb anti-baryons into
the degeneracy factor of baryons. Corrections to Eq. (10) figure via
multi-hadron matrix elements of the operator.

We approximate the medium by a hadron resonance gas (HRG)
including all confirmed states with mass mh � 2 GeV [25]. For the
temperatures of interest here, T � 170 MeV, the HRG is known to
reproduce the equation of state from lQCD quite well [26]. Since
the calculation of the in-medium ρ spectral function is also based
on HRG degrees of freedom, the OPE and spectral function sides of
the sum rules are evaluated in the same basis. For the subsequent
discussion, we define the integrals

Ih
n = dh

∫
d3k

(2π)3 Eh
k2n−2nh(Eh). (11)

Note that mh Ih
1 is the scalar density, �h

s .

3.1. Quark condensate

The HRG correction to the quark condensate is [27,28]

〈q̄q〉T

〈q̄q〉0
= 1 − �π

s

2mπ f 2
π

− �K
s

4mK f 2
− �

η
s

6mη f 2
η

− �
η′
s

3mη′ f 2′
K η
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Table 1
Numerical values of key parameters figuring into Eq. (12). For hadron masses not
listed we take averages from the particle data group [25].

Parameter fπ f K fη fη′ mq mπ

Value (MeV) 92.4 113 124 107 7 139.6

Fig. 1. Temperature dependence of: (a) the quark condensate relative to its vacuum
value, compared to thermal lQCD data [1]; (b) axial-vector 4-quark condensates rel-
ative to their vacuum values, compared to the quark condensate.

−
∑

B

σB

f 2
πm2

π

�B
s −

∑
M

σM

f 2
πm2

π

�M
s − αT 10. (12)

The Goldstone boson contribution can be inferred from current al-
gebra (with decay constants given in Table 1). The contributions
from baryons (B) and other mesons (M) can be derived from the
HRG partition function via ∂ ln Z/∂mq , which is nothing but the in-
medium condensate. They are determined by their σ -terms which
to lowest order are given by the (current) quark masses, mq , of the
light valence quarks in the hadron [29]. However, important con-
tributions arise from the hadron’s pion cloud [30,31]. We write

σh = σ bare
q + σ cloud

π ≡ σ0mq(Nq − Ns) (13)

where Nq (Ns) is the number of all (strange) valence quarks in h.
We adjust the proportionality constant to σ0 = 2.81, to recover the
recent value, σN = 59 MeV [32], of the nucleon and assume it to
be universal for all hadrons. This leads to fair agreement with es-
timates of σh for other ground-state baryons [32]. Note that the
decomposition of the σ terms into quark core and pion cloud ef-
fects parallels the medium effects of the ρ spectral function [33].

Our HRG results reproduce lQCD “data” [1] for T � 140 MeV,
see Fig. 1(a). To improve the agreement at higher T without affect-
ing the low-T behavior, we introduced a term αT 10 on the RHS
of Eq. (12), with α = 1.597 · 107 GeV−10. The quark condensate
then vanishes slightly above T = 170 MeV, signaling the break-
down of our approach. Choosing a somewhat higher power in T
(with accordingly adjusted α) has no significant impact on our re-
sults, while a smaller power adversely affects the agreement with
lQCD data at low T .
3.2. Gluon condensate

For the gluon condensate, the contributions from pions and nu-
cleons have been evaluated in Refs. [34,22,24]. The HRG effect can
be inferred from the trace anomaly,

θ
μ
μ = −9

8

αs

π
G2

μν +
∑

q

mqq̄q, (14)

by calculating �〈θμ
μ 〉 = ε − 3P = ∑

h mh�
h
s to obtain

�

〈
αs

π
G2

μν

〉
= −8

9

[
�

〈
θ
μ
μ

〉 − 2mq�〈q̄q〉 − ms�〈s̄s〉]. (15)

The change in light-quark condensate is taken from Eq. (12). For
the strange-quark condensate, we assume its suppression from in-
dividual resonances to scale with the valence strange-quark con-
tent of each hadron h, paralleling the procedure of determining
the σ -term for each hadron. One has

ms�〈s̄s〉 =
∑

h

Ns

Nq − Ns

(
2mq�〈q̄q〉h

)
, (16)

where �〈q̄q〉h is from Eq. (12). The HRG suppression of the gluon
condensate reaches 13% at T = 170 MeV.

3.3. Four-quark condensates

For medium dependence of the vector and axial-vector 4-quark
condensates induced by Goldstone bosons, we adopt the results
from current algebra [22]. For the non-Goldstone bosons and
baryons, arguments based on the large-Nc limit [35,28] suggest a
factorization approximation, i.e., the medium effect linear in their
(scalar) density amounts to a factor of 2 times the reduction in
the quark condensate, with the same factorization parameter as in
vacuum (we have checked that an increase of the in-medium fac-
torization parameter by a factor of 2 has a negligible impact on
the OPEs and thus on the resulting spectral functions). The T de-
pendence of the vector and axial-vector 4-quark condensates then
takes the form

〈OV ,A
4 〉T

〈OV ,A
4 〉0

= 1 − (12/7,12/11)

mπ f 2
π

�π
s − (9/14,9/22)

mK f 2
K

�K
s

−
∑

B

2σB

f 2
πm2

π

�B
s −

∑
M

2σM

f 2
πm2

π

�M
s + βV ,A T 10. (17)

As for the quark condensate, we augmented the T dependence
by a term βV ,A T 10. Since thermal lQCD data are not available for
4-quark condensates, we adjusted βV ,A for each channel to render
them vanishing at the same temperature as the quark condensate,
resulting in βV = 3.05 · 107 GeV−10 and βA = 1.74 · 107 GeV−10.
The T dependence of the chiral breaking 4-quark condensate fol-
lows from the axial-vector ones via Eq. (9); relative to the quark
condensate, their initial fall-off is faster but slows down above
T � 140 MeV, cf. Fig. 1(b).

3.4. Non-scalar condensates

Hadrons in the heat bath also induce non-scalar condensates.
For our QCDSR analysis the relevant ones are of dimension-4
twist-2 〈Od=4,τ=2〉T , dimension-6 twist-2 〈Od=6,τ=2〉T , and
dimension-6 twist-4 〈Od=6,τ=4〉T . We adopt their T dependence
as elaborated in Refs. [22–24], given by each hadron as
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〈
Od=4,τ=2

h

〉
T = Ah

2

4

(
m2

h Ih
1 + 4

3
Ih
2

)
,

〈
Od=6,τ=2

h

〉
T = −5Ah

4

24

(
m4

h Ih
1 + 4m2

h Ih
2 + 16

5
Ih
3

)
,

〈
Od=6,τ=4

h

〉
T = Bh

2

4

(
m2

h Ih
1 + 4

3
Ih
2

)
. (18)

The parameters A2 and A4, which control the twist-2 operators,
are related to moments of parton distribution functions for the u
and d quarks in the hadron

An = 2

1∫
0

dx xn−1(q̄(x) + q(x)
)
. (19)

One can think of A2 as twice the momentum fraction of the up
and down quarks in the hadron, with A4 a higher moment. Their
values are reasonably well known for the pion and nucleon, Aπ

2 =
0.97, Aπ

4 = 0.255, AN
2 = 1.12, AN

4 = 0.12, while there is substantial
uncertainty for other hadrons. For baryons, we assume A2 and A4
to be identical to the nucleon values, but weighted by the light-
quark fraction; e.g., the A2 of the Λ is 2

3 AN
2 . The kaons and etas

are approximated with the pion’s parton distribution functions, re-
duced by the strange-quark content. For other mesons, Eq. (19) is
used with the nucleon parton distributions functions, rescaled by
the valence-quark content and also reduced by the strange-quark
content. This gives A2 = 0.801 and A4 = 0.086 for non-strange
mesons. The B2’s are related to integrals of the twist-4 part of
the spin-averaged (longitudinal) structure function, F τ=4

2(L) [36,23].

For the nucleon, it has been extracted as B N
2 = −0.247 GeV2. Since

there is no empirical information for other hadrons, we assume
their B2 to be the same as for the nucleon (suppressed by the
strange-quark content); varying it by a factor of 2 produces no
noticeable changes in the final spectral functions. Gluonic contribu-
tions are believed to be numerically insignificant [22,23] and have
been neglected.

4. Finite temperature spectral functions

Our starting point are the vacuum axial-vector spectral func-
tions of Ref. [21].1 They are comprised of contributions from the
ground state (ρ and a1 peaks), a first excited state (ρ ′ and a′

1), and
a chirally invariant (i.e., identical) continuum for both channels.
The vacuum ρ is taken from the microscopic model of Ref. [37],
while a1, ρ ′ and a′

1 are parameterized with Breit–Wigner func-
tions. For the present analysis, we have slightly modified the vac-
uum parameters of the ρ ′ to shift its threshold energy to higher
energies. This avoids its low-mass tail to reach well below 1 GeV
where the τ -decay data do not exhibit any 4π contributions. The
modification to the ρ ′ formfactor is compensated by a small mod-
ification of the mass and width of the a′

1 as to recover a near-
perfect agreement with WSR-1 and WSR-2. The re-evaluation of
the vacuum QCDSRs requires numerical values of 4-quark factor-
ization parameter of κ = 2.1 in 〈OSB

4 〉 = 16
9 κ〈q̄q〉2, and of the gluon

condensate of 〈αs
π G2

μν〉 = 0.017 GeV4. The updated vacuum spec-
tral functions, shown in Fig. 2, are very similar to the ones in
Ref. [21].

1 The normalization used in Eq. (25) of Ref. [21] for the Breit–Wigner width of
the a1 peak contained a (small) imaginary contribution; we have corrected this and
could recover the same level of agreement with the experimental data and sum
rules with a minor modification of the parameters.
Fig. 2. Vacuum spectral functions in the vector (top) and axial-vector (bottom) chan-
nels, compared to experimental data for hadronic τ decays [8]; The total spectral
function in each channel (solid curve) is composed of a ground state (dotted curve),
excited resonance (dashed curve), and a universal continuum (dot-dashed curve).

Finite-temperature effects in the spectral functions are im-
plemented as follows. For the ρ meson, we employ the micro-
scopic calculations using hadronic effective theory [38] at vanish-
ing baryon chemical potential. This is the key input to our analysis,
as these spectral functions are consistent with dilepton data in
URHICs [6], and thus provide a direct link to experiment. The only
amendment we allow is a reduction of the vector-dominance cou-
pling strength (as routinely done in QCDSR analyses [22,24,39,40]).
Optimal agreement with the QCDSR requires a reduction of up to
7% at T = 170 MeV.

For the a1 meson, the lack of quantitative calculations at finite
T leads us to parameterize the medium modifications of its spec-
tral function. We introduce four parameters which control the a1
peak’s location, width, and strength in-medium. For the a1 mass,
we write MT

a1
= Ma1 (1 − δMa1 (T )/Ma1 ), and for the current cou-

pling C T
a1

= Ca1 (1 − δCa1 (T )/Ca1 ). The width is increased and ex-
tended below the vacuum threshold by adding the following term
to the vacuum width, Γa1 (s),

�Γa1(s) =
(

Γ T
1 + s

M2
a1

Γ T
2

)(
Λ2

a1
+ M2

a1

Λ2
a1 + s

)2

(20)

where Γ T
1 and Γ T

2 are T -dependent constants, and the last factor
is a formfactor with the same scale, Λa1 , as in vacuum. The re-
sulting ground-state axial-vector spectral function in medium takes
the form

ρa1(s, T ) = 1

π
C T

a1

√
sΓ T

a1
(s, T )

(s − MT 2
a1 )2 + sΓ T

a1(s, T )2
, (21)

with Γ T
a1

(s, T ) = Γa1 (s) + �Γa1 (s).
The temperature dependence of the excited states is even less

known. Instead of introducing additional parameters for their in-
medium Breit–Wigners (which are hard to control), we rather ap-
ply the model independent low-temperature effect known as chiral
mixing [41,42] to the ρ ′ and a′

1 states. However, in the spirit of
the HRG, we go beyond the mixing induced by only thermal pions
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by including the effect from the virtual pion cloud of the thermal
hadrons. This effect has been worked out for the pion cloud of
the nucleon in cold nuclear matter [43,44]. To extend it to other
hadrons (not including the non-pion Goldstone bosons), we define
a mixing parameter

ε̂h(T ) = 4

3

σ cloud
π

f 2
πm2

π

�h
s . (22)

The total mixing parameter, ε̂ , is the sum of the individual ε̂h plus
that of the pion, ε̂π = 2�π

s /(3mπ f 2
π ). As with the quark conden-

sates, we introduce an additional T 10-term to render ε̂ = 1/2 at
the temperature where 〈q̄q〉T = 0. The in-medium spectral func-
tions for the excited axial-vector states then follow as

ρV ′(T ) = [
1 − ε̂(T )

]
ρvac

V ′ + ε̂(T )ρvac
A′ + 1

2
ε̂(T )ρvac

a1
,

ρA′(T ) = [
1 − ε̂(T )

]
ρvac

A′ + ε̂(T )ρvac
V ′ . (23)

The a1 contribution to the excited vector channel admixes only
the part which is not included in the microscopic calculation of
the ρ , see Ref. [45] for details. Our approximate extension of the
mixing beyond the low-T pion gas limit is only carried linear
in the (scalar) hadron densities, but in line with the in-medium
treatment of the condensates. However, no finite-momentum nor
finite-mass effects of the (virtual) pions have been accounted for.

The chirally invariant continuum is assumed to be T -indepen-
dent (e.g., chiral mixing would not affect it).

Lastly, we need to address the T dependence of the 4D longitu-
dinal part of the axial-vector spectral function, i.e., the pion pole.
We approximate the pion mass by the leading-order prediction of
chiral perturbation theory,

m2
π (T ) = m2

π

(
1 + 1

4
ε̂π (T )

)
, (24)

i.e., induced by the pion gas only. This produces a weak T de-
pendence as expected for a Goldstone boson. Assuming the Gell-
Mann–Oakes–Renner relation to hold at finite T , allows us to in-
fer fπ (T ) from the above-constructed T -dependence of the quark
condensate.

To summarize this section, we have supplemented a micro-
scopic model for the ρ spectral function with a 4-parameter ansatz
for the in-medium a1, chiral mixing for the excited states, and a
weakly T -dependent pion mass from chiral perturbation theory.
We now investigate whether this setup can satisfy QCDSRs and
WSRs.

5. Finite-temperature sum rule analysis

Let us start by describing the quantitative criteria which govern
the numerical values of the in-medium a1 parameters introduced
in the previous section.

To evaluate the QCDSRs, we adopt the conventional method of
Refs. [46,39] to calculate an average deviation between the LHS
and RHS over a suitable Borel window, referred to as a d-value.
The same procedure and Borel window criteria as for the vac-
uum analysis in Ref. [21] are adopted. A d-value of below 1% has
been argued to reasonably bracket remaining uncertainties in the
matching procedure [39]; we adopt this as our figure of merit in
both A and V channels below.

To evaluate the WSRs, we define a similar measure of deviation
between the two sides as

dWSR = LHS − RHS
. (25)
RHS
Table 2
Summary of deviation measures for QCDSRs (upper 2 lines) and WSRs (lower 6
lines) at finite temperature.

T [MeV] 0 100 140 150 160 170

dV (%) 0.59 0.43 0.44 0.49 0.57 0.67
dA (%) 0.49 0.48 0.56 0.59 0.55 0.56

dWSR1 (%) ∼0 0.003 0.04 0.04 −0.004 0.004
dWSR2 (%) ∼0 −0.0002 −0.0008 −0.002 −0.0003 −0.005
dWSR3 (%) 200 181 258 372 585 11 600

r−1 1 0.96 0.72 0.57 0.37 0.14
r0 1 0.93 0.66 0.50 0.31 0.12
r1 1 0.91 0.64 0.50 0.32 0.15

This measure is much simpler than the QCDSR analog because it
does not involve any Borel window. However, it also has its sub-
tleties. The integrands of the LHS of each WSR are oscillatory func-
tions with appreciable cancellations to yield the RHS (cf. Fig. 2 in
Ref. [21]), especially for the higher moments. Since we only use
a finite number of moments (3), this could, in principle, lead to
“fine-tuned solutions” to the WSRs where the oscillations are still
large, and thus ρV (s) = ρA(s) even close to restoration. To probe
this behavior (and thus the sensitivity to any “artificial” fine tun-
ing), we introduce an “absolute-value” version of the LHS by

w̃n(T ) ≡
∞∫

0

ds sn
∣∣�ρ(s; T )

∣∣. (26)

Though these moments are not directly related to chiral order pa-
rameters, they should diminish toward restoration. We define per-
tinent ratios rn = w̃n(T )/w̃n(T = 0).

Our analysis proceeds as follows. We first evaluate the QCDSR
for the vector channel. With a small reduction in the vector dom-
inance coupling, we find acceptable dV values ranging from 0.43%
to 0.67% for all T = 0–170 MeV (cf. Table 2). This is a nontrivial
result by itself. For the axial-vector channel, the QCDSRs and two
WSRs are used simultaneously to search for in-medium a1 param-
eters which minimize

f = d2
WSR1 + d2

WSR2 + d2
A, (27)

while requiring a smooth T dependence. The thus obtained
finite-T axial-vector spectral functions are shown in Fig. 3. For
all cases, the percentage deviation of WSR-1 and WSR-2 is be-
low 0.1%, and dA remains below 0.6%. Deviations of WSR-3 are
much larger, but comparable to the vacuum up to T � 150 MeV.
At T = 160 and especially 170 MeV, the magnitude of the RHSs
is small and enters into the denominator of dWSR, thus greatly
magnifying residual deviations. The rn measures decrease mono-
tonically with T suggesting acceptable deviations even for WSR-3.
We therefore conclude that our spectral functions are compatible
with both QCDSRs and WSRs.

To probe the uncertainties in our method, we depict in Fig. 4
ranges of axial-vector spectral functions with relaxed constraints,
at an intermediate temperature of T = 150 MeV. The dashed lines
border a regime of spectral functions which are obtained by only
requiring dA = 1% for the axial-vector QCDSR (the band could be
larger if all spectral functions with dA < 1% were included). From
this collection of curves, we then select those whose agreement
with WSR1 is within 1%, producing a much narrower (shaded) re-
gion bordered by dotted lines. The combined constraints of QCDSRs
and WSRs are thus shown to noticeably increase the selectivity of
the in-medium axial-vector spectral function.

A visual inspection of the in-medium spectral functions sup-
ports the trend toward restoration, cf. Fig. 3: the a1 peak gradually
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Fig. 3. Finite-temperature vector (black curve) and axial-vector (red curve) spectral functions. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 4. Regions of axial-vector spectral functions at T = 150 MeV when requiring
agreement with the QCDSR only at dA = 1% (dashed lines), and additionally with
WSR-1 at |dWSR1| � 1% (dotted lines). The solid line corresponds to a minimal f
value from Eq. (27).

merges into the ρ while the excited states degenerate somewhat
earlier through chiral mixing. The ρ–a1 merging is largely dictated
by the WSRs, but the concrete shape close to chiral restoration is
more sensitive to the QCDSRs. Note that our analysis not only com-
plies with a “trivial” degeneracy at the restoration point, but rather
provides a systematic temperature evolution, starting from the vac-
uum, compatible with current best estimates for the T dependent
chiral order parameters and condensates (at T = 170 MeV, our
condensates are close to zero, undershooting the lQCD data for
the 2-quark condensate; our axial-vector spectral function at this
temperature is thus more of an illustration of the expected de-
generacy at higher T where 〈q̄q〉T � 0). The in-medium a1 mass
shift is consistent with a leading T 4 behavior, in line with model-
independent constraints from the chiral Lagrangian. Our analysis
also suggests that the approach toward restoration “burns off” the
chiral mass splitting between the ρ and a1, while “bare” masses of
m0 � 0.8 GeV essentially persist, similar to Ref. [7].

6. Conclusion

The objective of this work was to test whether in-medium vec-
tor spectral functions which describe dilepton data in heavy-ion
collisions are compatible with chiral symmetry restoration. To-
ward this end, we deployed QCD and Weinberg sum rules in a
combined analysis of vector and axial-vector spectral functions,
using lattice-QCD and the hadron resonance gas to estimate the
in-medium condensates and chiral order parameters, and chiral
mixing to treat the T dependence of excited states. We first found
that the QCDSR in the vector channel is satisfied with a small (or-
der 5%) amendment of vector dominance. We then introduced a
4-parameter ansatz for the in-medium a1 spectral function and
found that a smooth reduction of its mass (approaching the ρ
mass) and large increase in width (accompanied by a low-mass
shoulder) can satisfy the axial-vector QCDSR and 3 WSRs over the
entire temperature range from T = 0–170 MeV, ultimately merg-
ing with the vector channel. This establishes a direct connection
between dileptons and chiral restoration, and thus the answer to
the originally raised question is positive. Our findings remain to be
scrutinized by microscopic calculations of the a1 spectral function.
Work in this direction is ongoing.
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