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An APOA5 30 UTR Variant Associated
with Plasma Triglycerides Triggers APOA5 Downregulation
by Creating a Functional miR-485-5p Binding Site

Cyrielle Caussy,1,2 Sybil Charrière,1,2,* Christophe Marçais,2,3 Mathilde Di Filippo,2,4 Agnès Sassolas,2,4

Mireille Delay,3 Vanessa Euthine,2 Audrey Jalabert,2 Etienne Lefai,2 Sophie Rome,2,5

and Philippe Moulin1,2,5

APOA5 c.*158C>T (rs2266788), located in the 30 UTR, belongs to APOA5 haplotype 2 (APOA5*2), which is strongly associated with

plasma triglyceride levels and modulates the occurrence of both moderate and severe hypertriglyceridemia. Individuals with

APOA5*2 display reduced APOA5 expression at the posttranscriptional level. However, the functionality of this haplotype remains

unclear. We hypothesized that the hypertriglyceridemic effects of APOA5*2 could involve miRNA regulation in the APOA5 30 UTR.

Bioinformatic studies have identified the creation of a potential miRNA binding site for liver-expressed miR-485-5p (MIRN485-5p) in

the mutant APOA5 30 UTR with the c.*158C allele. In human embryonic kidney 293T (HEK293T) cells cotransfected with an APOA5

30 UTR luciferase reporter vector and a miR485-5p precursor, c.*158C allele expression was significantly decreased. Moreover, in

HuH-7 cells endogenously expressing miR-485-5p, we observed that luciferase activity was significantly lower in the presence of the

c.*158C allele than in the presence of the c.*158T allele, which was completely reversed by a miR-485-5p inhibitor. We demonstrated

that the rare c.*158C APOA5 allele creates a functional target site for liver-expressed miR-485-5p. Therefore, we propose that the well-

documented hypertriglyceridemic effect of APOA5*2 involves an APOA5 posttranscriptional downregulation mediated by miR-485-5p.
Hypertriglyceridemia (HTG [MIM 145750 and 144600]) is

a commonmetabolic disease resulting from complex inter-

actions between genetic and environmental factors.1,2

Lipoprotein lipase (LPL [MIM 609708]) and its regulators,

such as apolipoprotein CII (APOC2 [MIM 608083]), apoli-

poprotein CIII (APOC3 [MIM 107720]), and apolipo-

protein A-V (APOA5 [MIM 606368]), play a major role in

triglyceride (TG) metabolism. Deleterious mutations in

these genes cause hyperchylomicronemia (MIM 144650

and 238600), and various SNPs have been associated

with both mild and severe HTG.2

ApoAV, encoded by APOA5, is a liver-expressed 366

amino acid apolipoprotein that binds to very-low-density

lipoprotein, high-density lipoprotein, and chylomicrons

in plasma.3 Its involvement in TG metabolism was first

demonstrated in mouse models: Apoa5-knockout mice

showed a 4-fold increase in plasma TG concentrations,

whereas Apoa5 overexpression in mice significantly

reduced TG levels.3,4 In mice, apoAV lowers plasma TG

levels by increasing lipoprotein lipase (LPL) activity, as

confirmed by in vitro and in vivo studies.5–7 However,

its mechanism of TG regulation is still not completely

understood.

In humans, APOA5 plays a critical role in HTG physiopa-

thology. Deleterious APOA5 mutations were found to be

involved in familial hyperchylomicronemia by inducing

a LPL activity defect.8–10 Moreover, two common APOA5
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variant haplotypes modulate triglyceridemia and the

expression of mild and severe HTG.3,10–15 APOA5 haplo-

type 3 (APOA5*3) carries the c.56C>G (p.Ser19Trp)

polymorphism (rs3135506; RefSeq accession number

NM_052968.4), which alters apoAV signal peptide and

causes reduced levels of mature peptide in vitro.16 A second

APOA5 haplotype (APOA5*2) includes the C rare allele of

the c.*158C>T SNP (rs2266788; RefSeq NM_052968.4),

which is located in the APOA5 30 UTR (previously described

as APOA5 SNP1, c.1891T>C, or c.1259T>C) and is in

strong linkage disequilibrium with three additional SNPs:

g.4430C>T (rs662799; RefSeq NG_015894.1; previously

described as APOA5 SNP3 or g.�1131T>C), c.�3A>G

(rs651821; RefSeq NM_052968.4), and c.162�43A>G

(rs2072560; RefSeq NM_052968.4; previously described

as APOA5 SNP2).3,11 The frequency of APOA5*2 is approx-

imately 7% in populations of European descent and

is strongly associated with both mild and severe

HTG.10,14,15 This strong association with plasma TG con-

centrations was confirmed in genome-wide association

studies (GWASs).12,13,17–19 Clinical data have shown that

subjects with the c.*158C minor allele have 20%–30%

higher plasma TG levels than do those without this

allele.3 Some studies have also shown a decreased plasma

apoAV concentration in subjects with APOA5*2.20–24

Several arguments have suggested that APOA5*2 might

modulate APOA5 expression at the posttranscriptional
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Figure 1. The APOA5 30 UTR with the c.*158C Allele Creates a
miR-485-5p Seed Site
(A) Luciferase activity of the pEZX-C or pEZX-T construct with
miR-485-5p or miR control (miR-CTRL).
(B) Luciferase activity of the pEZX-C construct withmiR-485-5p or
miR-CTRL in the presence of either a miR-485-5p inhibitor (anti-
485-5p) or a negative control inhibitor (anti-neg).
The APOA5 30 UTR full-length sequence (c.*158T allele) was in-
serted into pEZX-MT01 (GeneCopoeia, Labomics SA) downstream
of a firefly luciferase reporter gene, creating a pEZX-MT01-APOA5-
c.*158T vector (pEZX-T). Site-directed mutagenesis was performed
with the QuickChange II Site-Directed Mutagenesis Kit (Agilent
Technology) with mutated primers (forward 50-GGGTGC
TGTCTCCTGCACATCCAGCCTCCTGCG-30 and reverse 50-CGCA
GGAGGCTGGATGTGCAGGAGACAGCAGCC-30) for introduc-
tion of the c.*158C allele, creating a pEZX-MT01-APOA5-c.*158C
vector (pEZX-C). All constructs were verified by sequencing.
HEK293T cells (3 3 105 cells/well) were plated onto 12-well plates
48 hr before transfection and were maintained in a 5% decom-
pleted fetal calf serum 1 hr before transfection. Cells were cotrans-
fected with 800 ng of the pEZX-T or pEZX-C vector and 200 ng of
miR-485-5p precursor or scramble nontargeting control (miR-
CTRL) (pEZX-MR04 vectors, GeneCopoeia and Labomics). For
anti-miR experiments (B), 24 hr before transfections with pEZX-C,
HEK293T cells were pretransfected with anti-485-5p or anti-neg
(mirVana, Life Technologies; final concentration 30 nM). All tran-
sient transfections were performed according to the manufac-
turer’s protocol with the use of ExGen500 transfection reagent
(EUROMEDEX) and 5 ml of ExGen500 for 1 mg of DNA. Luciferase
activity was measured 48 hr after transfection on cell lysate with
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level. Similar APOA5 mRNA levels were found in mice

overexpressing human APOA5, either wild-type or with

APOA5*2.25 Moreover, APOA5 mRNA levels were similar

in human hepatic biopsies in subjects with either wild-

type APOA5 or APOA5*2.20 However, the underlying

mechanisms involved in APOA5*2 dysfunction remain

unknown, e.g., Palmen et al. did not confirm in vitro the

hypothesis that within APOA5*2, the c.�3A>G Kozak

sequence polymorphism could alter APOA5mRNA transla-

tion.24 Consequently, we investigated the potential impli-

cation of miRNAs in the posttranscriptional regulation of

mutant APOA5.

miRNAs are evolutionally conserved 19–22 nucleotides

of noncoding RNA that posttranscriptionally downregu-

late gene expression by binding target mRNAs. This pro-

cess leads to mRNA degradation or translation repression.

Recent data have suggested that miRNAs predominantly

decrease mRNA stability through base pairing with the 30

UTR of target mRNAs. The recognition of target mRNA

by miRNA involves a small complementary sequence

from 2 to 7 nucleotides long.26,27 Sequence alteration by

SNPs can either generate or destroy miRNA binding sites

in mRNAs.28 Such a finding was reported for obesity-asso-

ciated c.*2270A>G (rs8887; RefSeq NM_001080400),

which creates an illegitimate miR-522 binding site in the

30 UTR of perilipin 4 (PLIN4 [MIM 613247]) and promotes

its downregulation in adipose tissue.29

Within APOA5*2, c.*158C>T is the only SNP located in

the 30 UTR. We hypothesized that the APOA5 30 UTR

c.*158C>Trare variantmight create an illegitimate binding

site for miRNAs and thus result in APOA5 posttranscrip-

tional inhibition. This could lead to downregulation of

lipolysis and a subsequent increase in plasma TG levels.

Using five distinct software tools formiRNA target predic-

tion, we performed bioinformatic studies to determine

whether c.*158C>T affects the binding of specific miRNAs

(Table S1, available online). First, we used PITA30 and

RegRNA31 to investigate the potential effect of the c.*158C

allele on miRNA target sites and how it compares to that

of the c.*158T allele. The miRNA-mRNA binding scores

were stronger in the presence of the C allele than in the

presence of the T allele for three miRNAs: miR-485-5p

(MIRN485-5p) andmiR-1255a (MIRN1255a)werepredicted

by the two programs, whereas miR-3188 (MIRN3188) was

only predicted by RegRNA (Table S2). Second, we utilized

three additional programs (microRNA.org,32 TargetScan,33

and Diana-microT34) to confirm the potential binding of
the Dual-Glo Luciferase Reporter Assay System (Promega) with a
GLOMAX20/20 luminometer (Promega). Renilla luciferase activity
was used as an internal control for normalizing to the correspond-
ing firefly luciferase activity. All transfection experiments were
performed in triplicate and repeated three times. Results are ex-
pressed as luciferase activity relative to that of control samples
(pEZX-C vector cotransfected with miR-CTRL and anti-neg
for miR inhibitor experiments in B). Data represent the mean 5
SEM. p values were determined by a Student’s paired t test
(*p < 0.05, **p < 0.01, ***p < 0.001). NS, nonsignificant.
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Figure 2. Endogenous miR-485-5p Downregulates Luciferase
Activity of the APOA5 30 UTR with the c.*158C Allele in HuH-7
Cells
(A) Luciferase activity of c.*158C (pEZX-C) is expressed as relative
to that of c.*158T (pEZX-T).
(B) Luciferase activity of c.*158C (pEZX-C) is expressed as relative
to that of c.*158T (pEZX-T) in the presence of either anti-485-5p or
anti-neg.
HuH-7 cells (5 3 104 cells/well) were plated onto 12-well plates
and transfected with 1 mg of pEZX-Tor pEZX-C vector as described
for HEK293T cells (Figure 1). Anti-miR experiments were per-
formed 24 hr after incubation with anti-485-5p or anti-neg as
previously described (Figure 1). Experiments were performed in
triplicate, and data are expressed as luciferase activity relative to
that of control samples (pEZX-C vector cotransfected with miR-
CTRL and anti-neg). Data represent the mean 5 SEM. p values
were determined by a Student’s paired t test (**p < 0.01, ***p <
0.001). NS, nonsignificant.
these three miRNAs on the c.*158C allele: miR485-5p bind-

ingwas confirmed by the three programs,miR3188 binding

was confirmed only bymicroRNA.org, andmiR1255a bind-

ing was not confirmed (Table S2). Consequently, these re-

sults indicate that the c.*158Callelemight create a potential

illegitimate target site at least formiR-485-5p.Given the dis-

crepancies between the programs, we decided to also

considermiR-1255a andmiR-3188 for in vitro binding vali-

dation.
The Amer
Luciferase expression vectors containing the C or T allele

(pEZX-C or pEZX-T, respectively) were constructed for

functional assessment of the binding of the three candi-

date miRNAs on the mutant APOA5 30 UTR (Figure 1A).

Human embryonic kidney 293T (HEK293T) cells (ATCC

CRL-11268) were cotransfected with pEZX-C or pEZX-T

and with either a miRNA precursor (miR-485-5p, miR-

1255a, or miR-3188) or a control mimic (miR-CTRL).

Compared to control miRNA, the APOA5 30 UTR contain-

ing the c.*158C allele showed a significant, 35% (56%)

decrease in luciferase activity in the presence of miR-485-

5p (p < 0.001). Meanwhile, the 30 UTR containing the

c.*158T allele showed a nonsignificant increase in the level

of luciferase activity in the presence of miR-485-5p in com-

parison to control miRNA (Figure 1A). However, when the

c.*158T or c.*158C allele was expressed in the presence of

miR-1255a (Figure S1A) or miR-3188 (Figure S1B), there

was no significant difference in comparison to expression

with the miR-CTRL. The specific effect of miR-485-5p on

the luciferase activity of the APOA5 30 UTR c.*158C allele

was assessed with a mir-485-5p inhibitor (anti-485-5p) or

a negative control inhibitor (anti-neg). The anti-485-5p

fully reversed the decrease in luciferase activity of the

APOA5 30 UTR c.*158C allele, whereas in the same condi-

tions, the anti-neg had no significant effect (Figure 1B).

These results confirm that in vitro miR-485-5p is capable

of targeting the APOA5 30 UTR c.*158C sequence and of

partially repressing its luciferase activity.

Because APOA5 is exclusively expressed in the liver, only

liver-expressed miRNAs would potentially regulate APOA5

expression. We sought to determine whether miR-485-5p

was expressed in the liver by using quantitative RT-PCR

on RNA extracted from human hepatic cells (HepG2

[ATCC HB-8065] and HuH-7 [human hepatoma cell line,

JCRB-0403]) and mouse and human liver tissue (generous

gift from the pathology laboratory of Centre Hospitalier

Lyon Sud). miR-485-5p was expressed in both human

andmouse hepatic tissue and in all hepatic cell lines tested

and was most highly expressed in human hepatic tissue

(Figure S2).

To confirm our results obtained with HEK293T cells, we

investigated endogenous miR-485-5p functionality in

human hepatic cell line HuH-7, expressing miR-485-5p.

HuH-7 cells were transfected with the luciferase expression

vectors pEZX-C or pEZX-T.We confirmed the specific effect

of endogenous miR-485-5p by using anti-485-5p or anti-

neg cotransfected with pEZX-C or pEZX-T. We observed

that the APOA5 30 UTR c.*158C allele showed significantly

less luciferase activity than did the c.*158T allele (�43 5

16%, p < 0.01) (Figure 2A). This decrease was completely

reversed in the presence of anti-485-5p, but not in the pres-

ence of anti-neg (Figure 2B). These results demonstrate

that endogenous hepatic miR-485-5p is able to target the

mutant APOA5 30 UTR with the c.*158C allele and decrease

APOA5 30 UTR luciferase expression.

Our in silico studies primarily identified the APOA5

30 UTR with the c.*158C rare allele as a potential
ican Journal of Human Genetics 94, 129–134, January 2, 2014 131
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miR-485-5p target site. Our in vitro studies subsequently

established that the APOA5 c.*158C minor allele creates

an illegitimate and functional miR-485-5p binding site.

In the human liver, miR-485-5p might therefore downre-

gulate mutant APOA5 at the posttranscriptional level,

which could explain the strong GWAS-confirmed associa-

tion between hypertriglyceridemia and APOA5*2, which

bears c.*158C>T.3,11–15,17–19

Clinical studies have suggested a decreased apoAV con-

centration in subjects with APOA5*2.20–24 An association

between c.*158C>T genotypes and plasma apoAV levels

has not been specifically reported. Nevertheless, because

this SNP is in complete linkage disequilibrium with

g.4430C>T (rs662799, g.�1131T>C) on APOA5*2,3,35

data can be extrapolated from g.4430C>T studies. Subjects

with the g.4430C rare allele (T/C þ C/C genotypes) were

found to have a substantially significant 23%–27%

decrease in plasma apoAV concentration in comparison

to subjects with the g.4430 T/T genotype.20,25 In a recent

large study, Kim et al. provided support for the relevance

of plasma apoAV levels in plasma TG concentrations.

This study clearly showed a close inverse association

between apoAV and TGs in a cohort of 754 hypertrigly-

ceridemic individuals (TGs > 150 mg/dl). Compared to

the individuals with the g.4430 T/T major genotype, indi-

viduals with T/C and C/C genotypes displayed a 11% and

19% apoAV decrease, respectively, associated with a 9%

and 18% TG increase, respectively.36

Several studies have suggested that APOA5*2 might

modulate APOA5 expression at the posttranscriptional

level.20,24 Nevertheless, functional analysis of APOA5*2

polymorphisms have hitherto failed to identify the

mechanisms involved in the regulation of APOA5 expres-

sion.16,24,25 Our results support a miRNA posttranscrip-

tional regulation of APOA5*2. Consistent with our study,

Palmen et al. performed a functional analysis of APOA5*

2 SNPs by using a luciferase reporter construct including

part of APOA5*2: the g.4430C>T, c.�3A>G, and c.*

158C>T rare variants. Palmen et al. reported approxi-

mately the same decrease in luciferase expression in

HuH-7 cells as in our study. Although miRNA regulation

was not suspected at that time, their findings are consis-

tent with a targeting of APOA5*2 by endogenous miR-

485-5p expressed in this cell type. Additionally, Palmen

et al. showed an equally reduced luciferase expression

with the construct including only one APOA5 variant:

the c.*158C allele.24 As in our results, these previous find-

ings demonstrate that the c.*158C>T rare variant alone

provides luciferase modulation in this model.

Additionally, the data presented in this study are in line

with several previous studies that demonstrated that SNPs

located either in miRNA genes or in mRNAs can affect

miRNA-mRNA recognition and either abrogate or create

miRNA binding sites.28 This could account for diseases or

phenotypic traits in various cellular pathways.29,37 In

plasma TG metabolism, the miR-410 seed site disruption

induced by LPL 30 UTR SNP c.*1671T>C (rs13702; RefSeq
132 The American Journal of Human Genetics 94, 129–134, January 2
NM_000237.2) was recently associated with a significant

decrease in plasma TG concentration.38

Because APOA5 is exclusively expressed in the liver, we

crucially provided evidence of miR-485-5p expression in

human liver tissue. This is in accordance with the dis-

covery of miR-485-5p in human fetal liver39 and its

recently documented hepatic expression.40 It is encoded

in a miRNA cluster within an intergenic region located in

chromosome 14 and is involved in neurologic pathways

or diseases such as synaptic plasticity, Alzheimer dis-

ease,41 and ependymomas.42 It has also been shown to

be downregulated in ovarian epithelial tumors.43 miR-

485-5p was not reported to affect lipid metabolism before

our study. However, because APOA5 c.*158C>T regulation

would appear through the creation of an illegitimate target

site, it is not obvious that miR-485-5p might physiologi-

cally regulate TG metabolism.

Therefore, our work provides a comprehensive mecha-

nism for the APOA5*2 hypertriglyceridemic effect. We pro-

pose that, in humans, the miR-binding site created by the

c.*158C rare allele in the APOA5 30 UTR causes liver post-

transcriptional downregulation of APOA5 by miR-485-5p,

a miRNA expressed in the human liver. This downregula-

tion might at least partially account for the reported

expression of APOA5*2, its effect of rising plasma TG con-

centrations in humans, and the strong association

between APOA5*2 and both mild and severe hypertrigly-

ceridemia. It remains to be clarified whether additional

interactions with other APOA5*2 SNPs are also required.
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