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This paper analyzes the statistical behavior of the ground level ozone concentrations (GLO) observed at a
major traffic intersection in Delhi. Five sets of data, i.e. summer (May to July, high solar radiation data),
winter (November to January, low solar radiation data), spring (March to April), autumn (September to
October), and the entire year have been used to study the seasonal variation in the statistical behavior of
GLO. Appropriate statistical distribution form has been identified from alternative candidate distribution
models using the goodness-of-fit methods and parameters have been estimated using the method of
maximum likelihood. The yearly, winters, spring, and summer datasets were found to follow the log-
normal distribution model, while autumn dataset followed Weibull distribution. Analysis shows that
ozone concentrations also show similar statistical behavior like other air pollutants and fit mainly to the
log-normal distribution as reported for other pollutants in different studies. The seasonality of the
datasets shows higher skewness during summers due to longish tail of the distribution mainly on ac-
count of higher photoechemical activity. The probability density functions corresponding to the five
datasets were used to compute the probability of exceedence of the National Ambient Air Quality
Standards and return period of violation of standards. The distributions have also been used to classify
the study region under various air quality descriptor categories. The region is found to violate the air
quality compliance criteria 17% of the recorded times in the year. Alternative measures have been dis-
cussed to reduce the precursor emissions in order to achieve the air quality goals.
© 2016 Chinese Institute of Environmental Engineering, Taiwan. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Air pollution has emerged as a major problem in the developing
countries. It affects not only the human health but also ecology [1],
buildings [2] and agricultural productivity [3]. Maintaining the
pollution levels below the respective standards for different pol-
lutants is one of the primary goals of an air quality management
plan. The regulatory authorities like Central Pollution Control Board
of India (CPCB) lay down the compliance criterion of ambient air
quality as National Ambient Air Quality Standards (NAAQS). In or-
der to assess the status of air quality, regular monitoring of air
pollutants is carried out and large amount of data is collected that is
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related to these standards. The usual practice followed is the
computation of descriptive statistics and construction of time-
eseries plots of these pollutants. The probability density function
(pdf) of a pollutant is a useful tool of summarizing the information
contained in the entire data set in a concise manner. It depicts the
entire range, mean, extremes, probability of occurrences and
typical graphical distribution pattern in a typical setting. The
probability distribution function also helps in directly relating to
the extent of meeting the requirement of NAAQS [4]; it provides a
means to compute probability of exceedence of a standard and
return period of violation of standard, if any. Several studies have
been conducted in the past to understand the statistical behavior of
primary pollutants like particulate matter (PM), carbon monoxide
(CO) [5e7]. Jia et al. [8] studied the distribution of volatile organic
compounds (VOC) exposures. However, limited work has been
done in assessing the statistical behavior of ground level ozone
(GLO) concentrations in an urban context.
and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Ozone can be easily differentiated from the criteria pollutants
like PM, NOx, (oxides of nitrogen) and SO2 (oxides of sulphur).
While stratospheric influx is the primary source of ozone, it is also
formed through reactions precursor species as a secondary
pollutant. Understanding its behavior becomes even more difficult
considering the photo-chemistry involved in the reactions of NOx
and VOCs. VOCs help in oxidizing primary NO released fromvarious
sources to form NO2. VOCs also help in retaining the existing ozone
by competing with it to react with NO. NO2 is then photolysed to
generate atomic oxygen, which combineswith oxygen to formO3 in
the troposphere [9]. Ozone is not only linked with effects on human
health but also significant impact on crop productivities. There are
few studies conducted in past on assessment of GLO in Indian
context. Guardani et al. [10] studied the behavior of GLO concen-
tration in urban area. Gilleland et al. [11] described statistical
models for monitoring and regulating GLO. Recently, Chelani [12]
assessed the statistical persistence of ozone concentrations in an
urban setting. Unlike criteria pollutants, the GLO concentration is
affected by the photochemistry, which in turn is dependent on the
amount of solar radiation. It therefore becomes an interesting
research proposition to study the statistical behavior of GLO and
change in its behavior, if any, with change in solar radiation and
hence with season. As discussed above the GLO concentration is
expected to be high during daytime due to the photochemical re-
actions and thus due to longer sunshine hours during summers, the
average concentration is expected to be higher in comparison to the
winter's concentration. The annual average concentration, by the
same argument is expected to be in between the summer and
winter average. The other statistical characteristics are also likely to
be affected due to the photochemistry. However, statistical char-
acteristics such as mean and variance provide loose information
about the distribution of GLO concentration. The pdf on the other
hand provides a more complete and higher order description of
pollutant concentration data [13]. The present work thus aims to
model the pdf of GLO for five sets of data: (a) summer, (b) winter, (c)
spring, (d) autumn, and (e) yearly data, and study the influence of
season on the type of pdf, if any.

This paper attempts to analyze the statistical behavior of the
GLO concentrations in an urban setting. For this purpose 8-h
average data for the year 2010 has been taken. The data have
been further divided in four data sets e summer (May to July, high
solar radiation data), spring (March to April), autumn (September
to October), and winter (November to January, low solar radiation
data) to study seasonal variation in the statistical behavior of GLO.
Appropriate pdfs identified for the entire year and the four seasons
have been used to compute the exceedence probability of NAAQS
violations.

2. Materials and methods

2.1. Study location and data

CPCB runs an automated air quality monitoring station near a
major traffic intersection in the central region of the capital city of
Delhi. The traffic intersection has a very high vehicular density. 8-h
ambient ozone concentration data have been collected from the
CPCB for the year 2010. The ozone concentrations are measured
using online ozone analyzer (model O342M, Environment SA,
France) which works on UV absorption technology. The lower
detection limit is 0.4 ppb. The instantaneous ozone concentration
data are averaged for 1-h/8-h reporting. The entire data set has
been analyzed to model the statistical form of GLO. In addition,
summer (May to July), spring (March to April), autumn (September
to October), and winter (November to January) months data have
been extracted to study variation in the distribution form with
change in solar radiation. Z-scores method [14] is used to scrutinize
the outliers. The outliers with z-score values more than 3 were
scrutinized and removed from the dataset. Further analysis is car-
ried out based on the dataset without outliers.

2.2. Methodology

Exploratory analysis has been carried out for the five data sets.
For this purpose, the descriptive statistics has been computed; box-
and-whisker plot with frequency histogram constructed to pre-
liminarily assess the distribution form. This is followed by the
modeling of the distribution form of the GLO data using the MIN-
ITAB version 14.1 software. It may be noted that “there is no a priori
reason to expect that atmospheric distribution should adhere to a
specific distribution” [15]. However, most of the distributions that
have been found to fit the air quality are special cases of the four-
parameter generalized gamma distribution, which include the
one- and two-parameter exponential distributions; the one-, two-
and three-parameter Weibull and standard gamma distributions;
and lognormal distribution [16]. Thus, the challenge is to determine
the best distribution model that fits the data set under study
amongst the alternative potential candidate models. This involves
modeling the distributions of air pollutant concentration, GLO in
the present study. The modeling broadly includes two steps: (a)
identification of appropriate distribution form from alternative
candidate models; and (b) estimation of parameters of the identi-
fied model. The model identification has been carried out by Chi-
square, KolmogoroveSmirnov and Anderson-Darling goodness-
of-fit tests. However, the final model selection is based on the
Anderson-Darling test as it gives more weight to the tails, which is
more relevant in the air pollution context. Moreover, it is more
sensitive test as it makes use of the specific distribution in calcu-
lating critical values [17]. In all, fourteen distribution forms most
commonly used in air pollution studies have been fitted to identify
the best-fit distribution. The parameter estimation is done by
method of moments, method of least squares (MLS) and method of
maximum likelihood (MLE). Mage and Ott [18] based on several
Monte Carlo simulations found that MLE provides the best esti-
mates. Thus, MLE was preferred as the method for estimating
model parameters in the present study. The details of the above
mentioned model identification and parameter estimation tech-
niques have been provided in detail in Ref. [17]. Using the best-fit
distribution models, the compliance of the ozone standards at the
major traffic intersection location is assessed for different seasons
of 2010. The observed concentrations of ozone are also compared
with the NOx concentrations to analyze the effect of titration
chemistry in which primary NO emissions from sources like vehi-
cles react with ozone to destruct it. This is a primary cause for lower
ozone concentrations in the city centres in comparison to the sur-
rounding regions.

3. Results and discussion

The 8-h ozone concentrations at the major traffic intersection
monitoring station during the year 2010 are shown in Fig. 1. It
shows clear violation of 8-h standard (100 mg m�3) many times
during the year. The annual average ozone concentration at major
traffic intersection is 61 mg m�3 with a standard deviation of 50.
Seasonal variation in the ozone is clearly evident from the graph.
The GLO concentration is observed to be high during the summer
months due to higher photochemical activity. The winter months
show lower concentration values. Ali et al. [19] shows the regres-
sion analyses of surface ozone with maximum temperature in
Delhi, which also stated that ozone was mainly produced by
photochemistry. The average diurnal variation across different days



Fig. 1. 8-h variation of ozone at major traffic intersection in Delhi during 2010.

Fig. 2. Average diurnal variation across different days of the year 2010 at major traffic intersection.
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of the year is shown in Fig. 2, which shows peak ozone formation
due to higher photoechemical activity during daytime (12 noon to
4 pm). The ozone formation is generally found to be higher during
high sunshine hours; during night, ozone depletes due to its
reactivity with NO (nitric oxide). Table 1 shows the summary sta-
tistics for the five data sets.
Table 1
Summary statistics for the yearly, seasonal 8-h average GLO data (mg m�3).

Parameter Winter Summer Spring Autumn Yearly

Number of data 244 205 210 177 925
Mean 40 63 63 70 61
Standard

Deviation
36 48 48 54 50

Median 26 52 49 55 47
Minimum 1 4 11 3 1
Maximum 179 256 210 223 227
Skewness 1.5 1.8 1.2 1.0 1.3
Kurtosis 1.5 3.6 0.7 0.1 1.1
The summary statistics reveals variation in the summer and
winter data. As expected, the mean and median values are found to
be higher during the summer months compared to the winter
months. The maximumvalue recorded during the winter months is
179 mg m�3, which is 77 mg m�3 lesser than the maximum recorded
for the summer months. The maximum values for spring and
autumn months are in between 210 and 223 mg m�3. This indicates
shifting of the right tail towards the left side and reduction in the
skewness for the winter data. A higher value of coefficient of
skewness for the summer data further substantiates this fact. It also
indicates variation in the statistical behavior of the ozone concen-
trations across different seasons. This is also revealed in the fre-
quency histograms (Fig. 3). This can be attributed to higher
observed GLO concentrations due to the photochemical activity and
longer sunshine hours.

Fig. 4 shows the diurnal variation (averaged for all days in 2010)
of NOx and ozone concentrations at the study site. NOx concen-
trations are found to be increasing during night time, mainly due to
movement of heavy duty trucks which are only allowed to enter the
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Fig. 3. Histogram of 8-h ozone concentrations (a) entire year, (b) summer, (c) winter, (d) spring and (e) autumn.
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city during night. Ozone concentrations show inverse relationship
with the NOx concentrations due to titration chemistry [20]. While,
nitrogen dioxide (NO2) helps in ozone formation during daytime,
primary emissions of nitrogen monoxide (NO) released from diesel
driven vehicles destruct ozone and reduce its ambient concentra-
tions. Moreover, the ozone formation process stops during night-
time due to absence of sunlight leading to lower concentrations in
night. VOCs and meteorological parameters also play important
roles in ozone formation and transport; however, relevant data for
the study site could not be collected.

Table 2 shows the summary of Anderson-Darling (AD)
goodness-of-fit test along with the ML estimates of the model pa-
rameters of the various candidate models for the entire year.
Similar tables for summer and winter, spring and autumn dataset
are shown in Tables SI-1 to SI-4 in Supplementary Information (SI).
The selection of best-fit distribution has been done on the basis of



Fig. 4. Diurnal variation (averaged for all days in 2010) of NOx and ozone concentrations at the study site.

Table 2
Summary of Anderson-Darling (AD) goodness-of-fit test along with the ML estimates of the model parameters for various candidate distribution models for the yearly dataset.

Distribution AD P LRTa P Location Shape Scale Threshold

Normal 37 < 0.005 61 50
Lognormal 3.2 < 0.005 3.8 0.9
3-Parameter Lognormal 1.2 a 0.00 3.9 0.8 �5.95
Exponential 17 < 0.003 61
2-Parameter Exponential 13 < 0.010 0.00 60 1.05
Weibull 3.0 < 0.010 1.28 66
3-Parameter Weibull 2.2 < 0.005 0.00 1.24 65 1.02
Smallest Extreme Value 69 < 0.010 89 61
Largest Extreme Value 13 < 0.010 40 33
Gamma 1.7 < 0.005 1.55 39
3-Parameter Gamma 1.28 a 0.03 1.46 41.27 0.91
Logistic 26.46 < 0.005 53.87 26.54
Log(logistic) 2.50 < 0.005 3.80 0.52
3-Parameter Log(logistic) 2.19 a 0.06 3.85 0.49 �1.94

a LRT: Likelihood ratio test.
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AD statistics and p-value. A distribution with the largest p-value
and lowest AD statistics is selected as the best-fit distribution. The
table also shows likelihood ratio test (LRT) values, which is used to
determine whether there is significant improvement in fit with
larger distribution (i.e., 3-parameter over 2-parameter distribu-
tion); if a larger distribution significantly improves the fit, then the
p-value for LRT statistics will be very small. Based on the above
criteria the best-fit distributions for the five data sets have been
identified. Thus, the best distribution for four of the five datasets
(yearly, winter, spring, and summer) is three parameter log-normal.
It may be noted that the log-normal is the special case of the four-
parameter generalized gamma distribution which have been found
to be useful for fitting air quality data for different pollutants in past
studies [21e24]. Table SI-1 suggests that log normal and log-
logistics do appear to be really close to the best-fit distributions
for summers, however, log-normal is chosen based on its past
reliability for fitting the air quality datasets. Only for the autumn
data the AD statistic was the least for the Weibull distribution
(Table SI-4) and hence was chosen as the best-fit distribution.
However, Weibull distribution is also a special case of the four-
parameter generalized gamma distribution.

The pdf for the best-fit distributions for the five data sets is
shown in Fig. 5. The pdf also shows the line corresponding to the
NAAQS for 8-h average ozone concentration; this clearly shows that
the ozone standard is violated during different seasons across the
year. However, the tail of the distribution is longish in case of
summers.

The identified distributions for the five data sets have been used
to compute the probability of exceedence of NAAQS and return
period of violation. Table 3 provides the exceedence probability
along with the return period of violations. The table shows non-
compliance of the air quality for the entire year and for different
seasons. On an average, every fourth reading in autumn, sixth
reading during the summer and every 14th reading in winter
months (return period 4e14) exceed the air quality criteria. It may
be noted from pdf of different seasons that the number of violation
and the magnitude of these violations are much higher in summer
and autumn than in the winter season.

The data were further analyzed to describe the air quality of the
study region in terms of GLO for the five data sets. The NAAQS
standard for 8-h average ozone concentration is 100 mg m�3. The
CPCB uses exceedence indicator to compare the pollutant concen-
trationwith respect to prescribed standards for classifying different
areas into descriptor categories (less than 0.5 times: low, between
0.5 and 1 times:moderate, between 1 and 1.5 times: high, andmore
than 1.5 times the standard: critical). Table 4 data provide per-
centage times the air quality remains in the CPCB prescribed
descriptive categories for the five data sets.
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4. Conclusions

The statistical behavior of 8-h average GLO concentration
monitored at a major traffic intersectionwas studied. Seasonal data
were extracted from the original data set in order to study the
seasonal variation in the GLO concentration. Summer and autumn
seasons show higher GLO concentration in comparison to the
winters due to higher photochemical activity. Diurnal variation of
ozone shows the peak ozone formation during daytime (12 noon- 4
pm). This could be attributed to the ozone forming reactions of NOx



Table 3
Exceedence probability along with the return period of violations for the five
datasets.

Parameter Summer Winter Spring Autumn Yearly

Pr (X � xNAAQS) (in %) 83 93 83 76 83
Pr (X � xNAAQS) (in %) 17 7 17 24 17
Return period (number) 6 14 6 4 6
NAAQS criteria being

met or not (Yes/No)
No No No No No

Table 4
Percentage times the air quality remains in the CPCB prescribed descriptive cate-
gories for the five datasets.

Air quality Summer Winter Spring Autumn Yearly

Low 49 74 57 44 54
Moderate 34 19 26 32 29
High 12 4 9 15 10
Critical 5 3 8 9 7
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and VOCs in the presence of the sunlight. However, longer nights in
winter ensure enhanced reduction of ozone by titrating reaction of
NO with O3 during night.

Statistical distribution models were used to assess the statistical
behavior of GLO in the four seasons and across the year. For this
purpose, the best-fit distribution models were identified using the
goodness-of-fit tests for the five data sets. It is concluded that
yearly, spring, winter, and summer datasets follow the 3-paramter
log-normal distribution model, while autumn season followed the
Weibull distribution. The results seem to be in accordance with the
past studies which show that air quality data for different pollut-
ants fit either of the special cases of the four-parameter generalized
gamma distribution. Moreover, in the present study an attemptwas
made to study the variation, if any, in the distribution form of the
pdf due to seasonal effects. Although, there is no change observed
in the pdf in different seasons, but due to higher concentration
during summermonths, the right tail of the distribution is expected
to be longer in comparison to the winter month data. This was also
reflected in the data, as evident from the coefficient of skewness
values. The values for coefficient of skewness for summers are
higher than those of winter.

The pdf shows that the 8-h average ozone standard is violated
during all the seasons with varying magnitude during the entire
year. The probability of exceedence is found to be 7% for winters,
17% for spring, 24% for autumn, and 17% for summer and yearly
datasets. The probability of exceedence and its magnitude are
found to be less in winter and higher in autumn and summer. The
maximum recorded value is 1.7 times the standard in winter, while
it goes up to 2.6 times in summer. Moreover, higher number of
readings was found to be in low pollution category inwinter than in
summer and autumn seasons, due to higher solar insolation. This
longish tail of extreme values in summer is explained by the
positively skewed 3-paramter log-normal distribution. The study
region being a major traffic intersection has a large population of
vehicles, which are the primary contributors of the precursor pol-
lutants for ozone - NO2 and VOCs. In order to roll back the source
emissions to attain compliance criteria for acceptable air quality,
several steps can be taken. These include plying restrictions on high
emitting older vehicles, synchronization of traffic lights, traffic
management during peak hours, in addition to the conventional
measures such as regular inspection and maintenance of older
vehicles, further advancement of vehicular emission norms, and
improvement in fuel quality. The study provides useful insights and
motivation to conduct more detailed analysis of short- and long-
range sources contribution to ozone formation through disper-
sion models.
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