
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 641 (2006) 67–74

www.elsevier.com/locate/physletb

A lattice computation of the first moment of the kaon’s distribution
amplitude

UKQCD Collaboration

P.A. Boyle a, M.A. Donnellan b, J.M. Flynn b, A. Jüttner b, J. Noaki b, C.T. Sachrajda b,∗,
R.J. Tweedie a

a Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK
b School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

Received 20 July 2006; received in revised form 22 July 2006; accepted 22 July 2006

Available online 2 August 2006

Editor: N. Glover

Abstract

We present a lattice computation of the first moment of the kaon’s leading-twist distribution amplitude. The results were computed using
ensembles with 2 + 1 dynamical flavours with the domain wall fermion action and Iwasaki gauge action from the RBC and UKQCD joint dataset.
The first moment is non-zero because of SU(3)-breaking effects, and we find that we are able to measure these effects very clearly. We observe the
expected chiral behaviour and finally obtain 〈ξ〉(2 GeV) ≡ 3/5a1

K
(2 GeV) = 0.032(3), which agrees very well with results obtained using sum-

rules, but with a significantly smaller error. We discuss the systematic uncertainties in detail and explain the prospects for their further reduction.
In particular, we are implementing a programme of non-perturbative renormalization to improve the precision on the normalization of the lattice
operators (currently performed perturbatively) and are repeating the calculation on a large lattice (243 × 64 as compared to the present 163 × 32
lattice).
© 2006 Elsevier B.V.

PACS: 11.15.Ha; 12.38.Gc; 11.30.Hv; 12.39.St; 14.40.-n

Open access under CC BY license.
1. Introduction

Hadronic light-cone distribution amplitudes are fundamen-
tal non-perturbative ingredients in the QCD analysis of hard
exclusive processes. Phenomenological applications which re-
quire knowledge of the distribution amplitudes include electro-
magnetic form-factors at large momentum transfer and related
processes [1–7]. More recently, following the development of
the factorization framework, the distribution amplitudes are
also an important component in the phenomenology of ex-
clusive charmless two-body B-decays (i.e., B-decays into two
light mesons) [8–14]. These are a particularly important set of
processes for CKM-analyses and for studies of CP-violation.

* Corresponding author.
E-mail address: cts@phys.soton.ac.uk (C.T. Sachrajda).
0370-2693 © 2006 Elsevier B.V.
doi:10.1016/j.physletb.2006.07.033

Open access under CC BY license.
Here, we present the first results from our new lattice project in
which we are computing the moments of the light-cone distrib-
ution amplitudes for light pseudoscalar and vector mesons.

The subject of this Letter is the first moment of the leading-
twist distribution amplitude of the kaon, φ (u,μ)K , which pa-
rametrizes the overlap of a kaon with longitudinal momentum
p with the lowest Fock state consisting of a quark and an anti-
quark carrying the momentum fractions up and ¯ =up (1−u)p,
respectively (u + ū = 1). It is defined by the non-local (light-
cone) matrix element:

〈0|q̄(z)γ γρ 5P(z,−z)s(−z)
∣∣K(p)

〉∣∣
z2=0

(1)≡ f (ip )K ρ

1∫
0

duei(u−ū)p·zφ (u,μ),K
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where μ is a renormalization scale and

(2)P(z,−z) =P exp

{
−ig

z∫
−z

dwμ Aμ(w)

}
,

represents the path-ordered exponential from −z to z, so
that the bi-local current on the left-hand side of Eq. (1) is
gauge invariant. The distribution amplitude is normalized by∫ 1

0 duφK(u,μ) = 1, and can be expanded in terms of Gegen-

bauer polynomials C
3/2
n (2u − 1),

(3)φK(u,μ) = 6uū

(
1 +

∑
n�1

aK
n (μ)C

3/2
n (2u − 1)

)
.

The lowest-order anomalous dimensions of the moments aK
n (μ)

grow with n and thus higher moments may be suppressed for
large values of the renormalization scale μ. In this Letter we
present our results for the lowest Gegenbauer moment aK

1 ,
which is proportional to the average difference of the longi-
tudinal quark and anti-quark momenta of the lowest Fock state:

(4)

aK
1 (μ) = 5

3

1∫
0

du (2u − 1)φK(u,μ) = 5

3
〈2u − 1〉 ≡ 5

3
〈ξ 〉(μ).

aK
1 = 5/3〈ξ 〉 is obtained from the matrix element of a local

operator,

(5)

〈0|q̄(0)γργ5
←→
D μs(0)

∣∣K(p)
〉 = 〈ξ 〉fKpρpμ = 3

5
aK

1 fKpρpμ;

Eq. (5) is the leading term in the Taylor expansion of expression
(1) around z = 0. Our conventions for the covariant derivatives
are

←→
D μ = ←−

Dμ −−→
Dμ,

−→
Dμ = −→

∂ μ + igAμ and
←−
Dμ = ←−

∂ μ − igAμ.
The first moment of the kaon’s distribution amplitude has

in the past been determined mainly from QCD sum rules, and
recent results include:

(6)aK
1 (1 GeV) =

⎧⎪⎨
⎪⎩

0.05(2) [15],
0.10(12) [16],
0.050(25) [17],
0.06(3) [18].

In this work we present the results of a lattice study of this
quantity using Nf = 2 + 1 dynamical flavours of domain wall
fermions [19,20], which have good chiral properties, and the
Iwasaki gauge action [21,22]. We used gauge field ensembles
from the RBC and UKQCD dataset with three values of the
light-quark mass and the calculations are carried out with equal
valence and sea quark masses (i.e., with full unitarity). Further
details of the simulation can be found in Section 4. We have
observed a clear signal for partonic SU(3)-breaking effects in
the leading-twist kaon distribution amplitude and find that the
first moment satisfies the chiral behaviour expected from chiral
perturbation theory. For our best results we quote

〈ξ 〉MS(μ = 2 GeV) = 0.032 ± 0.003,

(7)
(
aK

1 (2 GeV) = 0.053(5)
)
,

〈ξ 〉MS(μ = 1 GeV) = 0.040 ± 0.004,

(8)
(
aK

1 (1 GeV) = 0.066(6)
)
,

in agreement with most previous results. The errors are already
small, and, as discussed below, will decrease still further in the
near future.

While we were completing this Letter, Braun et al. released
the following result from a lattice simulation using improved
Wilson fermions [23]:

(9)aK
1 (2 GeV) = 0.0453 ± 0.0009 ± 0.0029,

in reasonable agreement with our result.
The plan of the remainder of this Letter is as follows. In

the following section we introduce the basic definitions, in
particular the ratio of Euclidean lattice correlation functions
from which we determine 〈ξ 〉 and which we estimate using a
Monte Carlo simulation. Section 3 contains the discussion of
the perturbative calculation of the renormalization constants.
We present our results for the bare matrix elements in Section 4
and combine them with the renormalization constants and dis-
cuss the systematic uncertainties in Section 5, where we present
our final result. We end with a brief summary and conclusions
(Section 6).

2. 〈ξ〉bare from lattice correlation functions

We start by briefly describing the overall strategy of our cal-
culation of 〈ξ 〉. As we explain in this section, we exploit the fact
that 〈ξ 〉 can be obtained directly from a ratio of two Euclidean
correlation functions, which we evaluate using a Monte Carlo
simulation. The statistical fluctuations are reduced in the ratio
and, for each choice of quark masses used in the simulation, we
are able to obtain 〈ξ 〉 with good precision.

In constructing the lattice operators, we use the following
symmetric left- and right-acting covariant derivatives:

−→
Dμψ(x) = 1

2a

{
U(x,x + μ̂)ψ(x + μ̂)

(10)− U(x,x − μ̂)ψ(x − μ̂)
}
,

and

ψ̄(x)
←−
Dμ = 1

2a

{
ψ̄(x + μ̂)U(x + μ̂, x)

(11)− ψ̄(x − μ̂)U(x − μ̂, x)
}
,

where the U ’s are the gauge links and μ̂ is a vector of length a

in the direction μ (a denotes the lattice spacing).
To illustrate the method, consider the local lattice operators1

Oρμ(x) = q̄(x)γργ5
←→
D μs(x), Aρ(x) = q̄(x)γργ5s(x),

(12)P(x) = q̄(x)γ5s(x),

and define the two-point correlation functions

(13)Cρμ(t, �p) =
∑

�x
ei �p·�x〈0|Oρμ(t, �x)P †(0)|0〉,

1 In the simulation we actually use a smeared pseudoscalar density P in order
to improve the overlap with the kaon state. The present discussion holds for both
local and smeared pseudoscalar densities.
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and

(14)CAνP (t, �p) =
∑

�x
ei �p·�x〈0|Aν(t, �x)P †(0)|0〉.

Here q and s represent the light and strange quark fields, re-
spectively. At large Euclidean times t and T − t , where T is the
length of the lattice in the time direction, the correlation func-
tions (13) and (14) approach

C{ρμ}(t, �p)

→ ZP f bare
K e−EKT/2 sinh((t − T/2)EK)

EK

(15)× (ipρ)(ipμ)〈ξ 〉bare,

CAνP (t, �p)

(16)→ ZP f bare
K e−EKT/2 sinh((t − T/2)EK)

EK

× (ipν)

where we have used (4), (5) and defined ZP ≡ 〈K(p)|P †|0〉
and the kaon’s bare decay constant 〈0|Aν |K(p)〉 ≡ ipνf

bare
K .

The superscript bare denotes the fact that the operators are the
bare ones in the lattice theory with ultraviolet cut-off a−1. Tak-
ing the ratio of the two correlation functions

(17)R{ρμ};ν(t, �p) ≡ C{ρμ}(t, �p)

CAνP (t, �p)
→ i

pρpμ

pν

〈ξ 〉bare,

allows us readily to extract the bare value of 〈ξ 〉. The braces in
the subscripts {ρμ} indicate that the indices are symmetrized.

In the continuum
←→O {ρμ} transforms as a second rank Lorentz

tensor, whereas on the lattice we need to consider transforma-
tion properties under the hypercubic group and discrete symme-
tries, in particular parity and charge conjugation. We choose to
evaluate the matrix elements of

←→O {ρμ} for μ 	= ρ. These opera-
tors transform as a six-dimensional representation of the hyper-
cubic group and lattice symmetries exclude mixing with other
operators [24] including operators containing a total derivative
(since we are considering matrix elements with a non-zero mo-
mentum transfer, operators with a total derivative have to be
considered). As can be seen from Eq. (17), in order for the
matrix elements to be non-zero, we require both pμ 	= 0 and
pρ 	= 0. We satisfy this condition by taking μ = ν = 4, ρ = 1,2
or 3 and |pρ | = 2π/L.

Having obtained 〈ξ 〉bare, we need to determine the renormal-
ization factor relating the lattice operators

←→O {ρμ} and Aν to the
corresponding continuum operators in some standard renormal-
ization scheme; here we do this at one-loop order in perturba-
tion theory as explained in the following section.

3. Perturbative renormalization of the lattice operators

The perturbative matching from the lattice to MS schemes
is performed by comparing one-loop calculations of the am-
putated two-point Green function with an insertion of the op-
erator O{ρμ} in both schemes (which requires the evaluation
of the diagrams in Fig. 1), together with appropriate wave
function renormalization factors (Fig. 2). Defining OMS (μ) =
{ρμ}
Fig. 1. One-loop vertex diagrams evaluated in the perturbative renormalization
of O{ρμ} .

Fig. 2. One-loop diagrams contributing to the quarks’ wave function renormal-
ization.

ZO{ρμ}O
latt{ρμ}(a), the renormalization factor is given by

ZO{ρμ} = 1

(1 − w2
0)Zw

[
1 + g2CF

16π2

(
−8

3
ln

(
μ2a2) + ΣMS

1

(18)− Σ1 + V MS − V

)]
.

In this expression, (1−w2
0)Zw is a characteristic normalization

factor for the physical quark fields in the domain wall formal-
ism. It is a common factor in the numerator and denominator of
the ratio R{ρμ};ν as are the contributions from the wave function
renormalization. Zw represents an additive renormalization of
the large Dirac mass or domain wall height M = 1 − w0 which
can be rewritten in multiplicative form at one-loop as

(19)Zw = 1 + g2CF

16π2
zw, zw = 2w0

1 − w2
0

Σw.

The one-loop correction zw becomes very large for certain
choices of M [25,26], including that used in our numerical
simulations, so that some form of mean-field improvement is
necessary, as discussed below.2

The terms ΣMS
1 and Σ1 come from quark wave function

renormalization. The terms V MS and V come from the one-
loop corrections to the amputated two-point function. They are
given by “vertex” and “sail” diagrams, plus an operator tadpole
diagram in the lattice case. Using naive dimensional regulariza-
tion (NDR) in Feynman gauge with a gluon mass infrared (IR)
regulator,

(20)ΣMS
1 = 1

2
, V MS = −25

18
.

The lattice contribution Σ1 has been evaluated for domain wall
fermions with the Iwasaki gluon action in Feynman gauge and
a gluon mass IR regulator in [26]. We have calculated the lat-
tice vertex term V for the same action, gauge and IR regulator
to complete the evaluation of ZO{ρμ} . The perturbative calcula-
tion is explained in [25–27] and the form of the Iwasaki gluon
propagator can be found in [28]. Values for V are given as

2 The factor 1/(1 − w2
0)Zw cancels however, in the evaluation of the ratio

ZO{ρμ}/ZA , where ZA is the renormalization constant for the axial current.
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Table 1
Constants needed for the perturbative renormalization of the operator O{ρμ}
using domain wall fermions and the Iwasaki gauge action (c1 = −0.331). M is

the domain wall height and δΣ1 + δV = ΣMS
1 − Σ1 + V MS − V , while other

quantities are defined in the text. Σ1 and V are dependent on the gauge and the

infrared regulator: Feynman gauge and a gluon mass are used here. z
(MF)
w and

Σ1 are extracted from the results in [26], while V has been calculated as part
of this work

M zw zMF
w Σ1 V δΣ1 + δV

0.1 −243.86 −86.579 4.6519 −4.6297 −0.9110
0.2 −113.29 −39.501 4.5193 −4.5614 −0.8468
0.3 −69.404 −23.830 4.4093 −4.5101 −0.7881
0.4 −47.077 −15.949 4.3158 −4.4678 −0.7369
0.5 −33.278 −11.142 4.2354 −4.4311 −0.6932
0.6 −23.648 −7.8365 4.1665 −4.3980 −0.6574
0.7 −16.300 −5.3538 4.1079 −4.3673 −0.6295
0.8 −10.263 −3.3459 4.0593 −4.3381 −0.6101
0.9 −4.9617 −1.6078 4.0204 −4.3097 −0.5996
1.0 0.0 0.0 3.9915 −4.2816 −0.5988
1.1 4.9442 1.5902 3.9731 −4.2529 −0.6090
1.2 10.192 3.2748 3.9664 −4.2232 −0.6321
1.3 16.136 5.1900 3.9727 −4.1916 −0.6700
1.4 23.346 7.5350 3.9943 −4.1571 −0.7261
1.5 32.784 10.648 4.0343 −4.1182 −0.8050
1.6 46.322 15.194 4.0974 −4.0728 −0.9135
1.7 68.294 22.720 4.1905 −4.0176 −1.0618
1.8 111.69 37.901 4.3249 −3.9462 −1.2676
1.9 241.55 84.270 4.5209 −3.8447 −1.5651

a function of M in Table 1. Chiral symmetry of the domain
wall action implies that these results also apply for the operator
which is O{ρμ} without the γ5. We have confirmed that our re-
sults reproduce those found by Capitani [27] if we replace the
gluon propagator for the Iwasaki gauge action by the propagator
corresponding to the standard plaquette action. This provides a
powerful check of our calculation. We note that the perturba-
tive renormalization factor for the same operator using overlap
fermions and the Lüscher–Weisz gauge action can be found in
[29].

Our numerical simulations use M = 1.8. For this value of
M , with the Iwasaki gluon action, the one-loop coefficient zw

in the physical quark normalization can be extracted from Σw

in Table III of [26]. This gives zw ≈ 112, making it clear that
mean-field improvement is necessary. We follow the prescrip-
tion described in [26].

The first step is to define a mean-field value for the domain
wall height,

(21)MMF = M − 4
(
1 − P 1/4)

where P = 0.58813(4) is the average plaquette value in our
simulations. This leads to

(22)MMF = 1.3029.

The physical quark normalization factor becomes
[1 − (wMF

0 )2]ZMF
w , with

ZMF
w = 1 + g2CF

16π2
zMF
w ,

(23)zMF
w = 2wMF

0

1 − (wMF)2

(
Σw + 32π2TMF

) = 5.2509,

0

where TMF = 0.0525664 [26] is a mean-field tadpole factor and
Σw is evaluated at MMF, leading to zMF

w = 5.2509. Likewise,
Σ1 = 3.9731 and V = −4.1907 in Eq. (18) are evaluated at
MMF and the mean-field improved renormalization factor for
our simulations becomes:

ZO{ρμ} = 1

0.9082

[
1 − g2CF

16π2
5.2509

]

(24)×
[

1 + g2CF

16π2

(
−8

3
ln

(
μ2a2) − 0.6713

)]
.

We make two choices for the mean-field improved MS cou-
pling. The first uses the measured plaquette value, P , according
to [26]

(25)
1

g2
MS

(μ)
= P

g2
+ dg + cp + 22

16π2
ln(μa),

where dg = 0.1053 and cp = 0.1401 for the Iwasaki gauge
action and β = 6/g2 = 2.13 in our simulations. The second
choice is the usual continuum MS coupling. At μa = 1, we
find αMS(plaq) = 0.1752 and αMS(ctm) = 0.3385. This dispar-
ity in the values of the two couplings is further motivation for
the programme of non-perturbative renormalization which we
are currently undertaking. With these two choices of coupling,
our value for the renormalization factor becomes

(26)ZO{ρμ} =
{

0.9811 plaquette coupling,

0.8719 continuum MS.

We also evaluate the mean-field improved expression for the
axial vector current [26], interpolating to our mean-field MMF,
and obtain

(27)ZA =
{

0.7947 plaquette coupling,

0.6514 continuum MS.

The ratio of the two renormalization factors is

(28)
ZO{ρμ}
ZA

=
{

1.2346 plaquette coupling,

1.3384 continuum MS.

For the purposes of this Letter we include the spread of results
in Eq. (28) as the estimate of our current systematic uncer-
tainty of the renormalization factor.3 This uncertainty will be
significantly reduced as we complete our programme of non-
perturbative renormalization. 〈ξ 〉bare should be multiplied by
the factor on the right-hand side of Eq. (28) to obtain the re-
sult in the MS scheme. For this factor we take

(29)
ZO{ρμ}
ZA

= 1.28 ± 0.05.

4. Numerical simulation and results

The numerical results presented here are based on Monte
Carlo estimates of correlation functions evaluated on represen-
tative sets of UKQCD/RBC gauge field configurations that were
generated with Nf = 2 + 1 flavours of dynamical domain wall

3 We mention in passing that using the bare coupling,
ZO{ρμ}

Z
= 1.26.
A
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Fig. 3. Jack-knife results for 〈ξ 〉bare as a function of the time. The ranges over which we fit and the corresponding results are indicated by the black lines.
fermions [19,20] with Iwasaki Gauge action [21,22] using the
QCDOC computer [30–33]. The hadronic spectrum and other
properties of these configurations have been studied in detail
and the results will be presented in Ref. [34]. We wish to thank
our collaborators in the RBC and UKQCD Collaborations for
access to several preliminary results which we require for this
study. These are specifically mres in the chiral limit, the bare
kaon pseudoscalar masses, and the inverse lattice spacing.

The preliminary nature of these intermediate values does not
introduce a significant uncertainty in our results compared to
our statistical errors and the systematic errors due to the chiral
extrapolation and renormalization. Indeed we shall only quote
the lattice spacing to two significant figures and demonstrate
the insensitivity of our results to this. However, we caution the
reader that definitive results for these intermediate quantities
will be found in the forthcoming publication.

The lattice volume is (L/a)3 × T/a = 163 × 32 and the
length of the fifth dimension is Ls = 16. The choice of bare pa-
rameters is β = 2.13 for the bare gauge coupling, ams = 0.04
for the strange quark mass (which has been tuned to corre-
spond to the physical value) and amq = 0.03,0.02,0.01 for the
bare light-quark masses. With this choice of simulation para-
meters the lattice spacing is a−1 = 1.6 GeV [34]. Due to the
remnant chiral symmetry breaking the quark mass has to be
corrected additively by the residual mass in the chiral limit,
amres = 0.003 [34].

Statistical errors for observables have been estimated both
with the jack-knife and with a direct estimation of the integrated
autocorrelation time as suggested in [35].

4.1. Bare correlation functions

For each value of the light-quark mass we computed the cor-
relation functions on 300 gauge configurations separated by 10
trajectories in the Monte Carlo history. On each configuration
we averaged the results obtained from 4 sources for the light-
est quark mass (mqa = 0.01) and 2 sources for the remaining
two masses (mqa = 0.02 and 0.03). The sources were chosen
to be at the origin and (8,8,8,16) for all three masses, and in
addition at (4,4,4,8) and (12,12,12,24) for mqa = 0.01. In
order to improve the overlap with the ground state, at the source
where we insert the density P †, we employed gauge invariant
Jacobi smearing [36] (radius 4 and 40 iterations) with APE-
smeared links in the covariant Laplacian operator (4 steps and
smearing factor 2) [37,38].

The preliminary kaon masses corresponding to the simulated
bare light-quark masses are am0.03

K = 0.4164(10), am0.02
K =

0.3854(10), and am0.01
K = 0.3549(14) [34].

In order to extract 〈ξ 〉 from the ratio R{ρμ};ν(t, �p) defined
in (17) we need | �p| 	= 0. Since hadronic observables with
larger lattice momenta have larger lattice artefacts and statis-
tical errors, we restrict the choice of indices to ρ = ν = 4 4 and
μ = 1,2,3 with | �p| = 2π/L (pμ = ±2π/L with the remaining
two components of �p equal to 0). 〈ξ 〉bare is then obtained from
the correlation function at large times:

R{4k};4(t,pk = ±2π/L) = ±i
2π

L
〈ξ 〉bare,

(30)| �p| = 2π

L
, k = 1,2,3.

The plot in Fig. 3 shows our results for 〈ξ 〉 as a function of t

obtained from the ratio R{4k};4(t,pk = ±2π/L) for the three
values of the mass of the light quark. The results have been av-
eraged over the three values for k and the 6 equivalent lattice
momenta with | �p| = 2π/L and combining the results at t with
those at T − t − 1. There are clear plateaus, demonstrating that
the SU(3)-breaking effects are measurable and 〈ξ 〉 can be de-
termined. The results from the fits for 〈ξ 〉bare are summarized
in Table 2.

4 The index 4 corresponds to the time-direction.



72 UKQCD Collaboration / Physics Letters B 641 (2006) 67–74
Fig. 4. Linear chiral extrapolation for 〈ξ 〉bare.
Table 2
Summary of results for the bare values of the 1st moment of the kaon’s distri-
bution amplitude. The result we obtain after the linear chiral extrapolation is
quoted in the right-most column

amud 0.03 0.02 0.01 χ-limit

〈u − ū〉 0.0057(4) 0.0119(10) 0.0181(18) 0.0262(23)

4.2. Chiral extrapolation

For the pion the first moment aπ
1 vanishes since isospin

symmetry induces invariance under u ↔ (1 − u). For a non-
degenerate quark–antiquark pair (such as the kaon) flavour
symmetry breaking implies that the first moment of the dis-
tribution amplitude is non-zero. The leading SU(3)-violating
effects for the kaon’s distribution amplitude have been stud-
ied at next-to-leading order in chiral perturbation theory (χPT)
in [39]. No chiral logarithms appear and the prediction for the
mass-dependence is

(31)〈ξ 〉 = 8B0

f 2
(ms − mud)b1,2,

where f and B0 are conventional χPT parameters and b1,2 is a
Wilson coefficient as introduced in [39].

We plot our results for 〈ξ 〉bare as a function of the light-
quark mass in Fig. 4. We take into account the remnant chi-
ral symmetry breaking by defining the chiral limit at the point
amq + amres = 0. The linear behaviour predicted in Eq. (31) is
well satisfied (with a tiny χ2/d.o.f. of about 10−5). Moreover
the line passes through 〈ξ 〉bare = 0 at a value of the light-quark
mass (denoted by the open square in Fig. 4) which is consistent
with the mass of the strange quark, as expected for the SU(3)

symmetric case (amud = ams = 0.04). More specifically, the
intercept of the linear fit with the 〈ξ 〉bare = 0 axis occurs at
amud = 0.0391+0.0017.
−0.0013
From the linear fit5 we obtain 〈ξ 〉bare = 0.0262(23) in the
chiral limit and in the next section we combine this result with
the renormalization constant in Eq. (29) to arrive at our final
result.

5. Systematic uncertainties and our final result

To obtain the final result for the 〈ξ 〉 in the MS scheme at μ �
1.6 GeV we multiply the result obtained from the bare operators
with cut-off a−1 = 1.6 GeV, 〈ξ 〉bare = 0.0262(23), by the ratio

of renormalization factors in Eq. (29),
ZO{ρμ}

ZA
= 1.28(5):

(32)〈ξ 〉MS(μ = 1.6 GeV) = 0.034 ± 0.003.

In order to be able to compare our result with previous cal-
culations we evolve it to renormalization scales of 1 and 2 GeV
using the three-loop anomalous dimension [40],6 obtaining:

(33)〈ξ 〉MS(μ = 2 GeV) = 0.032 ± 0.003,

(34)〈ξ 〉MS(μ = 1 GeV) = 0.040 ± 0.004.

The error in the renormalization factor due to the uncertainty
in the lattice spacing is negligible. For example if we con-
servatively allow the lattice spacing to vary between 1.58 and
1.62 GeV, the contribution to the relative error on 〈ξ 〉MS is less
than 0.2%.

Among the uncertainties which, at this stage at least, we are
not in a position to check numerically are the continuum extrap-
olation, finite-volume effects and the fact that the strange quark

5 We have also performed quadratic fits to the chiral behaviour but the results
do not change in any significant way.

6 It should however, be recalled, that we have calculated the renormalization

constant at μ = a−1 at one-loop order. For the precision of our calculation,
it would therefore have been sufficient to have used the two-loop anomalous
dimension.
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mass (msa = 0.04) is only approximately tuned to its physi-
cal value. The lattice artefacts are formally of O(a2Λ2

QCD) �
2.5%. We would expect the finite volume effects to be small
and are currently checking this with a simulation on a 243 × 64
lattice. The strange quark mass appears to be well tuned [34] so
again we expect the contribution to the error from this uncer-
tainty to be very small. Thus we expect the errors from these
three sources to be sufficiently small not to change the errors
quoted in Eqs. (33) and (34) which we take to be our best es-
timates. We are also carrying out a systematic programme of
non-perturbative renormalization which will enable us to re-
duce the uncertainty in the renormalization constants.

6. Summary and conclusions

In this Letter we have presented the first results from our
major lattice study of the leading-twist light-cone distribution
amplitudes of the light mesons. We demonstrate that the SU(3)-
breaking effects which lead to a non-zero value for the first
moment of the kaon’s distribution amplitude are sufficiently
large to be calculable in lattice computations and satisfy the
expected chiral behaviour. Our results for the first moment are
presented in Eqs. (33) and (34).

We are in the process of implementing a number of im-
provements, including non-perturbative renormalization and a
simulation on a larger lattice (243 × 64) which will help reduce
these two sources of systematic error (or in the latter case give
us confidence in our expectation that the finite-volume errors
are indeed small). We will also produce results for the second
moment of the pion’s and kaon’s distribution amplitudes and
for those of the ρ and K∗ vector mesons. In order to reduce the
lattice artefacts we will investigate the use of partially twisted
boundary conditions [41–43] which will allow us to calculate
the observables at smaller values of lattice momenta.

While we were completing this Letter, Ref. [23] appeared
with the results of an Nf = 2 study of the distribution ampli-
tude, using O(a) improved Wilson fermions and the plaquette
Wilson gauge action. For the first moment of the kaon’s dis-
tribution amplitude the calculation was performed at β = 5.29
corresponding to a lattice spacing of about 2.6 GeV. The result
of Ref. [23] is given in Eq. (9) above.
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