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Abstract
3He neutron spin filters (NSF) have been widely used for polarized neutron instrumentation for worldwide neutron

facilities. Here we report characterization of the two-dimensional neutron path variation of a 3He NSF when a large

divergent, scattered neutron beam passes through the end windows of a cylindrical 3He cell. Path length variations

of the transmission of the unpolarized neutrons through a 3He NSF and neutron polarization produced from a 3He

NSF are characterized. We present a ray-tracing model to explain the path length variation and corresponding neutron

transmission and neutron polarization variations, and compare the measured variations to those calculated from the

model. Although the path length effect is not large, it should be corrected in the polarization efficiency correction

software when a 3He NSF is used for SANS polarization analysis. The path length variation effect can be adopted to

other types of neutron scattering spectrometers when using 3He NSFs.

c© 2012 Published by Elsevier BV. Selection and/or peer-review under responsibility of the organizing committee for

PNCMI 2012.
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1. Introduction

Recent years have witnessed the rapidly expanding applications of 3He neutron spin filters (NSF) in

various polarized neutron instrumentation such as the triple-axis spectrometer (TAS) [1], the small-angle

neutron scattering (SANS) instrument [2, 3, 4], the reflectometer [5, 6], and wide-angle polarization analy-

sis [7, 8]. A 3He neutron spin filter (NSF) is based on the strong spin dependence of the neutron absorption

cross section for 3He and is a transmission-based neutron polarizing device. Polarized neutronic perfor-

mance of a 3He NSF is governed by the 3He gas polarization, gas thickness (product of the neutron path

length and 3He density), and wavelength, and is predictable and calculable once the parameters above are

known. Unlike a supermirror polarizing device, the performance yielded by a 3He NSF is spatially uniform

if the gas thickness is uniform.

Spin-exchange optical pumping (SEOP) based 3He cells for neutron scattering applications have been

commonly fabricated from boron-free aluminosilicate glass GE180 [9]. It has been found [10, 11] that long

relaxation times are obtained with greater reliability for cells made from fully blown glass. For this reason,
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blown cells are employed whenever possible in SEOP applications. To protect the cell from rupture and

for practical reasons, the cell windows for the neutron pathway are often made to be curved. Whether the

neutron path length is spatially uniform or not depends on the 3He cell geometry design and fabrication

technology limitation. Although the path length can be spatially uniform as in the case of banana-shaped

cells used for wide angle polarization analysis [7, 12], the path length of 3He NSFs are often not uniform

for applications in SANS, TAS and reflectometry. Therefore the path length variation should be corrected

for use on various beam-lines.

SANS is equipped with a large two-dimensional position-sensitive detector (PSD) and is well suited for

characterization of neutron path length variation of a 3He NSF cell. Polarization analysis in SANS with a
3He NSF [3, 13] has recently been employed for studies of magnetic nanoparticles [2, 14], an exchanged-

biased system [15], a ferroelectric material [16], bio-nanomagnetism [17], and a giant magnetostrictor [18].

These experiments required careful attention to polarization corrections, which result from the imperfection

of the 3He spin filters, precession coil spin flipper, and possible spin transport. Spatially homogeneous po-

larization efficiency is necessary in performing polarization analysis, especially in probing a weak magnetic

signal from the sample, as shown in reference [14] where uncertainties of polarization efficiencies over 1 %

would mask the expected weak magnetic features. Hence, accurate knowledge of the spatial variation of the

neutron path length and corresponding polarized neutronic performance of a 3He NSF is essential. Here, we

report a model for the neutron path length variation and the corresponding transmission and neutron polar-

ization variations measured with unpolarized neutrons in SANS. A model and experimental characterization

of the spatial variations in polarized neutronic performance measured with polarized neutrons will be shown

in a future publication.

2. Polarized 3He spin filter as a spin analysis device

A 3He neutron spin filter is a transmission-based neutron-polarizing device. It relies upon the strong

spin dependence of the cross section for neutron absorption by 3He gas, which arises from the resonance

reaction 3He(n,p)3H (absorption cross section σ+ = σ ↑↑≈ 0 when the neutron spin is parallel to the 3He

spin; while σ− = σ ↓↑≈ 10666 b at 1.8 Å when the neutron spin is anti-parallel to the 3He spin). The

transmission for an unpolarized neutron beam passing through a polarized 3He cell is given by

Tn = T0 cosh (σnlPHe) (1)

PHe is the 3He polarization. σnl is the opacity of the cell, which is linearly proportional to the 3He gas density

(n), the absorption cross section σ (∝ wavelength λ), and the length (l) of the cell. T0 is the transmission for

an unpolarized neutron beam passing through an unpolarized 3He cell and is given by

T0 = TE exp (−σnl) (2)

where TE is the glass or silicon window transmission of the 3He cells. Often the SEOP 3He cells are

fabricated from GE-180 glass. We had a window thickness of about 7 mm for 3He cells in SANS application

and typically observed TE of 0.87. The wavelength dependence of the transmission of glass cell windows

has been measured to be relatively flat [19]. The resulting neutron polarization after a polarized 3He cell for

an unpolarized beam is given by

Pn = tanh (σnlPHe) =

√
1 − T 2

0

T 2
n

(3)

3. Modeling the neutron path length variation

The neutron path length variation comes from the non-flatness of the 3He cell windows and the geometric

effect of the instrument setup. To model the spatial variation, the end-window can be characterized as part

of a spherical object with radius of curvature, R (R approaches infinity for flat windows). In order to model
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this, we take the coordinate system origin at the center of the 3He cell as shown in Fig. 1. Any scattered

neutron ray that passes through the cell intersects both the front and back spherical windows of the 3He cell.

Then the coordinates of the intersecting points are calculated. A neutron path length corresponding to that

scattered ray is the length between two intersecting points. Given any pixel on a two-dimensional SANS

position sensitive detector (PSD), the scattering angle 2θ is known, hence we can average the cell path length

over the sample area (typically a disc) assuming the sample is uniformly illuminated in the incident beam.

Let Dsc be the distance from the sample to the analyzing 3He cell center, and Dcd be the distance of the 3He

cell center to the detector. Then the distance from the sample to the detector, Dsd, is Dcd+Dsc. Therefore for

any given pixel with its subtending scattering angle 2θ, the neutron path length l integrated over the sample

area can be expressed as

l
l0
� 1 +

[
1

2

(
1 − l0

2R

)
− D2

sc

Rl0

]
tan2 (2θ) +

⎡⎢⎢⎢⎢⎣1
2

(
1 − l0

2R

)
− D2

cd

Rl0

⎤⎥⎥⎥⎥⎦ AS

2πD2
sd

(4)

where AS is the sample cross sectional area. l0 is the neutron path length via the cell center and is typically

measured with a small neutron beam. Generally, the term 1
2

(
1 − l0

2R

)
is much smaller than the term

D2
cd

Rl0
since

Dcd is much larger than R and l0, thus, Eq. 4 can be rewritten as

l
l0
� 1 +

[
1

2

(
1 − l0

2R

)
− D2

sc

Rl0

]
tan2 (2θ) − D2

cd

Rl0

AS

2πD2
sd

(5)

Given the fact that the sample area is much smaller than the product of R and l0, the last term in Eq. 5 is

typically negligible. To make a straightforward evaluation,
D2

sc

Rl0
in our typical SANS setup is much larger

than 1
2

(
1 − l0

2R

)
, hence l

l0
can be approximated by 1 − D2

sc

Rl0
tan2 (2θ). This implies that l

l0
decreases as the

scattering angle and the distance from the sample to the cell increases, as the curvature of the cell window

and the cell length decreases. For a flat windowed cell [11, 20], l
l0
� 1 + 1

2
tan2 (2θ). This is consistent with

the exact path length correction for flat windows where l
l0
= 1

cos(2θ)
. So the neutron path length in this case

weakly increases with the scattering angle.

4. Experiment setup

The experiments were performed at the National Institute of Standards and Technology Center for Neu-

tron Research on the NG-3 SANS beam-line. The NG-3 SANS detector has 128 pixels by 128 pixels with

a 5 mm pixel resolution. To extend the momentum transfer range, a wavelength of 5 Å was chosen. The

neutron transmission-based 3He polarization measurement commonly utilizes a small direct beam or a small

diffracted beam [1]. In this case, only a single value of the opacity is obtained, often through the cell center.

To map the spatial variation of the neutron path length, we have utilized the small angle scattering from a

strong scatterer as a measurement probe. Since the transmission through an unpolarized 3He cell is about

0.045 at an opacity value of 3, the intensity differs by a factor of 22 for the transmission measurements with

no cell and unpolarized cell. Consequently, it is essential to use a sample that produces strong coherent scat-

tering (A coherent scatterer is necessary for future characterization of the spatial variation of the polarized

neutronic performance). Therefore a glassy carbon sample [21] was chosen. A 3He cell was placed after

the glassy carbon sample to simulate a routine SANS polarization analysis setup [2]. Three SANS measure-

ments were done to characterize the spatial variation of a 3He NSF for an unpolarized neutron beam: (1)

no 3He cell in the beam; (2) a polarized 3He cell in the beam; (3) an unpolarized cell in the beam. For all

three measurements, the data are corrected for detector efficiency, empty, and background as described in

the reference [22]. The time dependence of the 3He polarization was also corrected. Even with the glassy

carbon sample, a long counting time on the order of one hour is necessary to achieve good counting statistics

pixel by pixel for the unpolarized 3He cell measurement.

For the experiment, 3He gas was polarized offline in one of the NIST state-of-the-art SEOP systems [11],

then transported to the NG-3 SANS beam-line. During the experiment, the 3He polarization was maintained
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in a compact, magnetically shielded solenoid that is 25 cm diameter and 35 cm long, and provides a volume-

average transverse field gradient of |�∇B⊥/B|≈ 6×10−4 cm−1 even with a 1.6 T electromagnet operating

nearby (not necessary for the test here, but it is required for future characterization for the polarized beam

setup). The 3He polarization relaxation time was about 200 h, long enough as compared to an one-hour

counting time. The 3He cell was under vacuum and typically about 50 cm away from the sample when

using the 1.6 T electromagnet applied to the sample. To verify cancellation of the path length variation

effect on the scattering angle as shown in Eq. 5 (see discussion in Sec. 5), we used a different experiment

setup where a 3He analyzer cell was located only several centimeters away from the glass carbon sample

with both the sample and cell placed near the center of a pair of 55 cm diameter Helmholtz coils. The

Helmholtz coils serve as the sample field and also provide a uniform field to maintain the 3He polarization.

5. Experimental results

We began with the standard experiment setup where the 3He cell Burgundy was placed 52 cm away from

the sample, with a sample-to-detector distance of 402 cm. We have measured the path length variations of

T0 (opacity), Tn, Pn, and 3He polarization pixel by pixel on a SANS 2D PSD. Shown in Fig. 2 is a SANS

image with the polarized cell Burgundy, clearly indicating the measurable Q (Q = 4π
λ

sin (θ)) range set by

the magnetically shielded solenoid where the neutron shielding material is matched to the mu-metal end cap

hole. Fig. 3 shows the opacity variation at different scattering angles (converted to Q space) obtained using

Eq. 2. The opacity decreases by about 10 % from the cell center to the edge, in good agreement with the

calculated opacity variation modeled for the cell Burgundy with a radius of curvature of 20 cm. The radius

of curvature was determined by fitting the model to the measurements. The sudden change of the opacity at

Q = 0.094 Å−1 indicates the Q limit described in Fig. 2. Error bars in all figures are obtained from counting

statistics, and represent one standard deviation.

Fig. 4 shows the variation of the transmission of the polarized 3He for the cell Burgundy vs the wave

vector transfer obtained using Eq. 1 at a 3He polarization of 0.754 (see Fig. 6). The transmission increases by

about 8 % from the cell center to the edge, in good agreement with the calculated variation in transmission.

The neutron polarization is not affected from a moderate variation in opacity and decreases only by less than

1 % from the cell center to the edge as shown in Fig. 5. Fig. 6 shows the 3He polarization variation obtained

using Eq. 3 and the path length variation obtained in Fig. 3. Best fit of the 3He polarization plot to a constant

yielded a 3He polarization value of 0.754. 3He polarization was also measured directly from the transmission

measurement using Eqs. 1, 2, 3 and determined to be 0.752±0.008 with a small correction applied for the

polarization decay due to the long counting time of the scattering measurement. As expected, the 3He gas

polarization is independent of the scattering angle and should be spatially uniform. The experiment started

with the empty measurement (no glassy carbon sample) that is required for a SANS measurement followed

by a 12 h polarization decay of the cell Burgundy before the Tn transmission measurement. The initial 3He

polarization was 0.800±0.008 for the cell Burgundy.

From Eq. 5, it is possible to cancel the tan2 (2θ) dependence of the path length, i.e., the tan2 (2θ) depen-

dence vanishes by choosing an appropriate value of Dsc such that

l0
2

(
R − l0

2

)
= D2

sc (6)

Generally, it would be necessary to locate the cell very close to the sample to satisfy Eq. 6. For example, for

the cell Maverick, l0 = 6.2 cm and R = 25 cm. This would imply Dsc=8.2 cm. To perform the test, we used

a pair of Helmholtz coils to maintain the 3He polarization, and placed the cell Maverick front window only

5.1 cm away from the glassy carbon sample. The sample-to-detector distance was 351 cm. We then repeated

the three measurement sequences as used for the cell Burgundy. The results are shown in Figs. 3, 4, 5, 6.

Plots of the opacity, Tn, and Pn vs Q are flat for the entire Q range, indicating that they are independent of

the scattering angle, in good agreement with the ray-tracing model. Given that the cell is large in diameter

and close to the sample, there is no limit in maximum achievable Q by the cell. The Q limit is set only by

the size of the silicon window attached to the vacuum sample chamber.
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Fig. 1. Schematic diagram for modeling the neutron path length variation in a SANS geometry. Dsc is the distance from the sample to

the 3He cell center. Dcd is the distance of the 3He cell center to the detector. Dsd is the distance of the sample to the detector. l0 is the

neutron path length via the cell center. l is the neutron path length, corresponding to a pixel (2θ) on the 2-D PSD.
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Fig. 2. SANS image for the polarized cell Burgundy after corrections for detector efficiency, empty and background. The right axis

is the wave vector transfer (Qy in Å−1) along y. The circle indicates the Q limit from the mu-metal end cap hole of the magnetically

shielded solenoid where the neutron shielding material is attached.
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Fig. 3. Path length variation in opacity as a function of the wave vector transfer for the cell Burgundy (solid circles) and Maverick

(open circles). The calculated variations were done for the cell Burgundy (solid line) and Maverick (dash line). The modeling was

done for the cell Burgundy with R = 20 cm, Dsc = 52 cm, Dcd = 350 cm, and for the cell Maverick with R = 25 cm, Dsc = 8.2 cm,

Dcd = 343 cm. The transmissions (TE) of cell windows were determined to be 0.86 for the cell Burgundy and 0.87 for the cell Maverick

based on the average wall thickness and TE measurements of other similar cells.
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Fig. 4. Path length variation in Tn as a function of the wave vector transfer for the cell Burgundy (solid circles) and Maverick (open

circles). The calculated variations were done for the cells Burgundy (solid line) and Maverick (dash line). 3He polarizations were

determined to be 0.754 and 0.757 for the cell Burgundy and Maverick, respectively (see details in text).
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Fig. 5. Path length variation in Pn as a function of the wave vector transfer for the cell Burgundy (solid circles) and Maverick (open

circles). The calculated variations were done for the cell Burgundy (solid line) and Maverick (dash line). 3He polarizations were

determined to be 0.754 and 0.757 for the cell Burgundy and Maverick, respectively (see details in text).
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Fig. 6. Path length variation in 3He polarization as a function of the wave vector transfer. The 3He polarization was obtained at each

scattering angle using Eq. 3 and the opacity variation in Fig. 3 for the cells Burgundy and Maverick. The 3He polarizations were 0.754

and 0.757 for the cells Burgundy and Maverick obtained by fitting the polarization plot to a constant.
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6. Conclusions

In summary, we have characterized and modeled the two-dimensional neutron path variation in opacity,

transmission through polarized 3He cells, and neutron polarization yielded from a 3He NSF when large

divergent scattered neutron beams pass through the end windows of the cylindrical cells. The experiment

utilizes a large two-dimensional SANS position-sensitive detector and a strong coherent scatterer. The path

length variations in opacity and transmission are about 10 % and 8 %, respectively, from the cell center to

the edge in the configuration studied here and depend on the cell geometry and the instrument setup. The

neutron polarization resulting from a 3He NSF is not sensitive to the path length variation (about 1 %).

Although the effect is not large, it should be corrected in polarization efficiency correction software when
3He NSFs are used on the neutron beam-line. The path length variation effect can be cancelled if one

appropriately locates the 3He cell close to the sample. We have implemented the path length correction in

the polarization efficiency correction software we have developed for various instruments (TAS and MACS)

at the NCNR. We plan to implement the correction into the SANS and reflectometry software. We plan to

characterize and model the path length variation in polarized neutronic performance.
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