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Abstract

This paper is an initial inquiry into the struze of the Hopf algebra of matroids with
restriction—contraction coproduct. Using a family of matroids introduced by Crapo in 1965, we show
that the subalgebra generatedasingle point and a single loop in the dual of this Hopf algebra is
free.
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1. Introduction

Major advances in combinatorial thgoduring recent decades rely upon algebraic
structues associated to combinatorial obgctnd inéed, often involve studies of
combinatorial properties of algebraic systems themselves. In particular, Hopf algebras
based on families of combinatorial structures such as posets, graphs, permutations and
tableaux play a increasingly prominent role in contemporary combinatorial theory and
have been applied to a wide variety of fields. A major exception to this trend occurs
in matroid theory, where little attention has been paid to naturally occurring algebraic
structues. One such structure, introduced by one of the present authois]inid a
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Hopf algebra that may be associated to any family of matroids that is closed under
formation of minors and direct sums. This Hopf algebra has as basis the set of isomorphism
classes of matroids belonging to the given family, with product induced by the direct
sum operation, and coproduct of a matrdidl = M(S) given by > ,csM|A ® M/A,
whereM | A is the submatroid obtained by restrictionAandM/A is the complementary
contraction. A closely related Hopf algebra was constructed by Joni and Ra,ing the
incidence coalgebra of a hereditary family of gegimc lattices. In this case, attention is
restricted to simple matroids, and the subgeegppearing in the coproduct are taken to be
flats. These Hopf algebras were also briefly considered in connection with the characteristic
and Tutte polynomials of matroids i2(] and [21].

Similar constructions have arisen with increasing frequency in recent years, as Hopf
algebra technigues have been brought to bear on the study of Feynman diagrams
and renormalization processes in Physi@d4,5], Vassiliev’s knot invariants—813]
and graph invariantslfl,17]. All of this work has been carried out in the context of
graphs, which form an extremely restricted class of matroids, and which have a grossly
different classification by isnorphism, save when attentias resticted to 3-connected
graphs.

The present article is an initial inquiry intoetdructure of the matroid Hopf algebra
given in [18]. We prove that the subalgebra of the dual algebra generated by “point”
and “loop” (the two one-element matroids) is free. (The question of whether of not the
corresponding subalgebra, in the context of graphs, is free, which was posed by Lowell
Abrams, remain®pen.) We manage this proof by restricting attention to a clasg' of 2
mutually nonisomorphic matroids on arelement set which we call “freedom matroids”.
These matroids are obtained, starting from the empty matroid, by successively adding
points, at each stage either in a new dimension or in general position in the top rank.
Freelom matroids were introduced by the other present authot,dp ih order to prove
that there are at least" honisomorphic matroids on elements. The same matroids,
presented as transversal matroids, were usetidirit¢ give a smplified proof of the same
result. Several characterizations of freedom matroids were giveb5n Jhere it was
also shown that the family of all freedom matroids is closed under formation of minors
and duals. In the present paper, we adduce a number of new combinatorial properties of
freedom matroids. This work is thus a usefdjunct to recent work that has modeled these,
and generalizations of these, matroids in terms of Dyck pdfresd lattice paths 3], and
other work, soon to appea2,fi].

2. Coalgebrasof matroids

Throughout this paper, we work over some commutative Kingith unit. All modules,
algebras and coalgebras are okerall mapsbetween such objects are assumed tibe
linear, and all tensor products are taken okerGivenany family of matroidsM, we
write M for the set of isomorphism classes of matroids belongingtpanddenote by
K{Mj} thefree K-module havingM as bas. For any matroidM = M(S), andA C S,
we write M| A for the restriction oM to A, andM/ A for the matroid orS\ A obtained by
contractingA from M.
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The following result appeared i1 §], as an example of the more general construction
of incidence Hopf algebras:

Proposition 2.1. If M is a minor-closed family of matroids then{ﬁ} is a calgebra,
with coproducts and counite deternined by

1, if S=4,

§(M) = Z MIA@ M/A  and €M)= {o otherwise

ACS
forall M = M(S) € M. If, furthermore, the family\ is closed under formation of direct
sums, then KM} is a Hopf algebra, with product induced by direct sum.

Wherever M is minor-closed, we shall writ€ (M) for the moduleK {ﬂ} equipped
with the above coalgebra structure.

We remak thatin the statement dProposition 2.1and in all hat follows, we do not
distinguish notationally between matroids and their isomorphism classes; it will always be
clear from the context which is meant. For the purposes of this article, we are interested
primaiily in the case in whichM is minor-closed and not necessarily closed under direct
sums ad herte C(M) is only a coagjebra. We do not give a complete proof of the
proposition here, but only mention that coassociativity @fllows directly from the basic
identities(M|T)|U = M|U, (M/U)/(T\U) = M/T and(M/U)|[(T\U) = (M|T)/U,
which hold for any matroidV = M(S)andU C T C S.

In the case thaiM is closed under formation of direct sums, a formula for the antipode
of M may be deduced from the formula for the antipode of an arbitrary incidence Hopf
algebra given in18§].

We will use the followingnotation for some specific matroids:

In=Unn thefree matroidof sizen
Zn =Uon thezero matroidof sizen
Ph=U1n then-point

Ch = Up_1.n then-circuit

l =14 point

Z=12 loop

where, as usual)y , denotes the uniform matroid of ranlon n points.

Example 2.2. Let L be the matri shown inFig. 1, consisting of points, b, ¢, d, ein the
plane, with{a, b, ¢} and{a, d, €} collinear. If M is any minor-closd family containingL,
then the coproduct of in C(M) is given by

S(LY=L®F+4C301)®Z+Cs®Z+2C3® P2+8I3® Z;
+612® (P2®Z)+4129 P3+4l N+ 1 ®@(P,®P) +0®L,
where@® denotes the direct sum aéon on matroids, andN is the three-point line with
one of its points doubled.

Example2.3. The familyZ = {I, : n > 0} of all free matroids is minor-closed, and
the coalgebr& (Z) is the free moduleK {lg, I1, ...}, with coproduct and counit given by
8(In) = Y ko (k) Ik ® In—k ande(ln) = 8no, for all n > 0. Becausd is also closed
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Fig. 1. The matroid L’ for Example 2.2

under formation of direct sum€§(Z) is in fact a Hopf ajjebra. Sincd,, is equal to the
direct sum ofn copies ofl, we havel, = 1" in C(Z), andthusC(Z) is the polynomial
Hopf algebraK [I ], with coproduct determined (1) = 1 1+ 1® I.

Similarly, the familyZ = {Z, : n > 0} of all zero matroids is closed under formation
of minors and direct sums, ar@l 2) is equal to the polynomial Hopf algebta[Z], with
(2)=2Q1+1 Z.

Note that the coproducts irExample 2.3are cocommutative. This is because the
operations of deletion and contraction &ee and zero matroids happen to coincide.
In fact, these are the only matroids on which these operations coincidet i§ any
minor-closed family that contains matroids outsideZaf) Z, then he coalgebr& (M)
is noncocommutative.

Example 2.4. The clasd/ of all uniform matroids is minor-closed, and the coproduct on
CU) is given by

r./n . /n
8(Urm = (1) Ui ®Urin-i + Y- (1) Ui ® Uon-i.
i=0 i=r+1
foralln > r > 0. If we adopt the convention th&atx m = Ugm, for Kk < 0 and
Uk.m = Um.m, for k > m, then the coproduct o8 (l{) takes he form

n

8(Urn) = Z (?) Uri ® Ur—jn-i,

i=0

foralln>r > 0.

Example 2.5. The subclasC of U consisting of all circuits and free matroids is
minor-closed. The coalgeb@(C) is equal toK{lg, 11, ..., C1, Co, ...}, with coproduct
deternined by §(In) = Y ¢_o(3) Ik ® In—k, forn > 0, and8§(Cm) = Cm ® lo +
E‘;Ol (W) Ik ® Cm—k, forallm > 1.
Given a familyM, andn > 0, we denote byM, the st of all matroids belonging té1
whose underlying sets have cardinalityand fork,r > 0, we denote by\, i the set of
all matroids belonging tov that hare rankr and nullityk. Writing Cn (M) andCy x (M),
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respectively, for the free modulé(s{ﬂn} andK {/\A/ﬂ,k}, we have

CM) =P CaM) = P Cri(M).

n>0 r.k>0

Proposition 2.6. If M is minor-closed, the families of submodu{€ (M) : n > 0} and
{Cr k(M) : 1,k = 0} of C(M), respectively, equip @M) with the structure of a graded,
and bigraded, coalgebra. IM is also closed under formation of direct sums thef\@)
is also hus graded, and bigraded, as a Hopf algebra.

Proof. The first claim follows immediatelfrom the fact that, for any matroil = M(S),
andA C S, the rank of M is equal to the sum of the ranks M| A andM/ A, and sinilarly

for nullities. The second claim follows from the fact that rank and nullity are additive
functions with respedb the disjoint sum operation on matroids.]

Proposition 2.7. If M is a minor-closed family and\* = {M* : M e M] then
the map D : C(M) — C(M*), deermined by M— M*, forall M € M, is a
coalgebra antiisomorphism. In particular, i1 is closed under duality, then [} is an
antiautomorphism of CM).

Proof. The mapD 4 has inversé® »+, and isthus bijective For any matroidM = M(S),
and A C S we hawe theidentities(M|A)* = M*/(S\ A), and(M/A)* = M*|(S\ A),
from which it followsimmediately thatt(D((M)) = (Daq ® Dag) - T - §(M), where
7:CM)®C(M) - C(M)®C(M) is the twist map, determined M QN > N M,
foralM,Ne M. O

For all maroids N1, N» andM = M(S), thesection coﬁicient(Nl'\”'N2> is defined as

the number of subseté of S suchthat M|A = N; and M/A = Np; herce if M is a
minor-closed family, the coproduct @Y M) is determined by

M
(M) = Z (Nl, N2> Ni ® Na, (2.8)

N1, N2
for all M € M, where the sm is taken over all (isomorphism classes of) matroddsind
N2. We renark that there is no need to restrict the sum in Egg)(to matroidsN; and Ny
belonging taM; because the familyM is minor-closed, the section coeﬁicie<n'(|lMN2) is

zero wheneveN; or Ny is outside ofM. Another way of viewing this is the following: if
A is the dassof all matroids, then the coproduct @(.A) is given ty Eq. 2.8); and if M

is any minor-closed class th€h M) is a sibcoalgebra o€ (A) and thus the coproduct on
C(M) is given by the same formula as that for the coproductgA).

Example 2.9. Suppose thaM (S) is the matroid shown ifrig. 2 and thatN = P, @ P,
is the matroid consisting of two double points. The section coeffic(quf;' N) is equal to

one (rather than two, as one might first guess) because, although there are two Aubsets
of SsuchthatM|A = Uy 3, only for A = {a, b, c} do we haveM /A = N; the @ntraction
M/{a, d, e}, is athree point line with one point doubled.
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Fig. 2. The matroid M’ for Example 2.9

More generally, for matroidsly, ..., Ny andM = M(S), themultisection coefficient
(Nl-{\-ﬂ-,Nk) is defined aghe number of sequence&sy, ..., &) suchthaty = S C

- C & = Sand(M|S)/S-1 = N;, for 1 < i < k. Hence the iterated coproduct
§:CM) > C(M) ® --- ® C(M) is determined by

M
(M) = N1 ®:---®N
(M) ZN <N1,...,Nk) 1® - ® N,

N1,..., Nk
forall M € M.

3. Algebrasof matroids

For any fanily of matroids M, we definea pairing (-, -) : K{/\A/f} X K{/\7} —- K
by setting(M, N) equal to the Kronecker deli@, v, for all M, N € M. This pairing
determines a pairing d{{/\/l} ® K{M} with itself, by (M1 ® Mz, N1 ® N2) = (M1, N1) -
(M2, N2), for all M1, M2, N1, N2 € M. If M is minor-clsed, we mayHus define a
product onK { M}, dual to the coproduct o8 (M), by setting

(N1 - N2, M) = (N1 ® N2, 8(M)), 3.1

forall M, N1, N2 € M, thus makingK {/\7} an associativ& -algebra, with unit equal to
the empty matrid. We denote& { M}, equipped with this algebra structure, ByM), and
note thatA(M) is isomophic to the graded dual algebra@{M).

Writing An(M) and A k(M) for the submodules cA(M) generated, respectively, by
matroids inM havingn-elements, and those having ranéind nullityk, we havehe direct
sum cecompositions:

AM) = P AM) = P Ark(M),

n>0 r.k>0

and it follows fromProposition 2.6hat A(M) is thusboth a graded and bigraded algebra.
We also have th following result, dual tdProposition 2.7

Proposition 3.2. If M is a minor-closed family and\* = {M* : M e M} then
the map D: A(M) — A(M*), deermined by M— M*, forall M € M, is an



1072 H. Crapo, W. Schmitt / European Journal of Combinatorics 26 (2005) 1066—-1085

algebra antiisomorphism. In particular, ifM is closed under duality, then D is an
antiautomorphism of A\).

By the definition of the pairing, the right-hand side of E8.1J is the cefficient of the
basis elemeni; ® Ny in the coproducts (M) which,as noted in Eq.4.8), is given by the

section coﬁicient( NlMNz). Sincethe left-hand side of 8.1) is the cefficient of the basis
elementM in the productNj - Ny, it follows that

Np-Np= ) (NEANZ) M, (3.3)

MeM

forall N1, N2 € M. We enphasize that, in Eq3(3), it is necessary to limit the summation
to elements of\1; becauseC (M) is a subcoalgebra o€ (A), whereA is the family of all
matroids, it bllows that A(M) is a quotient of the algebra(.4). Hence the product dfl;
andNz in A(M) isthe image of their product it\(A) under the projection homomorphism
A(A) — A(M), which mas all matroiddM ¢ M to zero.

Example 3.4. Suppose thatM is a minor-closed faity containing point| and loopZ.
ThenZ-1 =1 ®Zin A(M). If M contains the double poife thenl - Z = | & Z+2P5;
otherwise,| - Z = | @ Z. If M contains the free matroit, thenI" = n!l,, and if M
contains the zero matroifi,, we haveZ" = n!Z, in A(M).

Example 3.5. Suppose that is the matroid shown ifrig. 1 and thatM is the matroid
consisting of five points, b, c, d, ein the plane, witha, b, c collinear. If M is any minor-
closed family that containls, M and the direct surtdz 3 @ P> of the three-point line with
adouble point, then we hawdz 3- P, = M + 2L + (U2.3 @ P2) in A(M).

Example 3.6. If M contains the free matroitt and zero matroidZ, then the product
Iy - Zg in A(M) is given by

If - Zk = Z(# of bags ofM) - M,

where the sum isver all maroidsM e M having rank and nullityk. On theother hand,

foranyM € M andk > 0, the producZy - M is equal to(karl) Zx & M, wheret is the

number of loops oM if Zx & M € M, and is gual to zero otherwise; so in particular,
Zi - Iy = Zx @ |t if M containsZk @ |, andZy - |, = 0, otherwise.

Example 3.7. Let C be the minor-closg family consisting of all free matroid$, and
circuits Cy, forn > 0 andk > 1. It follows from the coproduct formulas iBxample 2.5
that the product ilA(C) = K[lg, 1, ..., Cy, Co,...] is determined by

n+m
In'|m=< n >|n+m, Ck‘C£=0,

n+k Ck if n=0,
In-Ck = < n )Cn+k1 Ck-ln= {o otherwise

for all m,n > 0 andk, ¢
multiple points P, for n

1. The dual familyC* consists of all zero matroid&,, and
0 andk > 1. By Proposition 3.2the product inA(C*) is

=
=
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deternined by Z, - Zm = ("1™) Znsm,

P Zn= ( N ) Pk, Zn P = {o otherwise

andPg - P, =0, forallm,n > 0andk, £ > 1.

4. Orderings of subsets and words

For any setS andr > 0, we denote by3(S) and B, (S), resgectively, the set of all
subsets and the set of allelement subsets d&. In paticular, for all n > 0, we write
B(n) andB; (n), resgectively, forB([n]) and5; ([n]), where[n] denotes the s€il, . . ., n}.
Wheneer we write a subset of a linearly ordered &y listing its elements, we shall
assume that the list is written in the order inducedhthat is, if Sis linearly ordered, and
A=1{a1,...,a} € S thenay < --- < & in S. Throughout this paper we shall always
assume thas, whethedinearly ordered or not, is a finite set.

For anylinearly orderedS andr > 0, we define a partial order o (S) by setting
{ag,...,a} < {b1,...,b}ifandonlyif & < b; in S, foralli € [r]. Under this ordering,
B; (S) is a sublattice of the-fold direct product of linearly ordered sefsx --- x S, and
is thus a distributive lattice. The Hasse diagran8ef{a, b, c, d, €}) is shown inFig. 3.

We extendthe ordering on5; (S) to all of B(S) by settingB > A in B(S) if and
only if B > A’ in someB; (S), for somesubsetA’ of A. Herce, if A = {ay, ..., a}
andB = {by,...,b},thenA < Bifandonlyifr < kanda < bj,forl <i <.
Equipped with this ordering3(S) is a distributive lattice that contains eah(S) as a
sublattice.

Lemma4.1. For any linearly ordered set S, the m#&yS) — B(S) taking AC S toits
complementin S is a lattice antiautomorphism.

Proof. Suppose thatA = {a1,...,ax} andB = {by, ..., b} are subsets of the linearly
ordered seB suchthat A < B in B(S), that is,suchthatr < k anda; < by, foralli € [r].
If A ={sy,..., -k} andB’ = {t1, ..., tn_r} are the complements & andB in S, then
n—r>n-k,andsj =j+{i :a < j}andtj = j+I|{i : bj < j}|,forall j. Since
g < by, foralli e [r], it follows that|{i : & < j}| > |{i : bj < j}|, forall j. Herce
sj >tj,forl<j<n-kandsoA" > B'inB(S). 0O

For anylinearly ordered se6, we deote by S, the reversalof S, that is, the sef
equipped with the opposite orderirg< bin §, ifandonly ifa > bin S.

Lemma 4.2. For anylinearly ordered set S, the identity map is a lattice antisomorphism
Br (S — Br(Sp)-

Proof. It is immediate from the definition of the ordering &n(S) thatA < B in 5, (S
ifandonly if A> Bin B (S,). 0O

Given a wordw on the alphabef0, 1}, andi < {0, 1}, we deote by|w|; the number
of occurrences of the lettérin w. For alln > 0, wewrite W, for the se of all words on
{0, 1} having lengthn, and letWny = {w € Wy : |w]1 =1}, for0 <r < n. For any
linearly ordered sef = {ey, ..., ey}, let x : B(S — W, be the function which maps
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Fig. 3. The lattices3,(a, b, ¢, d, &) andWs 5.

A C Sto the wordxs . . . Xpn, where

{1, if g € A,

Xi = 0, otherwise

Note thaty maps eacl, (S) bijectively ontoWh ¢ and that, under the natural identification
of Wy with the setof functionsS — {0, 1}, the function x simply maps subsets d to
their characteristic functions.

Define mapstk : Why — [n], for 1 < k < r, by letting nx(w) be the position of
thekth 1 inw € Wh. It follows that, forS = {e, ..., en}, the mapr : Whr — Br (S
which is inverse tg is given by (w) = {€r,(w), - - - » €7 (w) }, fOr all w € Wh r. We define
a patial order onWyr by settingv < w if andonly if nx(v) < mk(w), for1 <k <r. For
example, the Hasse diagram of the lattldé 2 is given inFig. 3.

Lemma 4.3. For any linearly ordered set S, arld<r < n = |S|, the mapy : 5;(S) —
Wh,r is a lattice isomorphism.

Proof. It is immediate from the definition of that A < B in B, (S if and only if
k(X (A) < m(x(B)), forl<k<r. O

Lemma4.4. Forall v =x1---X andw = y1--- Y in Wh, theinequalityv < w holds
if and only if|Xg---Xk|l1 > |y1--- Ykl1, forl <k <r.

Proof. The proof is immediate from the definitions. [

5. Freedom matroids

By aflag on a finite setS we shall mean a sequent®, ..., §) of subsets ofS such
that§ = SandS_; is a poper subset 0§, for 1 <i < r. We donot requireS to be
empty.
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Proposition 5.1. For any flag(S, ..., §) on a set S, th fanily
I={lCS:|InSg|<i,foralli}
is the collection of indepalent sets of a matroid i, ..., §), ofrankr, on S.

Proof. It is clear thatZ contains the empty set and is closed under formation of subsets.
Now suppose that, J € Z with |I| < [J|. If | N §] < i foralli, then branyx € J\I

we havel(l Ux) N §| <i foralli, andhencel Ux € Z. So we auppose that there exists
somei suchthat|l N §| = i, and letm be the maximal such Note hatm < r, since
m=[INS|=l<J=[INg|=r.

Now, sincelJNSn| < m= |l NSyl,and|J| > |l |, we musthaveJN S, | > |1 NS,
where§,, denotes the complement 8f, in S, andhence the setJ\ ) N §,, is nonempty.
Let x be any element ofJ\ 1) N §,,. Form < i < r, we have|ll N §| < i, andthus
[(TUux)NS| <i.Sincex € Sywe have(l ux)N§ =1Ng,andsg(l Ux)NS| <i,
foralli <m.ThusluxeZ. O

We refer to the matroidM (S, . .., §) as thefreedom matroid(see [L6]) defined by the
flag (S, ..., §). Note tha it follows immediately from the definition that ea&his a flat
ofrankk in M(S, ..., S).

If M is a matroid onSande € S, we denote byM \ e and M/e the matroid obtained
from M by, respectively, deleting and contractiag

Proposition 5.2. For any freedom matroid M= M(S, ..., S) and e€ S, the dedtion
M\ e and contraction Me are given by

M\e= M(Tp,..., Ty) and M/e=M(To, ..., Tke2, Tk, ..., ),
where T= S\e, fordli, and k=min{i : x € §}.

Proof. The independent sets & \ e are the subsets db that donot containe and
contain no more thanelements of each, whichare precisely the independent subsets of
M(To,...,Tp).

If eis aloop inM, thenM/e = M\e = M(Ty,...,T;), which agrees with the
expression forM /e given in the proposition, sinde = 0 in this case. Ife is not a loop,
thenAis indgpendentinM /e if and only if e ¢ AandA U eis indgpendent inM, that is
[((Aue)N S| <i,foralli;inotherwords|]ANT| <i,fori <k,and|]ANT| <i -1,
fori > k. SinceTk_1 C Tk, thecondition| AN Tk| < k—1impliesthat ANTk—1| < k-1
and hence the latter inequality is redundant. TAus indegpendent inM /e if and only if
[ANTi| <iforO<i<k-2and|ANT| <i —1,fork <i <r;equivalently, if and
only if AisindegendentinM (T, ..., Tk—2, Tk, ..., Tr). O

Corollary 5.3 ([15]). The class of freedom maifds is minor-closed.

We now daracterize the closure operators and closed sets of freedom matroids. We
begin with the following proposition.

Proposition 5.4. The closure ofan independent set A in a freedom matroid M
M(Sp, ..., S)isgivenby ¢ty (A) = AU Sy, wherem=maxi : |ANS| =i}
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Proof. First note thatf AN S| = 0, becauseéA is indgpendent, and thus such exids.
Now, since|A N Sy| = m, the setA U x is dependent for allx € Sy \ A, andthus
Sn € ¢m(A). On theother hand, for any ¢ AU Sy, the setA U y is indgpendent,
since|(AUY)NS|=|ANS| <i,fori <mand|(AUY)NS|<1+]ANS|<i,for
i > m; hercecém(A) C AUS,. O

We may hus find the closure of an arbitrary satin a freedom matid by applying
Proposition 5.40 any maximalmdependent subsBtof A and using the fact that (B) =
cl(A).

Proposition 5.5. Aset FC Siis closed in MS, ..., S) ifandonly if F= AU Sy, for
some m> 0and AC S\ Sy suchthat|AN S| <i —m, fordli > m;inwhich ca® the
rank of F is m+ | A|.

Proof. Suppose thaf is closed and thaB is a basis forF. By Proposition 5.4F =
cl(B) = BU Sy, for somem suchthat|BN Syl = mand|BN S| < i, foralli > m.
Letting A = B\ Sy, we thus haveF = AU Spand|AU S| <i —m, foralli > m.

Onthe aher hand, suppose thet= AU Sy, for somem > 0 andA C S\ Sy, such hat
[AUS| <i —m,foralli > m. LetB be a basis fof,. SinceA is disjoint from S, and
thus also fronB, and|B| = m, it follows from the above inequality thatAUB)N S| <1,
fori > m, andhence thatA U B is independent. Sincen = max{i : [(AUB)N §| =i},
it follows from Proposition 5.4hat AU S, = c£(AU B), and isthus closed. [

Note that if we are given a closed detn M(S, ..., §), wecan expres§ asAU Sy,
according taProposition 5.5by lettingm=maxi : § C F}, and t&ing A = F\ Sy.

Corollary 5.6. If F isany flatofrankk in MS, ..., §), then|F| < |&|.

Proof. By Proposition 5.5if F is a flatof rankk in M(S, ..., §) thenF = S, U A, for
somem andA C S\ S, with |[A] = k — m. Since|&]| — |Sn| = k — m, it follows that
IFl=1Snl + Al = [Snl+k—m < |&]. O

6. Freedom matroidson ordered sets

In the case thaBis linearly ordered it is corenient to onsider flags S, . .., §) such
that eachS is an initial segment in the ordering & In this case, the flagS, ..., S) is
deternined by Stogether with the sgtl + maxS : 0 <i <r — 1}. Herce if Sis linearly
ordered and we are given a subget {1, ..., t;} of S, we mayobtain aflagTo, ..., T;)
on Shy settingT, = SandT; = {se€ S:s < tj;1},for0O <i <r — 1. We denote the
freedom matroidV (T, ..., Ty) by Mt (S), or simply Mt, when he setSis understood.
If T € [n]andS = {ey,..., e}, we al® write M1 (S) for the matroidM, (1) (S), where
a : B(n) — B(S) is the natural bijection — €.

Proposition 6.1. If S is linearly ordered and TC S, thenthe family of hdependent sets
of Mr = M7 (S isgivenby{AC S: A>T inB(9)}. If |T| =r, thenthe familyof bases
of My isgivenby{B: B> T in B, (S)}.
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Proof. Suppose thall = {t1,....t} andA = {a, ..., a} in B(S). SinceT, = S, we
haveA = AN T, andthus|ANT,| <rifandonlyif k <r.NowforO<i <r, we have
ANT =({aj € A:aj <tjy1in S}; therdore, sinceay < --- < akandty < --- < ty, it
follows that| AN Tj| < i ifandonlyif a1 > tj+1. Herce Ais indgpendent inMt if and
onlyif A>TinB(S. O

Example6.2. Suppose thatS = {a,b,c,d,e, f,g} and T = {b,e, f}. ThenMt =
M (To, T1, T2, T3), whereTp = {a}, T1 = {a,b,c,d}, To = {a,b,c,d,e} andT3 = S.
The bases oMt are the setdb, e, f},{c,e f},{d, e f},{b,e g}, {c e g}, {d e g}
{b, f, g}, {c, f, g}, {d, f, g} and{e, f, g}.

Proposition 6.3. For any linearly ordered S, and £ S,the dual My (S)* of the matroid
Mt (S) is equal to M/ (S,), where T is the complemdrof T in Sand § is the reversal
of S. In particular, the class of fraem matroids is closed under duality.

Proof. Suppose thatS| = n and|T| = r. It follows from Proposition 6.1hat the set of
bases oMt (S)* is given by{B’ : B > T in B;(S)}, which, according ti.emma 4.1 is
equalto{C : C < T'in By_(S)}. By Lemma 4.2we haveC < T’ in By_( (S) if andonly
C > T'in Bn—r (S,), andhence the result follows frofroposition 6.1 [

The following Lemma, which is a corollary éfroposition 6.1will be used in the next
section.

Lemma 6.4. Suppose that ¥5) = M(S,...,S) is a freedom matid, where S is
linearly ordered and each;Ss an initial segment in S, and let & Sand ae A. If
b e S\ Asdisfiesb> ain S, thenp((A\a) Ub) > p(A).

Proof. Let B be a maximal independent subsetfAthat containa. Sinceb > ain S,
it follows that (B\a) Ub > B in B(S). Herce, byProposition 6.1the set(B\a) U b is
independentiM, and sop((A\a)Ub) > p(A). O

Recall fromSection 4hat, given awordv € Wy, and 1< k < r, we denote bymry(w)
the position of thékth 1 inw, and forS = {ey, ..., e}, thebijectionz : Why — B (S
is given bym(w) = {€,w), - - - » € w)}. We thus may define a mapping — M,, from
Wh,r to the set of rank freedom matroids ors by settingM,, = My, (S), for all
w € Whr.

Example6.5. If S = {a,b,c,d,e, f,g,h,i, j,k I} andw = 001011001000, then
e f,i}.

m(w) ={c, e The setsS may be read off from the following table:
w: 001011001000
S:ab
S:abcd
S:abcde
S:abcde fgh
SS:abcecde fghi jkl
andM,, = Mce +,i) is the freedom matroif (S, S1, S, S, ).
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When freedom matroids were first introduced, 0], they were given the following
recursive construction by single-element extensiona i§ the empty word, thei,, is
the empty matroid, and far = vx, where|x| = 1, M,, is obtained fromM, as follows:

() If x = 1, add a point independently t#d, in a new dimasion, that is, letM,, =
M, @ I.

(i) If x =0, add a poineto M, in general position in the top rank, that is, Mt, be the
free extension oM, by e.

Example6.6. If w = 001001010010 an& = {a, b, c,d, e, f, g, h,i, j, k, I}, thenM,,
consists of loopa andb, together with a triple poinfc, d, e}, collinear with distinct points
f andg, thisline being coplanar ith general pointsh, i, j, with two additbnal pointsk
andl in general position in 3-space.

7. Matroidsand words

Suppose thaM is a matroid of rank on ann-element sef, having ratk functionp.

We asocate to any maximal chaid = Ag C --- € Ay = Sin the Booleamalgebra
25 the word Xy - -- X € Wh,r defined byxi = p(A) — p(Ai—1), for alli e [n].
If the setS = {ey,...,en} is linearly ordered, then there is a distinguished maximal

chainAg C --- C Anin 25 given by A = {e1,...,q}, foralli € [n]. The word
Wwes) = X1+ - Xn @ssociated to this chain is thus determined by

i 0, if & ect({er,...,g-1}),
"7, otherwise

foralli € [n]. We rekr towws, as thedistinguished woraf M (S). Note hatwys, is also
determined by the equalitixs - - - Xj|1 = p({e1, ..., }), foralli € [n].

Lemma 7.1. For any matroid M'S) of rankr, with S linearly ordered of cardinality n,
the wordw = wys is determined by the condition thattw) = min{B € B/ (S :
B is abasisfor M}.

Proof. SupposeS = {ey, ..., en}, and thatthe 1's inw occur in positionsy, ..., i, SO
thatw (w) = {e,, ..., &, }. Sinceg, is notin the closure ofey, ..., ,-1}, forallk € [r],

it follows thatz (w) is indgpendent, and thus is a basis fdr. If B = {by,..., b} € S

is such thak < ik, for somek € [r], then{bs, ..., bk} C {e1, ..., &,-1}, whichhas rank
k — 1, and soB is not a basis foM. Herce any basiB of M satisfiesB > z(w) in

B:(S. O

If S={e1,...,en}is linearly ordered, then the symmetric grolip acts naturally on
Sbyo(e) = ey, foralli € [n], and tius we can identifyx, with the groupXs of
permutations ofS. For anys in X's (or in Xy,), we denote byg, the underlying set ofS
equipped with the linear order (ogorder) given byo(e1) < --- < o(en). Herce,a < b
in Sifandonlyifo(a) < o(b)in S,, and soo : S — S, is aposet isomorphism. The
natural map3(S) — B(S,), given byA — o (A), forall A C S, and alsadenoted by,
is also a posesonorphism. We denote by, the mapWhr — Br (&), which takes a
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word tothe sibset ofS, corresponding to positions of its 1's. Note that is equal to the
compositioro .

Given A, B € S of equal cardinality, with complemen#&’ and B’ in [n], the shuffle
oas € Xsis the ungue permutation o8 which mapsB onto A, and hus alsoB’ onto
A/, whose resictions to B and B’ are order-preserving. For example Af= {4, 7} and
B = {1,5}in S = [7], thenoxg = 4123756 (Wwher& = o1---0n € X, is the usual
word notation for permutations, indicating thati) = o, for all i), or in cycle notation,
oap = (1432(576).

Lemma 7.2. Supposethat S is linearly ordered, and that-AB in B(S), where| A| = |B|,
and leto = oap € Xs be the shuffle. If G S sdisfies C> A in B(S),thenC> Ain
B(S).

Proof. Suppose that the complementsAf= {a3,...,a}andB = {by,..., b/} in Sare
A = {aj,....,a}andB’ = {b},..., b}, resgctively, so that the shuffle = oas is
given byb; — g andb] — a}, foralli € [r]andj € [K]. Sinceo : B(S) — B(S,) is
an isomorphism, it follows that for an@ < S, we haveC > A in B(&,) if and only if
o 1C) > 671(A) = B in B(S). Now suppose tha€C = {cy, ..., cm} > Ain B(S), so
thatm < r andc; > a;, foralli € [m]. SinceA > B in B(S), it follows fromLemma 4.1
that A’ < B’ in B(S). Herceo ~1(a) < a, foralla € A, ando (@) > &, foralla’ € A'.
Considerc; € C. If ¢; € A, theno~1(cj)) > ¢ > a > b;j. On theother hand, i € A,
thenc; = aj, for somej > i (sincec > &), and soo~1(c) = o7 1(gj) = bj > b;.
Henceo ~1(C) > B in B(S), and theeforeC > Ain B(S,). O

For any matroidV (S) of rankr, whereSis linearly ordered of cardinality, we define a
mappingiy : Xs — Wi (or equivdently, Ay : Zn — Wh,r) by settingin (o) = wus,).
for all 0 € XYs. Note hat, in particular, ift € XYg is the identity permutation, then
Am () = wws is the dstinguished word oM (S). We enphasize that the map, depends
not only on the matroidl = M(S), buton the linear ordering 0.

For example, iM is the matroid or5 = {a, b, c, d, e, f, g} showninFig. 2 ando € 3>
is the permutation 6237154, thex, (¢) = 1110010.

Proposition 7.3. Suppose that NB) is a rank r matroid, with S an n-element linearly
ordered set. Ib < wys) IN Whr, theniy(oag) = v, where A= m(wws) and B= z(v).

Proof. By Lemma 7.1 A = m(wwms) IS the minimum basis oM in 5, (S). Since
A > B = 7(v) in B (9), it follows from Lemma 7.2that A is also the minimum basis
of M in B, (S,), whereo is the shufflers s. SinceA = o (B) = o (7w (v)) = 5 (v), it thus
follows fromLemma 7.1thatv = wys,), thatis,Ay(c) =v. O

Corollary 7.4. For any rank r matroid M on an n-elemelimearly ordered set, the image
of Ay is anorder ideal inWh .

Proof. The proof is immediate frorRroposition 7.3 [

It was shown in10] (Theorem:Existence of a matroid with a given first word”) that in
the case in whictM = M,, is a freedom matid, the wordw is the maximum among words
associated toV by the mapi,. The fdlowing theorem is a stregthening of this result,
giving a characterization of the words in the image gfwheneveiM is a frredom matroid.



1080 H. Crapo, W. Schmitt / European Journal of Combinatorics 26 (2005) 1066—-1085

Theorem 7.5. If M is the freedom matroid M for somew € Wi, then he image of
Am @ XZn — Why is the princpal order ideal{v € Wh : v < w}.

Proof. Suppose thaM = M(S) = M,, whereS = {e,...,en} andw = X1---Xp
belongs toWy . It follows thatM = M(S,...,S), whereS = S and -1 =
{er, ..., eqmw)-1}, for 1 < k < r. For anyo € X, the wordiy(c) = y1---¥n iS
determined by the condition thay, - - - yil1 = ({&5), ..., &@}), for1 <i < n, and
by Corollary 5.6, if p({e5(1), - - ., &)}) = k, for somei, theni < || = mxy1(w) — 1.
Sincenk41(w) is the position of th€k + 1)stone inw, it follows that|x1 - - - Xj|1 < k =
ly1---Vil1. Herce, byLemma 4.4 we haveiy (o) < w. The resit thus follows from
Corollay 7.4 O

Example 7.6. Suppose thaM(S) = Uz4 @ P> is the matroid consisting of a four-point
line and a double point. The image af, in Ws 3 (given any linear ordering o8) is the
order ideal{11100011010Q010110Q0 11001Q, which has maximal elements 110010 and
101100, and thus is not principal. Hence, it follows frdmneorem 7.5hat M is not a
freedom matroid.

Corollary 7.7 ([10Q]). There are precisel2" nonisomorphic freedom matroids (and thus
at least2" nonisomorphic matroids) on an n-element set.

Proof. Given a matroidv on S, thed€finition of 1, depends on a choice of ordering®f
but the image of,, depends only on the isomorphism clasdwfHerce, byTheorem 7.5
if v # w, then he freedom matroidst, andM,, are notisomorphic. [

Recall that theBruhat order (or strong Bruhat ordey on X, is determined by the
condition thats coverst = 11--- 1 in X if and only if o may be obtained from by
reversing a single pair, j), such hati < j andr < rj and the number of inversions
of o is one greater than theumber of inversions of. Under the assumptions< j and
Ti < 7j, the exhangg(t, tj) increases the number of ingiwns by one if and only if, for
allkwithi < k < j, étherty < 7j or v > tj, which, in particular, is the case if either
j =i+ 1orrj =1 + 1. For example, in the Bruhat order @i, the permutation 1423
is covered by 4123, 2413 and 1432. Reversing the pair (1, 3) in 1423 creates three new
inversions, so that, even though 3421 is greater than 1423, it is not a cover. The identity
permutation is the minimum element &%, and the fb mapy = n(n — 1)---1 is the
maximum element.

Proposition 7.8. If M = M,, for anyw € W, and X is given the Bruhat order, then
Am @ XZn — Wh is anorder-reversing map.

Proof. Suppose thaM,, = M(S) = M(S, ..., §), whereSis linearly ordered and each
S is aninitial segment its. Suppose that coverso in the Bruh&order on%,, and letS, =
{e1,....,en}andS; = {fy, ..., fn}, sothaty = fi for all but two indicesi and j, where

i<j, a<ej, fi=a, and fi=¢.

Letting Ex = {e1,...,&}andFx = {f1,..., fk}, for all k € [n], we haveEx = F,
forl <k <iandj < k < n, and shceej > g in S, it follows from Lemma 6.4
that o(Fk) > p(Ek), fori < k < j. LettingAu (o) = X1+ Xn andiu(t) = Y1+ Yn,
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we thus havelxs - - - Xk|l1 = p(Ex) < p(F) = |y1---Y«l1, for all k € [n], andhence
Am(o) = An(t), byLemmad.4 O

Example 7.9. Suppose thatS = {a, b, c,d} and M(S) = Mpop101, SO thata is a loop,

{b, c} a double point andd an isthmus inM. The image ofAy : Y4 — Wi is the
order ideal{110Q 011Q 1001 1010, and underry, the two permtations in the interval
[1234, 1324] of ¥4 map to 0101, the four permutations in the interval [1243, 1432]
map to 0110, the four permutations in the interval [2134, 3214] map to 1001, the set
{o : 0 > 2143 and eithes < 3241 oro < 4132 maps to 1010, and the interval [2413,
4321] maps to 1100.

8. The algebra of freedom matroids

We now @nsiderthe algebraA(F) corresponding to the minor-closed clags of
freedom matroids. Throughout this section we shall assume that th&risg field of
characteristic zero. The sg¥l,, : w € W}, whereW is the set ofall words on{0, 1}, is a
K -vector space basis fa&k(F), and the product is given by

w
My - My = Z(u U)Mw,

wew

where (uwv) denotes the section coefficie(nht"‘,ﬁ,,v) As is the case for any matroid
algebra,A(F) is bigraded by rank and nullity, and S&F) = @, y=o Ark(F), where
Ar k(F) has basigM,, : w € Wy}, and the sction coeﬁicien( u“’y) is zero wheever

W & Wiul+ vl Jug+vla-

In the proof of our main theorem below, we make use ofitleédence algebreof the
lattice Wh ¢ . In gereral, the incidence algebigP) of a locallyfinite posetP is the K-
vector space of all function$ : P x P — K suchthat f (x, y) = 0, whenevex £ v,
equipped with theonvolutionproduct:

(fox, 2= Y f(x, V9.2,

X=y=z

forall f,g € I (P), andx < zin P. The convolution identityS € | (P) is given by
5(X,y) = dx,y, forall x < yin P. An elementf e I(P) is invertible if and only
if f(x,x)is aunitin K, for all x € P, in which case the convolution inverse1 is
determined recursively by —1(x, x) = f(x, x)~%, forallx € P, and

=1z Y froyfy.2
X<y<z
= 0™ Y foenfy, ),

X<y<z

forallx < zin P.
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Recall that the matroids consisting of agle point and a singlloop are denoted by
| and Z, resgectively, and note that = M; andZ = Mg are the freedom matroids
corresponding to words of length one.

Theorem 8.1. The algebra AF) is free, generated by | and Z.

Proof. For any wordw = X1 ---Xn in W, we deote by P, the productMy, - - - My, in
A(F). SinceA(F) is graded it suffices to show that the $BY, : w € Wi} is a basis for
Arn—r(F), foralln > r > 0. Given wordsw, v € Wh, With w = X1 - - Xn, We wWite

c(w, v) for the multisection coefficient(x1 ” Xn). Obseve thatc(w, v) is equal to the

number of permutations € X, suchthatiy,(c) = w, andhenceTheorem 7.5mplies
that c(w, v) is nonzero if and only ifw < v in the lattice ordering ol . We thus
have

P, =) cw,v)M,, (8.2)

v>w

for all w € Wh,, where all coefficients are nonzero. Becasse, v) = 0, whenever
w £ v, the functionc belongs to the incidence algebraldf, . Sincec(w, w) # 0 for all
w, andK is a field of characteristic zero, it follows thathas a convolution inverse 1,
and therefore

My = Z Cil(wv v) Py,

v>w

forall w € Wi . Hence the linear endomorphismAf n_r (F) deternined byM,, — P,
for all w € Wi, is invertible, and sqP,, : w € Wh} is a basis forA; n—r (F). O

Note that, sincé®, - P, = Py, in A(F), forall v, w € W, Theorem 8.kan be restated
as the fact that the map, — w defines an isomorphism froy(F) onto the free algebra
K{W} = K{{0, 1}), which has concatenation of words as product.

The use of incidence algebras in the prooflbieorem 8.1can be avoided as follows:
Choose an orderingy, . .., wm of Wh ; suchthati < j, wheneverw; < wj in Wh (such
as the opposite of lexicographic order) andggt= c(wi, wj), foralli < j in [m]. Then
Pu = ZT:l Cij My , for alli, andby Theorem 7.5the marix C = (Gij )1<i, j <m iS upper-
triangular, with nonzero entries along the main diagonal. SKide a characteristic zero
field, C is thus invertibleandhence the s€tP,; : 1 <i < m}is a basis forA; n_r (F).

Corollary 8.3. If M is any minor-closed family that contains the clagsof freedom
métroids, then the subalgebra of(A1) generated by bnd Z is free.

Proof. For each wordw = X1---Xn € W, let Q,, denote the produdily, - - - My, in
A(M). SinceF € M, the abgebraA(F) is a quotient of A(M), where the canonical
homomorphismx : A(M) — A(F) maps every freedom matroid it to itself and every
nonfreedom matroid to zero. Sing€Q,,) = P, for allw € W and, byTheorem 8.1the
P, are linearly independent iA(F), it follows that theQ,, are linearly independent in
A(M). Herce the subalgebra &f(M) generated by andZ is free. O
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Example84. If S= {a, b, ¢, d}, then he basi§M,, : w € Wa 2} of Ay 2(F) consists of
the following matroids:

Mi1100= U2.4 a, b, c, d collinear
M1o10 {a, b} adouble-point, collinear with pointsandd
Mioo1= P3 & | {a, b, c} a triple-point, d a diginct point

Mo11o0=Z@®Uz3 aaloop,b,c,d collinear
Mowo1= 1| ® Po® Z aaloop, {b, c} adouble-pointd a diginct point
Moo11=Z26 |2 a andb loops ¢ andd distinct points

Listing Wa.2 in opposite lexicographic ordedVao = {w1, w2, w3z, wa, ws, we} =
{110Q 1010 1001, 0110 0101 0011, the mdrix C of multisection coefficientscij is
given by

1100 1010 1001 0110 0101 0011

1200/ 24 20 12 12 8 4
1010y 0 4 6 6 6 4
1001f 0 0 6 0 4 4
oozo) 0O O O 6 4 4
ooy 0O O O O 2 4
oo12\ 0 O 0O 0O 0 4
So, for eample,Pigop1 =1 - Z- Z - | is equal to 8M1001 + 4Mo101 + 4Moo11 in A(F).

Observe thats4 is the only zero entry above the main diagoialwhich corresponds to
the fact thatws = 1001 andws4 = 0110 are the only two noncomparable elements of
the latticeWs 2. Also note that, since the matrix entofv, w) is equal to the number of
orderings of the underlying set &,, with corresponding word equal ig the sun of the
entries in each column @ is equal to 4!.

Example 8.5. Suppose thatM is any minor-closed classoantaining all freedom ma-
troids and the smallest nonfreedom matr@idd= P, & P, consisting of two double-
points, and letP L(M) be the subalgebra oA(M) generated by and Z. The marix
expressing the basiQ, : w € Waz} of PL(M) N Az 2(M) in terms of the basis
Moo ={D}U{M,y : w € Wa 2} of Ay 2(M) is given by

1100 1010 D 1001 0110 0101 0011
1200/ 24 20 16 12 12 8 4

1000} 0 4 8 6 6 6 4
1000] 0 O O 6 0O 4 4
oiz0f 0O O O O 6 4 4
ooy 0 O O O O 2 4
cor1t\ 0 O O O O O 4

In this context,Corollary 8.3amounts to the observation that this matrix contains as a sub-
matrix the nonsingular matri€ in the prevous example, and thus has independent rows.

We now tirn our attention to the coalgeb@(F) of freedom matroids. Recall from
Section 2thatC(F) has as bas the setF = {M,, : w € W} of all isomoiphism cksses
of freedom matroids, and has coproduct determined byE§), 6o that
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M) = 3 (wv>|\/|u®|v|u,

u,veWw ’
for all w € W. Hence if we define a coproduct on the vector spEdeV}, havirg all
0,1-words as basis, by(w) = ZU,U (u'f’v) u® v, thenK{W} andC(F) are isomorphic
coalgebras via the mappiid,, — w. For example,
§(1010 = 1010® ¥ + 2(101® 0) + 2(110® 0) + 10® 10
+5(11® 00) + 2(1® 100 + 2(1® 010 + ¥ ® 101Q

It is then an interesting exercise to give a description of this coproduct solely in terms of
the conbinatorics of words.

Let{P}, : w € W} be the lasis ofC(F) which isdual to the basi$P,, : w € W} of
A(F) via the pairing defined in the beginning 8&ction 3 that is,suchthat(P;,, P,) =

Sw.v, forallv, w € W. Eg. 8.2 means thatM,,, P,,) = c(w, v), forall v, w € W, and
so we have

My = Y (M, P))P) =Y cv. w)P,

veW v<w
for all w € W. Herce if jw| = n, and wewrite A for Ay, , we have
/
My = 3 Pl
oeXn

For example, éferring to the matrixC in Example 8.4we seethat Mo110 = 12P1’100+
6P 910+ 6Py110in C(F).

Corollary 8.6. The malgebra QF) has basi{P;, : w € W} and coproduct given by
5P =Y P,®P,

Uv=w

forall w e W.
Proof. The result follows immediately frofiheorem 8. by dudity. O

Corollary 8.6 can be restated as saying that the map determine®py— w is
a coalgeba isomorphism fronC(F) onto the cofree coalgebng {}V}, which has the
deconcatenation coproduiatw) = ), _,, U ® v.
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