European Journal of Combinatorics

A free subalgebra of the algebra of matroids

Henry Crapo ${ }^{\text {a }}$, William Schmitt ${ }^{\text {b }}$
${ }^{\text {a }}$ CAMS/EHESS, 54 bd Raspail, 75270 Paris Cedex 06, France
${ }^{\mathrm{b}}$ Department of Mathematics, The George Washington University, Washington DC, USA

Received 18 December 2003; accepted 26 May 2004
Available online 11 August 2004

Abstract

This paper is an initial inquiry into the structure of the Hopf algebra of matroids with restriction-contraction coproduct. Using a family of matroids introduced by Crapo in 1965, we show that the subalgebra generated by a single point and a single loop in the dual of this Hopf algebra is free. © 2004 Published by Elsevier Ltd

MSC: 05B35; 06A11; 16W30; 05A15; 17A50
Keywords: Matroid; Minor algebra; Free algebra

1. Introduction

Major advances in combinatorial theory during recent decades rely upon algebraic structures associated to combinatorial objects, and indeed, often involve studies of combinatorial properties of algebraic systems themselves. In particular, Hopf algebras based on families of combinatorial structures such as posets, graphs, permutations and tableaux play an increasingly prominent role in contemporary combinatorial theory and have been applied to a wide variety of fields. A major exception to this trend occurs in matroid theory, where little attention has been paid to naturally occurring algebraic structures. One such structure, introduced by one of the present authors in [18], is a

[^0]Hopf algebra that may be associated to any family of matroids that is closed under formation of minors and direct sums. This Hopf algebra has as basis the set of isomorphism classes of matroids belonging to the given family, with product induced by the direct sum operation, and coproduct of a matroid $M=M(S)$ given by $\sum_{A \subseteq S} M \mid A \otimes M / A$, where $M \mid A$ is the submatroid obtained by restriction to A and M / A is the complementary contraction. A closely related Hopf algebra was constructed by Joni and Rota in [12], as the incidence coalgebra of a hereditary family of geometric lattices. In this case, attention is restricted to simple matroids, and the subsets A appearing in the coproduct are taken to be flats. These Hopf algebras were also briefly considered in connection with the characteristic and Tutte polynomials of matroids in [20] and [21].

Similar constructions have arisen with increasing frequency in recent years, as Hopf algebra techniques have been brought to bear on the study of Feynman diagrams and renormalization processes in Physics [9,14,5], Vassiliev's knot invariants [6-8,13] and graph invariants [11,17]. All of this work has been carried out in the context of graphs, which form an extremely restricted class of matroids, and which have a grossly different classification by isomorphism, save when attention is restricted to 3-connected graphs.

The present article is an initial inquiry into the structure of the matroid Hopf algebra given in [18]. We prove that the subalgebra of the dual algebra generated by "point" and "loop" (the two one-element matroids) is free. (The question of whether of not the corresponding subalgebra, in the context of graphs, is free, which was posed by Lowell Abrams, remains open.) We manage this proof by restricting attention to a class of 2^{n} mutually nonisomorphic matroids on an n element set which we call "freedom matroids". These matroids are obtained, starting from the empty matroid, by successively adding points, at each stage either in a new dimension or in general position in the top rank. Freedom matroids were introduced by the other present author, in [10], in order to prove that there are at least 2^{n} nonisomorphic matroids on n elements. The same matroids, presented as transversal matroids, were used in [19] to give a simplified proof of the same result. Several characterizations of freedom matroids were given in [15], where it was also shown that the family of all freedom matroids is closed under formation of minors and duals. In the present paper, we adduce a number of new combinatorial properties of freedom matroids. This work is thus a useful adjunct to recent work that has modeled these, and generalizations of these, matroids in terms of Dyck paths [1] and lattice paths [3], and other work, soon to appear $[2,4]$.

2. Coalgebras of matroids

Throughout this paper, we work over some commutative ring K with unit. All modules, algebras and coalgebras are over K, all maps between such objects are assumed to be K linear, and all tensor products are taken over K. Given any family of matroids \mathcal{M}, we write $\widetilde{\mathcal{M}}$ for the set of isomorphism classes of matroids belonging to \mathcal{M}, and denote by $K\{\widetilde{\mathcal{M}}\}$ the free K-module having $\widetilde{\mathcal{M}}$ as basis. For any matroid $M=M(S)$, and $A \subseteq S$, we write $M \mid A$ for the restriction of M to A, and M / A for the matroid on $S \backslash A$ obtained by contracting A from M.

The following result appeared in [18], as an example of the more general construction of incidence Hopf algebras:

Proposition 2.1. If \mathcal{M} is a minor-closed family of matroids then $K\{\widetilde{\mathcal{M}}\}$ is a coalgebra, with coproduct δ and counit ϵ determined by

$$
\delta(M)=\sum_{A \subseteq S} M \mid A \otimes M / A \quad \text { and } \quad \epsilon(M)= \begin{cases}1, & \text { if } S=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

for all $M=M(\underset{\sim}{S}) \in \mathcal{M}$. If, furthermore, the family \mathcal{M} is closed under formation of direct sums, then $K\{\widetilde{\mathcal{M}}\}$ is a Hopf algebra, with product induced by direct sum.

Whenever \mathcal{M} is minor-closed, we shall write $C(\mathcal{M})$ for the module $K\{\widetilde{\mathcal{M}}\}$ equipped with the above coalgebra structure.

We remark that in the statement of Proposition 2.1, and in all that follows, we do not distinguish notationally between matroids and their isomorphism classes; it will always be clear from the context which is meant. For the purposes of this article, we are interested primarily in the case in which \mathcal{M} is minor-closed and not necessarily closed under direct sums and hence $C(\mathcal{M})$ is only a coalgebra. We do not give a complete proof of the proposition here, but only mention that coassociativity of δ follows directly from the basic identities $(M \mid T)|U=M| U,(M / U) /(T \backslash U)=M / T$ and $(M / U) \mid(T \backslash U)=(M \mid T) / U$, which hold for any matroid $M=M(S)$ and $U \subseteq T \subseteq S$.

In the case that \mathcal{M} is closed under formation of direct sums, a formula for the antipode of \mathcal{M} may be deduced from the formula for the antipode of an arbitrary incidence Hopf algebra given in [18].

We will use the following notation for some specific matroids:

$$
\begin{array}{ll}
I_{n}=U_{n, n} & \text { the } \text { free matroid of size } n \\
Z_{n}=U_{0, n} & \text { the zero matroid of size } n \\
P_{n}=U_{1, n} & \text { the } n \text {-point } \\
C_{n}=U_{n-1, n} & \text { the } n \text {-circuit } \\
I=I_{1} & \text { point } \\
Z=Z_{1} & \text { loop },
\end{array}
$$

where, as usual, $U_{r, n}$ denotes the uniform matroid of rank r on n points.
Example 2.2. Let L be the matroid shown in Fig. 1, consisting of points a, b, c, d, e in the plane, with $\{a, b, c\}$ and $\{a, d, e\}$ collinear. If \mathcal{M} is any minor-closed family containing L, then the coproduct of L in $C(\mathcal{M})$ is given by

$$
\begin{aligned}
\delta(L)= & L \otimes \emptyset+4\left(C_{3} \oplus I\right) \otimes Z+C_{4} \otimes Z+2 C_{3} \otimes P_{2}+8 I_{3} \otimes Z_{2} \\
& +6 I_{2} \otimes\left(P_{2} \oplus Z\right)+4 I_{2} \otimes P_{3}+4 I \otimes N+I \otimes\left(P_{2} \oplus P_{2}\right)+\emptyset \otimes L
\end{aligned}
$$

where \oplus denotes the direct sum operation on matroids, and N is the three-point line with one of its points doubled.

Example 2.3. The family $\mathcal{I}=\left\{I_{n}: n \geq 0\right\}$ of all free matroids is minor-closed, and the coalgebra $C(\mathcal{I})$ is the free module $K\left\{I_{0}, I_{1}, \ldots\right\}$, with coproduct and counit given by $\delta\left(I_{n}\right)=\sum_{k=0}^{n}\binom{n}{k} I_{k} \otimes I_{n-k}$ and $\epsilon\left(I_{n}\right)=\delta_{n, 0}$, for all $n \geq 0$. Because \mathcal{I} is also closed

Fig. 1. The matroid ' L ' for Example 2.2.
under formation of direct sums, $C(\mathcal{I})$ is in fact a Hopf algebra. Since I_{n} is equal to the direct sum of n copies of I, we have $I_{n}=I^{n}$ in $C(\mathcal{I})$, and thus $C(\mathcal{I})$ is the polynomial Hopf algebra $K[I]$, with coproduct determined by $\delta(I)=I \otimes 1+1 \otimes I$.

Similarly, the family $\mathcal{Z}=\left\{Z_{n}: n \geq 0\right\}$ of all zero matroids is closed under formation of minors and direct sums, and $C(\mathcal{Z})$ is equal to the polynomial Hopf algebra $K[Z]$, with $\delta(Z)=Z \otimes 1+1 \otimes Z$.

Note that the coproducts in Example 2.3 are cocommutative. This is because the operations of deletion and contraction on free and zero matroids happen to coincide. In fact, these are the only matroids on which these operations coincide; if \mathcal{M} is any minor-closed family that contains matroids outside of $\mathcal{I} \cup \mathcal{Z}$, then the coalgebra $C(\mathcal{M})$ is noncocommutative.

Example 2.4. The class \mathcal{U} of all uniform matroids is minor-closed, and the coproduct on $C(\mathcal{U})$ is given by

$$
\delta\left(U_{r, n}\right)=\sum_{i=0}^{r}\binom{n}{i} U_{i, i} \otimes U_{r-i, n-i}+\sum_{i=r+1}^{n}\binom{n}{i} U_{r, i} \otimes U_{0, n-i},
$$

for all $n \geq r \geq 0$. If we adopt the convention that $U_{k, m}=U_{0, m}$, for $k<0$ and $U_{k, m}=U_{m, m}$, for $k>m$, then the coproduct on $C(\mathcal{U})$ takes the form

$$
\delta\left(U_{r, n}\right)=\sum_{i=0}^{n}\binom{n}{i} U_{r, i} \otimes U_{r-i, n-i}
$$

for all $n \geq r \geq 0$.
Example 2.5. The subclass \mathcal{C} of \mathcal{U} consisting of all circuits and free matroids is minor-closed. The coalgebra $C(\mathcal{C})$ is equal to $K\left\{I_{0}, I_{1}, \ldots, C_{1}, C_{2}, \ldots\right\}$, with coproduct determined by $\delta\left(I_{n}\right)=\sum_{k=0}^{n}\binom{n}{k} I_{k} \otimes I_{n-k}$, for $n \geq 0$, and $\delta\left(C_{m}\right)=C_{m} \otimes I_{0}+$ $\sum_{k=0}^{m-1}\binom{m}{k} I_{k} \otimes C_{m-k}$, for all $m \geq 1$.

Given a family \mathcal{M}, and $n \geq 0$, we denote by \mathcal{M}_{n} the set of all matroids belonging to \mathcal{M} whose underlying sets have cardinality n; and for $k, r \geq 0$, we denote by $\mathcal{M}_{r, k}$ the set of all matroids belonging to \mathcal{M} that have rank r and nullity k. Writing $C_{n}(\mathcal{M})$ and $C_{r, k}(\mathcal{M})$,
respectively, for the free modules $K\left\{\widetilde{\mathcal{M}}_{n}\right\}$ and $K\left\{\widetilde{\mathcal{M}}_{r, k}\right\}$, we have

$$
C(\mathcal{M})=\bigoplus_{n \geq 0} C_{n}(\mathcal{M})=\bigoplus_{r, k \geq 0} C_{r, k}(\mathcal{M})
$$

Proposition 2.6. If \mathcal{M} is minor-closed, the families of submodules $\left\{C_{n}(\mathcal{M}): n \geq 0\right\}$ and $\left\{C_{r, k}(\mathcal{M}): r, k \geq 0\right\}$ of $C(\mathcal{M})$, respectively, equip $C(\mathcal{M})$ with the structure of a graded, and bigraded, coalgebra. If \mathcal{M} is also closed under formation of direct sums then $C(\mathcal{M})$ is also thus graded, and bigraded, as a Hopf algebra.

Proof. The first claim follows immediately from the fact that, for any matroid $M=M(S)$, and $A \subseteq S$, the rank of M is equal to the sum of the ranks of $M \mid A$ and M / A, and similarly for nullities. The second claim follows from the fact that rank and nullity are additive functions with respect to the disjoint sum operation on matroids.

Proposition 2.7. If \mathcal{M} is a minor-closed family and $\mathcal{M}^{*}=\left\{M^{*}: M \in \mathcal{M}\right\}$ then the map $D_{\mathcal{M}}: C(\mathcal{M}) \rightarrow C\left(\mathcal{M}^{*}\right)$, determined by $M \mapsto M^{*}$, for all $M \in \widetilde{\mathcal{M}}$, is a coalgebra antiisomorphism. In particular, if \mathcal{M} is closed under duality, then $D_{\mathcal{M}}$ is an antiautomorphism of $C(\mathcal{M})$.

Proof. The map $D_{\mathcal{M}}$ has inverse $D_{\mathcal{M}^{*}}$, and is thus bijective. For any matroid $M=M(S)$, and $A \subseteq S$, we have the identities $(M \mid A)^{*}=M^{*} /(S \backslash A)$, and $(M / A)^{*}=M^{*} \mid(S \backslash A)$, from which it follows immediately that $\delta\left(D_{\mathcal{M}}(M)\right)=\left(D_{\mathcal{M}} \otimes D_{\mathcal{M}}\right) \cdot \tau \cdot \delta(M)$, where $\tau: C(\mathcal{M}) \otimes C(\mathcal{M}) \rightarrow C(\mathcal{M}) \otimes C(\mathcal{M})$ is the twist map, determined by $M \otimes N \mapsto N \otimes M$, for all $M, N \in \mathcal{M}$.

For all matroids N_{1}, N_{2} and $M=M(S)$, the section coefficient $\binom{M}{N_{1}, N_{2}}$ is defined as the number of subsets A of S such that $M \mid A \cong N_{1}$ and $M / A \cong N_{2}$; hence if \mathcal{M} is a minor-closed family, the coproduct on $C(\mathcal{M})$ is determined by

$$
\begin{equation*}
\delta(M)=\sum_{N_{1}, N_{2}}\binom{M}{N_{1}, N_{2}} N_{1} \otimes N_{2}, \tag{2.8}
\end{equation*}
$$

for all $M \in \mathcal{M}$, where the sum is taken over all (isomorphism classes of) matroids N_{1} and N_{2}. We remark that there is no need to restrict the sum in Eq. (2.8) to matroids N_{1} and N_{2} belonging to \mathcal{M}; because the family \mathcal{M} is minor-closed, the section coefficient $\binom{M}{N_{1}, N_{2}}$ is zero whenever N_{1} or N_{2} is outside of \mathcal{M}. Another way of viewing this is the following: if \mathcal{A} is the class of all matroids, then the coproduct in $C(\mathcal{A})$ is given by Eq. (2.8); and if \mathcal{M} is any minor-closed class then $C(\mathcal{M})$ is a subcoalgebra of $C(\mathcal{A})$ and thus the coproduct on $C(\mathcal{M})$ is given by the same formula as that for the coproduct on $C(\mathcal{A})$.

Example 2.9. Suppose that $M(S)$ is the matroid shown in Fig. 2, and that $N=P_{2} \oplus P_{2}$ is the matroid consisting of two double points. The section coefficient $\binom{M}{U_{2,3}, N}$ is equal to one (rather than two, as one might first guess) because, although there are two subsets A of S such that $M \mid A \cong U_{2,3}$, only for $A=\{a, b, c\}$ do we have $M / A \cong N$; the contraction $M /\{a, d, e\}$, is a three point line with one point doubled.

Fig. 2. The matroid ' M ' for Example 2.9.

More generally, for matroids N_{1}, \ldots, N_{k} and $M=M(S)$, the multisection coefficient $\binom{M}{N_{1}, \ldots, N_{k}}$ is defined as the number of sequences $\left(S_{0}, \ldots, S_{k}\right)$ such that $\emptyset=S_{0} \subseteq$ $\cdots \subseteq S_{k}=S$ and $\left(M \mid S_{i}\right) / S_{i-1} \cong N_{i}$, for $1 \leq i \leq k$. Hence the iterated coproduct $\delta^{k}: C(\mathcal{M}) \rightarrow C(\mathcal{M}) \otimes \cdots \otimes C(\mathcal{M})$ is determined by

$$
\delta^{k}(M)=\sum_{N_{1}, \ldots, N_{k}}\binom{M}{N_{1}, \ldots, N_{k}} N_{1} \otimes \cdots \otimes N_{k},
$$

for all $M \in \mathcal{M}$.

3. Algebras of matroids

For any family of matroids \mathcal{M}, we define a pairing $\langle\cdot, \cdot\rangle: K\{\widetilde{\mathcal{M}}\} \times K\{\widetilde{\mathcal{M}}\} \rightarrow K$ by setting $\langle M, N\rangle$ equal to the Kronecker delta $\delta_{M, N}$, for all $M, N \in \mathcal{M}$. This pairing determines a pairing of $K\{\widetilde{\mathcal{M}}\} \otimes K\{\widetilde{\mathcal{M}}\}$ with itself, by $\left\langle M_{1} \otimes M_{2}, N_{1} \otimes N_{2}\right\rangle=\left\langle M_{1}, N_{1}\right\rangle$. $\left\langle M_{2}, N_{2}\right\rangle$, for all $M_{1}, M_{2}, N_{1}, N_{2} \in \mathcal{M}$. If \mathcal{M} is minor-closed, we may thus define a product on $K\{\widetilde{\mathcal{M}}\}$, dual to the coproduct on $C(\mathcal{M})$, by setting

$$
\begin{equation*}
\left\langle N_{1} \cdot N_{2}, M\right\rangle=\left\langle N_{1} \otimes N_{2}, \delta(M)\right\rangle, \tag{3.1}
\end{equation*}
$$

for all $M, N_{1}, N_{2} \in \mathcal{M}$, thus making $K\{\widetilde{\mathcal{M}}\}$ an associative K-algebra, with unit equal to the empty matroid. We denote $K\{\widetilde{\mathcal{M}}\}$, equipped with this algebra structure, by $A(\mathcal{M})$, and note that $A(\mathcal{M})$ is isomorphic to the graded dual algebra of $C(\mathcal{M})$.

Writing $A_{n}(\mathcal{M})$ and $A_{r, k}(\mathcal{M})$ for the submodules of $A(\mathcal{M})$ generated, respectively, by matroids in \mathcal{M} having n-elements, and those having rank r and nullity k, we have the direct sum decompositions:

$$
A(\mathcal{M})=\bigoplus_{n \geq 0} A_{n}(\mathcal{M})=\bigoplus_{r, k \geq 0} A_{r, k}(\mathcal{M})
$$

and it follows from Proposition 2.6 that $A(\mathcal{M})$ is thus both a graded and bigraded algebra. We also have the following result, dual to Proposition 2.7.

Proposition 3.2. If \mathcal{M} is a minor-closed family and $\mathcal{M}^{*}=\left\{M^{*}: M \in \mathcal{\mathcal { M }}\right\}$ then the map $D: A(\mathcal{M}) \rightarrow A\left(\mathcal{M}^{*}\right)$, determined by $M \mapsto M^{*}$, for all $M \in \widetilde{\mathcal{M}}$, is an
algebra antiisomorphism. In particular, if \mathcal{M} is closed under duality, then D is an antiautomorphism of $A(\mathcal{M})$.

By the definition of the pairing, the right-hand side of Eq. (3.1) is the coefficient of the basis element $N_{1} \otimes N_{2}$ in the coproduct $\delta(M)$ which, as noted in Eq. (2.8), is given by the section coefficient $\binom{M}{N_{1}, N_{2}}$. Since the left-hand side of (3.1) is the coefficient of the basis element M in the product $N_{1} \cdot N_{2}$, it follows that

$$
\begin{equation*}
N_{1} \cdot N_{2}=\sum_{M \in \widetilde{\mathcal{M}}}\binom{M}{N_{1}, N_{2}} M \tag{3.3}
\end{equation*}
$$

for all $N_{1}, N_{2} \in \mathcal{M}$. We emphasize that, in Eq. (3.3), it is necessary to limit the summation to elements of $\widetilde{\mathcal{M}}$; because $C(\mathcal{M})$ is a subcoalgebra of $C(\mathcal{A})$, where \mathcal{A} is the family of all matroids, it follows that $A(\mathcal{M})$ is a quotient of the algebra $A(\mathcal{A})$. Hence the product of N_{1} and N_{2} in $A(\mathcal{M})$ is the image of their product in $A(\mathcal{A})$ under the projection homomorphism $A(\mathcal{A}) \rightarrow A(\mathcal{M})$, which maps all matroids $M \notin \widetilde{\mathcal{M}}$ to zero.

Example 3.4. Suppose that \mathcal{M} is a minor-closed family containing point I and loop Z. Then $Z \cdot I=I \oplus Z$ in $A(\mathcal{M})$. If \mathcal{M} contains the double point P_{2} then $I \cdot Z=I \oplus Z+2 P_{2}$; otherwise, $I \cdot Z=I \oplus Z$. If \mathcal{M} contains the free matroid I_{n} then $I^{n}=n!I_{n}$, and if \mathcal{M} contains the zero matroid Z_{n}, we have $Z^{n}=n!Z_{n}$ in $A(\mathcal{M})$.

Example 3.5. Suppose that L is the matroid shown in Fig. 1 and that M is the matroid consisting of five points a, b, c, d, e in the plane, with a, b, c collinear. If \mathcal{M} is any minorclosed family that contains L, M and the direct sum $U_{2,3} \oplus P_{2}$ of the three-point line with a double point, then we have $U_{2,3} \cdot P_{2}=M+2 L+\left(U_{2,3} \oplus P_{2}\right)$ in $A(\mathcal{M})$.

Example 3.6. If \mathcal{M} contains the free matroid I_{r} and zero matroid Z_{k}, then the product $I_{r} \cdot Z_{k}$ in $A(\mathcal{M})$ is given by

$$
I_{r} \cdot Z_{k}=\sum(\# \text { of bases of } M) \cdot M
$$

where the sum is over all matroids $M \in \widetilde{\mathcal{M}}$ having rank r and nullity k. On the other hand, for any $M \in \mathcal{M}$ and $k \geq 0$, the product $Z_{k} \cdot M$ is equal to $\binom{k+\ell}{k} Z_{k} \oplus M$, where ℓ is the number of loops of M if $Z_{k} \oplus M \in \mathcal{M}$, and is equal to zero otherwise; so in particular, $Z_{k} \cdot I_{r}=Z_{k} \oplus I_{r}$ if \mathcal{M} contains $Z_{k} \oplus I_{r}$, and $Z_{k} \cdot I_{r}=0$, otherwise.

Example 3.7. Let \mathcal{C} be the minor-closed family consisting of all free matroids I_{n} and circuits C_{k}, for $n \geq 0$ and $k \geq 1$. It follows from the coproduct formulas in Example 2.5 that the product in $A(\mathcal{C})=K\left[I_{0}, I_{1}, \ldots, C_{1}, C_{2}, \ldots\right]$ is determined by

$$
\begin{aligned}
& I_{n} \cdot I_{m}=\binom{n+m}{n} I_{n+m}, \quad C_{k} \cdot C_{\ell}=0, \\
& I_{n} \cdot C_{k}=\binom{n+k}{n} C_{n+k}, \quad C_{k} \cdot I_{n}= \begin{cases}C_{k} & \text { if } n=0, \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

for all $m, n \geq 0$ and $k, \ell \geq 1$. The dual family \mathcal{C}^{*} consists of all zero matroids Z_{n} and multiple points P_{k}, for $n \geq 0$ and $k \geq 1$. By Proposition 3.2, the product in $A\left(\mathcal{C}^{*}\right)$ is
determined by $Z_{n} \cdot Z_{m}=\binom{n+m}{n} Z_{n+m}$,

$$
P_{k} \cdot Z_{n}=\binom{n+k}{n} P_{n+k}, \quad Z_{n} \cdot P_{k}= \begin{cases}P_{k} & \text { if } n=0 \\ 0 & \text { otherwise }\end{cases}
$$

and $P_{k} \cdot P_{\ell}=0$, for all $m, n \geq 0$ and $k, \ell \geq 1$.

4. Orderings of subsets and words

For any set S and $r \geq 0$, we denote by $\mathcal{B}(S)$ and $\mathcal{B}_{r}(S)$, respectively, the set of all subsets and the set of all r-element subsets of S. In particular, for all $n \geq 0$, we write $\mathcal{B}(n)$ and $\mathcal{B}_{r}(n)$, respectively, for $\mathcal{B}([n])$ and $\mathcal{B}_{r}([n])$, where $[n]$ denotes the set $\{1, \ldots, n\}$. Whenever we write a subset of a linearly ordered set S by listing its elements, we shall assume that the list is written in the order induced by S; that is, if S is linearly ordered, and $A=\left\{a_{1}, \ldots, a_{r}\right\} \subseteq S$, then $a_{1}<\cdots<a_{r}$ in S. Throughout this paper we shall always assume that S, whether linearly ordered or not, is a finite set.

For any linearly ordered S and $r \geq 0$, we define a partial order on $\mathcal{B}_{r}(S)$ by setting $\left\{a_{1}, \ldots, a_{r}\right\} \leq\left\{b_{1}, \ldots, b_{r}\right\}$ if and only if $a_{i} \leq b_{i}$ in S, for all $i \in[r]$. Under this ordering, $\mathcal{B}_{r}(S)$ is a sublattice of the r-fold direct product of linearly ordered sets $S \times \cdots \times S$, and is thus a distributive lattice. The Hasse diagram of $\mathcal{B}_{2}(\{a, b, c, d, e\})$ is shown in Fig. 3.

We extend the ordering on $\mathcal{B}_{r}(S)$ to all of $\mathcal{B}(S)$ by setting $B \geq A$ in $\mathcal{B}(S)$ if and only if $B \geq A^{\prime}$ in some $\mathcal{B}_{r}(S)$, for some subset A^{\prime} of A. Hence, if $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{r}\right\}$, then $A \leq B$ if and only if $r \leq k$ and $a_{i} \leq b_{i}$, for $1 \leq i \leq r$. Equipped with this ordering, $\mathcal{B}(S)$ is a distributive lattice that contains each $\overline{\mathcal{B}_{r}}(S)$ as a sublattice.

Lemma 4.1. For any linearly ordered set S, the map $\mathcal{B}(S) \rightarrow \mathcal{B}(S)$ taking $A \subseteq S$ to its complement in S is a lattice antiautomorphism.

Proof. Suppose that $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{r}\right\}$ are subsets of the linearly ordered set S such that $A \leq B$ in $\mathcal{B}(S)$, that is, such that $r \leq k$ and $a_{i} \leq b_{i}$, for all $i \in[r]$. If $A^{\prime}=\left\{s_{1}, \ldots, s_{n-k}\right\}$ and $B^{\prime}=\left\{t_{1}, \ldots, t_{n-r}\right\}$ are the complements of A and B in S, then $n-r \geq n-k$, and $s_{j}=j+\left|\left\{i: a_{i}<j\right\}\right|$ and $t_{j}=j+\left|\left\{i: b_{i}<j\right\}\right|$, for all j. Since $a_{i} \leq b_{i}$, for all $i \in[r]$, it follows that $\left|\left\{i: a_{i}<j\right\}\right| \geq\left|\left\{i: b_{i}<j\right\}\right|$, for all j. Hence $s_{j} \geq t_{j}$, for $1 \leq j \leq n-k$, and so $A^{\prime} \geq B^{\prime}$ in $\mathcal{B}(S)$.

For any linearly ordered set S, we denote by S_{φ} the reversal of S, that is, the set S equipped with the opposite ordering: $a \leq b$ in S_{φ} if and only if $a \geq b$ in S.

Lemma 4.2. For any linearly ordered set S, the identity map is a lattice antiisomorphism $\mathcal{B}_{r}(S) \rightarrow \mathcal{B}_{r}\left(S_{\varphi}\right)$.

Proof. It is immediate from the definition of the ordering on $\mathcal{B}_{r}(S)$ that $A \leq B$ in $\mathcal{B}_{r}(S)$ if and only if $A \geq B$ in $\mathcal{B}_{r}\left(S_{\varphi}\right)$.

Given a word w on the alphabet $\{0,1\}$, and $i \in\{0,1\}$, we denote by $|w|_{i}$ the number of occurrences of the letter i in w. For all $n \geq 0$, we write \mathcal{W}_{n} for the set of all words on $\{0,1\}$ having length n, and let $\mathcal{W}_{n, r}=\left\{w \in \mathcal{W}_{n}:|w|_{1}=r\right\}$, for $0 \leq r \leq n$. For any linearly ordered set $S=\left\{e_{1}, \ldots, e_{n}\right\}$, let $\chi: \mathcal{B}(S) \rightarrow \mathcal{W}_{n}$ be the function which maps

Fig. 3. The lattices $\mathcal{B}_{2}(a, b, c, d, e)$ and $\mathcal{W}_{5,2}$.
$A \subseteq S$ to the word $x_{1} \ldots x_{n}$, where

$$
x_{i}= \begin{cases}1, & \text { if } e_{i} \in A \\ 0, & \text { otherwise }\end{cases}
$$

Note that χ maps each $\mathcal{B}_{r}(S)$ bijectively onto $\mathcal{W}_{n, r}$ and that, under the natural identification of \mathcal{W}_{n} with the set of functions $S \rightarrow\{0,1\}$, the function χ simply maps subsets of S to their characteristic functions.

Define maps $\pi_{k}: \mathcal{W}_{n, r} \rightarrow[n]$, for $1 \leq k \leq r$, by letting $\pi_{k}(w)$ be the position of the k th 1 in $w \in \mathcal{W}_{n, r}$. It follows that, for $S=\left\{e_{1}, \ldots, e_{n}\right\}$, the map $\pi: \mathcal{W}_{n, r} \rightarrow \mathcal{B}_{r}(S)$ which is inverse to χ is given by $\pi(w)=\left\{e_{\pi_{1}(w)}, \ldots, e_{\pi_{r}(w)}\right\}$, for all $w \in \mathcal{W}_{n, r}$. We define a partial order on $\mathcal{W}_{n, r}$ by setting $v \leq w$ if and only if $\pi_{k}(v) \leq \pi_{k}(w)$, for $1 \leq k \leq r$. For example, the Hasse diagram of the lattice $\mathcal{W}_{5,2}$ is given in Fig. 3.

Lemma 4.3. For any linearly ordered set S, and $1 \leq r \leq n=|S|$, the map $\chi: \mathcal{B}_{r}(S) \rightarrow$ $\mathcal{W}_{n, r}$ is a lattice isomorphism.

Proof. It is immediate from the definition of χ that $A \leq B$ in $\mathcal{B}_{r}(S)$ if and only if $\pi_{k}(\chi(A)) \leq \pi_{k}(\chi(B))$, for $1 \leq k \leq r$.

Lemma 4.4. For all $v=x_{1} \cdots x_{r}$ and $w=y_{1} \cdots y_{r}$ in $\mathcal{W}_{n, r}$, the inequality $v \leq w$ holds if and only if $\left|x_{1} \cdots x_{k}\right|_{1} \geq\left|y_{1} \cdots y_{k}\right|_{1}$, for $1 \leq k \leq r$.

Proof. The proof is immediate from the definitions.

5. Freedom matroids

By a flag on a finite set S we shall mean a sequence $\left(S_{0}, \ldots, S_{r}\right)$ of subsets of S such that $S_{r}=S$ and S_{i-1} is a proper subset of S_{i}, for $1 \leq i \leq r$. We do not require S_{0} to be empty.

Proposition 5.1. For any flag $\left(S_{0}, \ldots, S_{r}\right)$ on a set S, the family

$$
\mathcal{I}=\left\{I \subseteq S:\left|I \cap S_{i}\right| \leq i, \text { for all } i\right\}
$$

is the collection of independent sets of a matroid $M\left(S_{0}, \ldots, S_{r}\right)$, of rank r, on S.
Proof. It is clear that \mathcal{I} contains the empty set and is closed under formation of subsets. Now suppose that $I, J \in \mathcal{I}$ with $|I|<|J|$. If $\left|I \cap S_{i}\right|<i$ for all i, then for any $x \in J \backslash I$ we have $\left|(I \cup x) \cap S_{i}\right| \leq i$ for all i, and hence $I \cup x \in \mathcal{I}$. So we suppose that there exists some i such that $\left|I \cap S_{i}\right|=i$, and let m be the maximal such i. Note that $m<r$, since $m=\left|I \cap S_{m}\right| \leq|I|<|J|=\left|J \cap S_{r}\right| \leq r$.

Now, since $\left|J \cap S_{m}\right| \leq m=\left|I \cap S_{m}\right|$, and $|J|>|I|$, we must have $\left|J \cap S_{m}^{\prime}\right|>\left|I \cap S_{m}^{\prime}\right|$, where S_{m}^{\prime} denotes the complement of S_{m} in S, and hence the set $(J \backslash I) \cap S_{m}^{\prime}$ is nonempty. Let x be any element of $(J \backslash I) \cap S_{m}^{\prime}$. For $m<i \leq r$, we have $\left|I \cap S_{i}\right|<i$, and thus $\left|(I \cup x) \cap S_{i}\right| \leq i$. Since $x \notin S_{m}$ we have $(I \cup x) \cap S_{i}=I \cap S_{i}$, and so $\left|(I \cup x) \cap S_{i}\right| \leq i$, for all $i \leq m$. Thus $I \cup x \in \mathcal{I}$.

We refer to the matroid $M\left(S_{0}, \ldots, S_{r}\right)$ as the freedom matroid (see [16]) defined by the flag $\left(S_{0}, \ldots, S_{r}\right)$. Note that it follows immediately from the definition that each S_{k} is a flat of rank k in $M\left(S_{0}, \ldots, S_{r}\right)$.

If M is a matroid on S and $e \in S$, we denote by $M \backslash e$ and M / e the matroids obtained from M by, respectively, deleting and contracting e.

Proposition 5.2. For any freedom matroid $M=M\left(S_{0}, \ldots, S_{r}\right)$ and $e \in S$, the deletion $M \backslash e$ and contraction M / e are given by

$$
M \backslash e=M\left(T_{0}, \ldots, T_{r}\right) \quad \text { and } \quad M / e=M\left(T_{0}, \ldots, T_{k-2}, T_{k}, \ldots, T_{r}\right),
$$

where $T_{i}=S_{i} \backslash e$, for all i, and $k=\min \left\{i: x \in S_{i}\right\}$.
Proof. The independent sets of $M \backslash e$ are the subsets of S that do not contain e and contain no more than i elements of each S_{i}, which are precisely the independent subsets of $M\left(T_{0}, \ldots, T_{r}\right)$.

If e is a loop in M, then $M / e=M \backslash e=M\left(T_{0}, \ldots, T_{r}\right)$, which agrees with the expression for M / e given in the proposition, since $k=0$ in this case. If e is not a loop, then A is independent in M / e if and only if $e \notin A$ and $A \cup e$ is independent in M, that is $\left|(A \cup e) \cap S_{i}\right| \leq i$, for all i; in other words, $\left|A \cap T_{i}\right| \leq i$, for $i<k$, and $\left|A \cap T_{i}\right| \leq i-1$, for $i \geq k$. Since $T_{k-1} \subseteq T_{k}$, the condition $\left|A \cap T_{k}\right| \leq k-1$ implies that $\left|A \cap T_{k-1}\right| \leq k-1$ and hence the latter inequality is redundant. Thus A is independent in M / e if and only if $\left|A \cap T_{i}\right| \leq i$ for $0 \leq i \leq k-2$ and $\left|A \cap T_{i}\right| \leq i-1$, for $k \leq i \leq r$; equivalently, if and only if A is independent in $M\left(T_{0}, \ldots, T_{k-2}, T_{k}, \ldots, T_{r}\right)$.

Corollary 5.3 ([15]). The class of freedom matroids is minor-closed.
We now characterize the closure operators and closed sets of freedom matroids. We begin with the following proposition.

Proposition 5.4. The closure of an independent set A in a freedom matroid $M=$ $M\left(S_{0}, \ldots, S_{r}\right)$ is given by $c \ell_{M}(A)=A \cup S_{m}$, where $m=\max \left\{i:\left|A \cap S_{i}\right|=i\right\}$.

Proof. First note that $\left|A \cap S_{0}\right|=0$, because A is independent, and thus such m exists. Now, since $\left|A \cap S_{m}\right|=m$, the set $A \cup x$ is dependent for all $x \in S_{m} \backslash A$, and thus $S_{m} \subseteq c \ell_{M}(A)$. On the other hand, for any $y \notin A \cup S_{m}$, the set $A \cup y$ is independent, since $\left|(A \cup y) \cap S_{i}\right|=\left|A \cap S_{i}\right| \leq i$, for $i \leq m$ and $\left|(A \cup y) \cap S_{i}\right| \leq 1+\left|A \cap S_{i}\right| \leq i$, for $i>m$; hence $c \ell_{M}(A) \subseteq A \cup S_{m}$.

We may thus find the closure of an arbitrary set A in a freedom matroid by applying Proposition 5.4 to any maximal independent subset B of A and using the fact that $c \ell(B)=$ $c \ell(A)$.

Proposition 5.5. A set $F \subseteq S$ is closed in $M\left(S_{0}, \ldots, S_{r}\right)$ if and only if $F=A \cup S_{m}$, for some $m \geq 0$ and $A \subseteq S \backslash S_{m}$ such that $\left|A \cap S_{i}\right|<i-m$, for all $i>m$; in which case the rank of F is $m+|A|$.

Proof. Suppose that F is closed and that B is a basis for F. By Proposition 5.4, $F=$ $c \ell(B)=B \cup S_{m}$ for some m such that $\left|B \cap S_{m}\right|=m$ and $\left|B \cap S_{i}\right|<i$, for all $i>m$. Letting $A=B \backslash S_{m}$, we thus have $F=A \cup S_{m}$ and $\left|A \cup S_{i}\right|<i-m$, for all $i>m$.

On the other hand, suppose that $F=A \cup S_{m}$ for some $m \geq 0$ and $A \subseteq S \backslash S_{m}$, such that $\left|A \cup S_{i}\right|<i-m$, for all $i>m$. Let B be a basis for S_{m}. Since A is disjoint from S_{m}, and thus also from B, and $|B|=m$, it follows from the above inequality that $\left|(A \cup B) \cap S_{i}\right| \leq i$, for $i>m$, and hence that $A \cup B$ is independent. Since $m=\max \left\{i:\left|(A \cup B) \cap S_{i}\right|=i\right\}$, it follows from Proposition 5.4 that $A \cup S_{m}=c \ell(A \cup B)$, and is thus closed.

Note that if we are given a closed set F in $M\left(S_{0}, \ldots, S_{r}\right)$, we can express F as $A \cup S_{m}$, according to Proposition 5.5, by letting $m=\max \left\{i: S_{i} \subseteq F\right\}$, and taking $A=F \backslash S_{m}$.

Corollary 5.6. If F is any flat of rank k in $M\left(S_{0}, \ldots, S_{r}\right)$, then $|F| \leq\left|S_{k}\right|$.
Proof. By Proposition 5.5, if F is a flat of rank k in $M\left(S_{0}, \ldots, S_{r}\right)$ then $F=S_{m} \cup A$, for some m and $A \subseteq S \backslash S_{m}$ with $|A|=k-m$. Since $\left|S_{k}\right|-\left|S_{m}\right| \geq k-m$, it follows that $|F|=\left|S_{m}\right|+|A|=\left|S_{m}\right|+k-m \leq\left|S_{k}\right|$.

6. Freedom matroids on ordered sets

In the case that S is linearly ordered it is convenient to consider flags (S_{0}, \ldots, S_{r}) such that each S_{i} is an initial segment in the ordering of S. In this case, the flag $\left(S_{0}, \ldots, S_{r}\right)$ is determined by S together with the set $\left\{1+\max S_{i}: 0 \leq i \leq r-1\right\}$. Hence if S is linearly ordered and we are given a subset $T=\left\{t_{1}, \ldots, t_{r}\right\}$ of S, we may obtain a flag $\left(T_{0}, \ldots, T_{r}\right)$ on S by setting $T_{r}=S$ and $T_{i}=\left\{s \in S: s<t_{i+1}\right\}$, for $0 \leq i \leq r-1$. We denote the freedom matroid $M\left(T_{0}, \ldots, T_{r}\right)$ by $M_{T}(S)$, or simply M_{T}, when the set S is understood. If $T \subseteq[n]$ and $S=\left\{e_{1}, \ldots, e_{n}\right\}$, we also write $M_{T}(S)$ for the matroid $M_{\alpha(T)}(S)$, where $\alpha: \mathcal{B}(n) \rightarrow \mathcal{B}(S)$ is the natural bijection $i \mapsto e_{i}$.

Proposition 6.1. If S is linearly ordered and $T \subseteq S$, then the family of independent sets of $M_{T}=M_{T}(S)$ is given by $\{A \subseteq S: A \geq T$ in $\mathcal{B}(S)\}$. If $|T|=r$, then the family of bases of M_{T} is given by $\left\{B: B \geq T\right.$ in $\left.\mathcal{B}_{r}(S)\right\}$.

Proof. Suppose that $T=\left\{t_{1}, \ldots, t_{r}\right\}$ and $A=\left\{a_{1}, \ldots, a_{k}\right\}$ in $\mathcal{B}(S)$. Since $T_{r}=S$, we have $A=A \cap T_{r}$, and thus $\left|A \cap T_{r}\right| \leq r$ if and only if $k \leq r$. Now for $0 \leq i \leq r$, we have $A \cap T_{i}=\left\{a_{j} \in A: a_{j}<t_{i+1}\right.$ in $\left.S\right\}$; therefore, since $a_{1}<\cdots<a_{k}$ and $t_{1}<\cdots<t_{r}$, it follows that $\left|A \cap T_{i}\right| \leq i$ if and only if $a_{i+1} \geq t_{i+1}$. Hence A is independent in M_{T} if and only if $A \geq T$ in $\mathcal{B}(S)$.

Example 6.2. Suppose that $S=\{a, b, c, d, e, f, g\}$ and $T=\{b, e, f\}$. Then $M_{T}=$ $M\left(T_{0}, T_{1}, T_{2}, T_{3}\right)$, where $T_{0}=\{a\}, T_{1}=\{a, b, c, d\}, T_{2}=\{a, b, c, d, e\}$ and $T_{3}=S$. The bases of M_{T} are the sets $\{b, e, f\},\{c, e, f\},\{d, e, f\},\{b, e, g\},\{c, e, g\},\{d, e, g\}$, $\{b, f, g\},\{c, f, g\},\{d, f, g\}$ and $\{e, f, g\}$.

Proposition 6.3. For any linearly ordered S, and $T \subseteq S$, the dual $M_{T}(S)^{*}$ of the matroid $M_{T}(S)$ is equal to $M_{T^{\prime}}\left(S_{\varphi}\right)$, where T^{\prime} is the complement of T in S and S_{φ} is the reversal of S. In particular, the class of freedom matroids is closed under duality.

Proof. Suppose that $|S|=n$ and $|T|=r$. It follows from Proposition 6.1 that the set of bases of $M_{T}(S)^{*}$ is given by $\left\{B^{\prime}: B \geq T\right.$ in $\left.\mathcal{B}_{r}(S)\right\}$, which, according to Lemma 4.1, is equal to $\left\{C: C \leq T^{\prime}\right.$ in $\left.\mathcal{B}_{n-r}(S)\right\}$. By Lemma 4.2 , we have $C \leq T^{\prime}$ in $\mathcal{B}_{n-r}(S)$ if and only $C \geq T^{\prime}$ in $\mathcal{B}_{n-r}\left(S_{\varphi}\right)$, and hence the result follows from Proposition 6.1.

The following Lemma, which is a corollary of Proposition 6.1, will be used in the next section.

Lemma 6.4. Suppose that $M(S)=M\left(S_{0}, \ldots, S_{r}\right)$ is a freedom matroid, where S is linearly ordered and each S_{i} is an initial segment in S, and let $A \subseteq S$ and $a \in A$. If $b \in S \backslash A$ satisfies $b>a$ in S, then $\rho((A \backslash a) \cup b) \geq \rho(A)$.

Proof. Let B be a maximal independent subset of A that contains a. Since $b>a$ in S, it follows that $(B \backslash a) \cup b>B$ in $\mathcal{B}(S)$. Hence, by Proposition 6.1, the set $(B \backslash a) \cup b$ is independent in M, and so $\rho((A \backslash a) \cup b) \geq \rho(A)$.

Recall from Section 4 that, given a word $w \in \mathcal{W}_{n, r}$, and $1 \leq k \leq r$, we denote by $\pi_{k}(w)$ the position of the k th 1 in w, and for $S=\left\{e_{1}, \ldots, e_{n}\right\}$, the bijection $\pi: \mathcal{W}_{n, r} \rightarrow \mathcal{B}_{r}(S)$ is given by $\pi(w)=\left\{e_{\pi_{1}(w)}, \ldots, e_{\pi_{r}(w)}\right\}$. We thus may define a mapping $w \mapsto M_{w}$ from $\mathcal{W}_{n, r}$ to the set of rank r freedom matroids on S by setting $M_{w}=M_{\pi(w)}(S)$, for all $w \in \mathcal{W}_{n, r}$.

Example 6.5. If $S=\{a, b, c, d, e, f, g, h, i, j, k, l\}$ and $w=001011001000$, then $\pi(w)=\{c, e, f, i\}$. The sets S_{i} may be read off from the following table:

```
w: 0}00<10\mp@code{1}1
So:a b
S
S2: a b c d e
S3: a b c d e f g h
S4:a blcleflohi jkl,
```

and $M_{w}=M_{\{c, e, f, i\}}$ is the freedom matroid $M\left(S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right)$.

When freedom matroids were first introduced, in [10], they were given the following recursive construction by single-element extensions: If w is the empty word, then M_{w} is the empty matroid, and for $w=v x$, where $|x|=1, M_{w}$ is obtained from M_{v} as follows:
(i) If $x=1$, add a point independently to M_{v} in a new dimension, that is, let $M_{w}=$ $M_{v} \oplus I$.
(ii) If $x=0$, add a point e to M_{v} in general position in the top rank, that is, let M_{w} be the free extension of M_{v} by e.

Example 6.6. If $w=001001010010$ and $S=\{a, b, c, d, e, f, g, h, i, j, k, l\}$, then M_{w} consists of loops a and b, together with a triple point $\{c, d, e\}$, collinear with distinct points f and g, this line being coplanar with general points h, i, j, with two additional points k and l in general position in 3 -space.

7. Matroids and words

Suppose that M is a matroid of rank r on an n-element set S, having rank function ρ. We associate to any maximal chain $\emptyset=A_{0} \subset \cdots \subset A_{n}=S$ in the Boolean algebra 2^{S} the word $x_{1} \cdots x_{n} \in \mathcal{W}_{n, r}$ defined by $x_{i}=\rho\left(A_{i}\right)-\rho\left(A_{i-1}\right)$, for all $i \in[n]$. If the set $S=\left\{e_{1}, \ldots, e_{n}\right\}$ is linearly ordered, then there is a distinguished maximal chain $A_{0} \subset \cdots \subset A_{n}$ in 2^{S}, given by $A_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$, for all $i \in[n]$. The word $w_{M(S)}=x_{1} \cdots x_{n}$ associated to this chain is thus determined by

$$
x_{i}= \begin{cases}0, & \text { if } e_{i} \in c \ell\left(\left\{e_{1}, \ldots, e_{i-1}\right\}\right), \\ 1, & \text { otherwise }\end{cases}
$$

for all $i \in[n]$. We refer to $w_{M(S)}$ as the distinguished word of $M(S)$. Note that $w_{M(S)}$ is also determined by the equality $\left|x_{1} \cdots x_{i}\right|_{1}=\rho\left(\left\{e_{1}, \ldots, e_{i}\right\}\right)$, for all $i \in[n]$.

Lemma 7.1. For any matroid $M(S)$ of rank r, with S linearly ordered of cardinality n, the word $w=w_{M(S)}$ is determined by the condition that $\pi(w)=\min \left\{B \in \mathcal{B}_{r}(S)\right.$: B is a basis for $M\}$.

Proof. Suppose $S=\left\{e_{1}, \ldots, e_{n}\right\}$, and that the 1 's in w occur in positions i_{1}, \ldots, i_{r}, so that $\pi(w)=\left\{e_{i_{1}}, \ldots, e_{i_{r}}\right\}$. Since $e_{i_{k}}$ is not in the closure of $\left\{e_{1}, \ldots, e_{i_{k}-1}\right\}$, for all $k \in[r]$, it follows that $\pi(w)$ is independent, and thus is a basis for M. If $B=\left\{b_{1}, \ldots, b_{r}\right\} \subseteq S$ is such that $k \leq i_{k}$, for some $k \in[r]$, then $\left\{b_{1}, \ldots, b_{k}\right\} \subseteq\left\{e_{1}, \ldots, e_{i_{k}-1}\right\}$, which has rank $k-1$, and so B is not a basis for M. Hence any basis B of M satisfies $B \geq \pi(w)$ in $\mathcal{B}_{r}(S)$.

If $S=\left\{e_{1}, \ldots, e_{n}\right\}$ is linearly ordered, then the symmetric group Σ_{n} acts naturally on S by $\sigma\left(e_{i}\right)=e_{\sigma(i)}$, for all $i \in[n]$, and thus we can identify Σ_{n} with the group Σ_{S} of permutations of S. For any σ in Σ_{S} (or in Σ_{n}), we denote by S_{σ} the underlying set of S equipped with the linear order (or reorder) given by $\sigma\left(e_{1}\right)<\cdots<\sigma\left(e_{n}\right)$. Hence, $a \leq b$ in S if and only if $\sigma(a) \leq \sigma(b)$ in S_{σ}, and so $\sigma: S \rightarrow S_{\sigma}$ is a poset isomorphism. The natural map $\mathcal{B}(S) \rightarrow \mathcal{B}\left(S_{\sigma}\right)$, given by $A \mapsto \sigma(A)$, for all $A \subseteq S$, and also denoted by σ, is also a poset isomorphism. We denote by π_{σ} the map $\mathcal{W}_{n, r} \rightarrow \mathcal{B}_{r}\left(S_{\sigma}\right)$, which takes a
word to the subset of S_{σ} corresponding to positions of its 1's. Note that π_{σ} is equal to the composition $\sigma \pi$.

Given $A, B \subseteq S$ of equal cardinality, with complements A^{\prime} and B^{\prime} in [n], the shuffle $\sigma_{A, B} \in \Sigma_{S}$ is the unique permutation of S which maps B onto A, and thus also B^{\prime} onto A^{\prime}, whose restrictions to B and B^{\prime} are order-preserving. For example, if $A=\{4,7\}$ and $B=\{1,5\}$ in $S=[7]$, then $\sigma_{A, B}=4123756$ (where $\sigma=\sigma_{1} \cdots \sigma_{n} \in \Sigma_{n}$ is the usual word notation for permutations, indicating that $\sigma(i)=\sigma_{i}$, for all i), or in cycle notation, $\sigma_{A, B}=(1432)(576)$.

Lemma 7.2. Suppose that S is linearly ordered, and that $A \geq B$ in $\mathcal{B}(S)$, where $|A|=|B|$, and let $\sigma=\sigma_{A, B} \in \Sigma_{S}$ be the shuffle. If $C \subseteq S$ satisfies $C \geq A$ in $\mathcal{B}(S)$, then $C \geq A$ in $\mathcal{B}\left(S_{\sigma}\right)$.

Proof. Suppose that the complements of $A=\left\{a_{1}, \ldots, a_{r}\right\}$ and $B=\left\{b_{1}, \ldots, b_{r}\right\}$ in S are $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right\}$ and $B^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right\}$, respectively, so that the shuffle $\sigma=\sigma_{A, B}$ is given by $b_{i} \mapsto a_{i}$ and $b_{j}^{\prime} \mapsto a_{j}^{\prime}$, for all $i \in[r]$ and $j \in[k]$. Since $\sigma: \mathcal{B}(S) \rightarrow \mathcal{B}\left(S_{\sigma}\right)$ is an isomorphism, it follows that for any $C \subseteq S$, we have $C \geq A$ in $\mathcal{B}\left(S_{\sigma}\right)$ if and only if $\sigma^{-1}(C) \geq \sigma^{-1}(A)=B$ in $\mathcal{B}(S)$. Now suppose that $C=\left\{c_{1}, \ldots, c_{m}\right\} \geq A$ in $\mathcal{B}(S)$, so that $m \leq r$ and $c_{i} \geq a_{i}$, for all $i \in[m]$. Since $A \geq B$ in $\mathcal{B}(S)$, it follows from Lemma 4.1 that $A^{\prime} \leq B^{\prime}$ in $\mathcal{B}(S)$. Hence $\sigma^{-1}(a) \leq a$, for all $a \in A$, and $\sigma^{-1}\left(a^{\prime}\right) \geq a^{\prime}$, for all $a^{\prime} \in A^{\prime}$. Consider $c_{i} \in C$. If $c_{i} \in A^{\prime}$, then $\sigma^{-1}\left(c_{i}\right) \geq c_{i} \geq a_{i} \geq b_{i}$. On the other hand, if $c_{i} \in A$, then $c_{i}=a_{j}$, for some $j \geq i$ (since $\left.c_{i} \geq a_{i}\right)$, and so $\sigma^{-1}\left(c_{i}\right)=\sigma^{-1}\left(a_{j}\right)=b_{j} \geq b_{i}$. Hence $\sigma^{-1}(C) \geq B$ in $\mathcal{B}(S)$, and therefore $C \geq A$ in $\mathcal{B}\left(S_{\sigma}\right)$.

For any matroid $M(S)$ of rank r, where S is linearly ordered of cardinality n, we define a mapping $\lambda_{M}: \Sigma_{S} \rightarrow \mathcal{W}_{n, r}$ (or equivalently, $\lambda_{M}: \Sigma_{n} \rightarrow \mathcal{W}_{n, r}$) by setting $\lambda_{M}(\sigma)=w_{M\left(S_{\sigma}\right)}$, for all $\sigma \in \Sigma_{S}$. Note that, in particular, if $\iota \in \Sigma_{S}$ is the identity permutation, then $\lambda_{M}(\iota)=w_{M(S)}$ is the distinguished word of $M(S)$. We emphasize that the map λ_{M} depends not only on the matroid $M=M(S)$, but on the linear ordering of S.

For example, if M is the matroid on $S=\{a, b, c, d, e, f, g\}$ shown in Fig. 2, and $\sigma \in \Sigma_{7}$ is the permutation 6237154, then $\lambda_{M}(\sigma)=1110010$.

Proposition 7.3. Suppose that $M(S)$ is a rank r matroid, with S an n-element linearly ordered set. If $v \leq w_{M(S)}$ in $\mathcal{W}_{n, r}$, then $\lambda_{M}\left(\sigma_{A, B}\right)=v$, where $A=\pi\left(w_{M(S)}\right)$ and $B=\pi(v)$.

Proof. By Lemma 7.1, $A=\pi\left(w_{M(S)}\right)$ is the minimum basis of M in $\mathcal{B}_{r}(S)$. Since $A \geq B=\pi(v)$ in $\mathcal{B}_{r}(S)$, it follows from Lemma 7.2 that A is also the minimum basis of M in $\mathcal{B}_{r}\left(S_{\sigma}\right)$, where σ is the shuffle $\sigma_{A, B}$. Since $A=\sigma(B)=\sigma(\pi(v))=\pi_{\sigma}(v)$, it thus follows from Lemma 7.1 that $v=w_{M\left(S_{\sigma}\right)}$, that is, $\lambda_{M}(\sigma)=v$.

Corollary 7.4. For any rank r matroid M on an n-element linearly ordered set, the image of λ_{M} is an order ideal in $\mathcal{W}_{n, r}$.

Proof. The proof is immediate from Proposition 7.3.
It was shown in [10] (Theorem: "Existence of a matroid with a given first word") that in the case in which $M=M_{w}$ is a freedom matroid, the word w is the maximum among words associated to M by the map λ_{M}. The following theorem is a strengthening of this result, giving a characterization of the words in the image of λ_{M} whenever M is a freedom matroid.

Theorem 7.5. If M is the freedom matroid M_{w} for some $w \in \mathcal{W}_{n, r}$, then the image of $\lambda_{M}: \Sigma_{n} \rightarrow \mathcal{W}_{n, r}$ is the principal order ideal $\left\{v \in \mathcal{W}_{n, r}: v \leq w\right\}$.

Proof. Suppose that $M=M(S)=M_{w}$, where $S=\left\{e_{1}, \ldots, e_{n}\right\}$ and $w=x_{1} \cdots x_{n}$ belongs to $\mathcal{W}_{n, r}$. It follows that $M=M\left(S_{0}, \ldots, S_{r}\right)$, where $S_{r}=S$, and $S_{k-1}=$ $\left\{e_{1}, \ldots, e_{\pi_{k}(w)-1}\right\}$, for $1 \leq k \leq r$. For any $\sigma \in \Sigma_{n}$, the word $\lambda_{M}(\sigma)=y_{1} \cdots y_{n}$ is determined by the condition that $\left|y_{1} \cdots y_{i}\right|_{1}=\left(\left\{e_{\sigma(1)}, \ldots, e_{\sigma(i)}\right\}\right)$, for $1 \leq i \leq n$, and by Corollary 5.6, if $\rho\left(\left\{e_{\sigma(1)}, \ldots, e_{\sigma(i)}\right\}\right)=k$, for some i, then $i \leq\left|S_{k}\right|=\pi_{k+1}(w)-1$. Since $\pi_{k+1}(w)$ is the position of the $(k+1)$ st one in w, it follows that $\left|x_{1} \cdots x_{i}\right|_{1} \leq k=$ $\left|y_{1} \cdots y_{i}\right|_{1}$. Hence, by Lemma 4.4, we have $\lambda_{M}(\sigma) \leq w$. The result thus follows from Corollary 7.4.

Example 7.6. Suppose that $M(S)=U_{2,4} \oplus P_{2}$ is the matroid consisting of a four-point line and a double point. The image of λ_{M} in $\mathcal{W}_{6,3}$ (given any linear ordering on S) is the order ideal $\{111000,110100,101100,110010\}$, which has maximal elements 110010 and 101100 , and thus is not principal. Hence, it follows from Theorem 7.5 that M is not a freedom matroid.

Corollary 7.7 ([10]). There are precisely 2^{n} nonisomorphic freedom matroids (and thus at least 2^{n} nonisomorphic matroids) on an n-element set.

Proof. Given a matroid M on S, the definition of λ_{M} depends on a choice of ordering of S, but the image of λ_{M} depends only on the isomorphism class of M. Hence, by Theorem 7.5, if $v \neq w$, then the freedom matroids M_{v} and M_{w} are not isomorphic.

Recall that the Bruhat order (or strong Bruhat order) on Σ_{n} is determined by the condition that σ covers $\tau=\tau_{1} \cdots \tau_{n}$ in Σ_{n} if and only if σ may be obtained from τ by reversing a single pair (τ_{i}, τ_{j}), such that $i<j$ and $\tau_{i}<\tau_{j}$ and the number of inversions of σ is one greater than the number of inversions of τ. Under the assumptions $i<j$ and $\tau_{i}<\tau_{j}$, the exchange (τ_{i}, τ_{j}) increases the number of inversions by one if and only if, for all k with $i<k<j$, either $\tau_{k}<\tau_{i}$ or $\tau_{k}>\tau_{j}$, which, in particular, is the case if either $j=i+1$ or $\tau_{j}=\tau_{i}+1$. For example, in the Bruhat order on Σ_{4}, the permutation 1423 is covered by 4123,2413 and 1432 . Reversing the pair $(1,3)$ in 1423 creates three new inversions, so that, even though 3421 is greater than 1423 , it is not a cover. The identity permutation is the minimum element of Σ_{n}, and the flip map $\varphi=n(n-1) \cdots 1$ is the maximum element.

Proposition 7.8. If $M=M_{w}$ for any $w \in \mathcal{W}_{n, r}$, and Σ_{n} is given the Bruhat order, then $\lambda_{M}: \Sigma_{n} \rightarrow \mathcal{W}_{n, r}$ is an order-reversing map.

Proof. Suppose that $M_{w}=M(S)=M\left(S_{0}, \ldots, S_{r}\right)$, where S is linearly ordered and each S_{i} is an initial segment in S. Suppose that τ covers σ in the Bruhat order on Σ_{n} and let $S_{\sigma}=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ and $S_{\tau}=\left\{f_{1}, \ldots, f_{n}\right\}$, so that $e_{k}=f_{k}$ for all but two indices i and j, where

$$
i<j, \quad e_{i}<e_{j}, \quad f_{j}=e_{i}, \quad \text { and } \quad f_{i}=e_{j}
$$

Letting $E_{k}=\left\{e_{1}, \ldots, e_{k}\right\}$ and $F_{k}=\left\{f_{1}, \ldots, f_{k}\right\}$, for all $k \in[n]$, we have $E_{k}=F_{k}$, for $1 \leq k<i$ and $j<k \leq n$, and since $e_{j}>e_{i}$ in S, it follows from Lemma 6.4 that $\rho\left(F_{k}\right) \geq \rho\left(E_{k}\right)$, for $i \leq k \leq j$. Letting $\lambda_{M}(\sigma)=x_{1} \cdots x_{n}$ and $\lambda_{M}(\tau)=y_{1} \cdots y_{n}$,
we thus have $\left|x_{1} \cdots x_{k}\right|_{1}=\rho\left(E_{k}\right) \leq \rho\left(F_{k}\right)=\left|y_{1} \cdots y_{k}\right|_{1}$, for all $k \in[n]$, and hence $\lambda_{M}(\sigma) \geq \lambda_{M}(\tau)$, by Lemma 4.4.

Example 7.9. Suppose that $S=\{a, b, c, d\}$ and $M(S)=M_{0101}$, so that a is a loop, $\{b, c\}$ a double point and d an isthmus in M. The image of $\lambda_{M}: \Sigma_{4} \rightarrow \mathcal{W}_{4,2}$ is the order ideal $\{1100,0110,1001,1010\}$, and under λ_{M}, the two permutations in the interval [1234, 1324] of Σ_{4} map to 0101, the four permutations in the interval [1243, 1432] map to 0110 , the four permutations in the interval $[2134,3214]$ map to 1001 , the set $\{\sigma: \sigma \geq 2143$ and either $\sigma \leq 3241$ or $\sigma \leq 4132\}$ maps to 1010, and the interval [2413, 4321] maps to 1100 .

8. The algebra of freedom matroids

We now consider the algebra $A(\mathcal{F})$ corresponding to the minor-closed class \mathcal{F} of freedom matroids. Throughout this section we shall assume that the ring K is a field of characteristic zero. The set $\left\{M_{w}: w \in \mathcal{W}\right\}$, where \mathcal{W} is the set of all words on $\{0,1\}$, is a K-vector space basis for $A(\mathcal{F})$, and the product is given by

$$
M_{u} \cdot M_{v}=\sum_{w \in \mathcal{W}}\binom{w}{u, v} M_{w},
$$

where $\binom{w}{u, v}$ denotes the section coefficient $\binom{M_{w}}{M_{u}, M_{v}}$. As is the case for any matroid algebra, $A(\mathcal{F})$ is bigraded by rank and nullity, and so $A(\mathcal{F})=\bigoplus_{r, k \geq 0} A_{r, k}(\mathcal{F})$, where $A_{r, k}(\mathcal{F})$ has basis $\left\{M_{w}: w \in W_{r+k, r}\right\}$, and the section coefficient $\binom{w}{u, v}$ is zero whenever $w \notin \mathcal{W}_{|u|+|v|,|u|_{1}+|v|_{1}}$.

In the proof of our main theorem below, we make use of the incidence algebra of the lattice $\mathcal{W}_{n, r}$. In general, the incidence algebra $I(P)$ of a locally finite poset P is the K vector space of all functions $f: P \times P \rightarrow K$ such that $f(x, y)=0$, whenever $x \not \leq y$, equipped with the convolution product:

$$
(f g)(x, z)=\sum_{x \leq y \leq z} f(x, y) g(y, z)
$$

for all $f, g \in I(P)$, and $x \leq z$ in P. The convolution identity $\delta \in I(P)$ is given by $\delta(x, y)=\delta_{x, y}$, for all $x \leq y$ in P. An element $f \in I(P)$ is invertible if and only if $f(x, x)$ is a unit in K, for all $x \in P$, in which case the convolution inverse f^{-1} is determined recursively by $f^{-1}(x, x)=f(x, x)^{-1}$, for all $x \in P$, and

$$
\begin{aligned}
f^{-1}(x, z) & =f(z, z)^{-1} \sum_{x \leq y<z} f^{-1}(x, y) f(y, z) \\
& =f(x, x)^{-1} \sum_{x<y \leq z} f(x, y) f^{-1}(y, z)
\end{aligned}
$$

for all $x<z$ in P.

Recall that the matroids consisting of a single point and a single loop are denoted by I and Z, respectively, and note that $I=M_{1}$ and $Z=M_{0}$ are the freedom matroids corresponding to words of length one.

Theorem 8.1. The algebra $A(\mathcal{F})$ is free, generated by I and Z.
Proof. For any word $w=x_{1} \cdots x_{n}$ in \mathcal{W}, we denote by P_{w} the product $M_{x_{1}} \cdots M_{x_{n}}$ in $A(\mathcal{F})$. Since $A(\mathcal{F})$ is graded it suffices to show that the set $\left\{P_{w}: w \in \mathcal{W}_{n, r}\right\}$ is a basis for $A_{r, n-r}(\mathcal{F})$, for all $n \geq r \geq 0$. Given words $w, v \in \mathcal{W}_{n, r}$, with $w=x_{1} \cdots x_{n}$, we write $c(w, v)$ for the multisection coefficient $\binom{v}{x_{1}, \ldots, x_{n}}$. Observe that $c(w, v)$ is equal to the number of permutations $\sigma \in \Sigma_{n}$ such that $\lambda_{M_{v}}(\sigma)=w$, and hence Theorem 7.5 implies that $c(w, v)$ is nonzero if and only if $w \leq v$ in the lattice ordering of $\mathcal{W}_{n, r}$. We thus have

$$
\begin{equation*}
P_{w}=\sum_{v \geq w} c(w, v) M_{v} \tag{8.2}
\end{equation*}
$$

for all $w \in \mathcal{W}_{n, r}$, where all coefficients are nonzero. Because $c(w, v)=0$, whenever $w \not \approx v$, the function c belongs to the incidence algebra of $\mathcal{W}_{n, r}$. Since $c(w, w) \neq 0$ for all w, and K is a field of characteristic zero, it follows that c has a convolution inverse c^{-1}, and therefore

$$
M_{w}=\sum_{v \geq w} c^{-1}(w, v) P_{v}
$$

for all $w \in \mathcal{W}_{n, r}$. Hence the linear endomorphism of $A_{r, n-r}(\mathcal{F})$ determined by $M_{w} \mapsto P_{w}$, for all $w \in \mathcal{W}_{n, r}$, is invertible, and so $\left\{P_{w}: w \in \mathcal{W}_{n, r}\right\}$ is a basis for $A_{r, n-r}(\mathcal{F})$.

Note that, since $P_{v} \cdot P_{w}=P_{v w}$ in $A(\mathcal{F})$, for all $v, w \in \mathcal{W}$, Theorem 8.1 can be restated as the fact that the map $P_{w} \mapsto w$ defines an isomorphism from $A(\mathcal{F})$ onto the free algebra $K\{\mathcal{W}\}=K\langle\{0,1\}\rangle$, which has concatenation of words as product.

The use of incidence algebras in the proof of Theorem 8.1 can be avoided as follows: Choose an ordering w_{1}, \ldots, w_{m} of $\mathcal{W}_{n, r}$ such that $i \leq j$, whenever $w_{i} \leq w_{j}$ in $\mathcal{W}_{n, r}$ (such as the opposite of lexicographic order) and set $c_{i j}=c\left(w_{i}, w_{j}\right)$, for all $i \leq j$ in [m]. Then $P_{w_{i}}=\sum_{j=1}^{m} c_{i j} M_{w_{j}}$, for all i, and by Theorem 7.5, the matrix $C=\left(c_{i j}\right)_{1 \leq i, j \leq m}$ is uppertriangular, with nonzero entries along the main diagonal. Since K is a characteristic zero field, C is thus invertible, and hence the set $\left\{P_{w_{i}}: 1 \leq i \leq m\right\}$ is a basis for $A_{r, n-r}(\mathcal{F})$.

Corollary 8.3. If \mathcal{M} is any minor-closed family that contains the class \mathcal{F} of freedom matroids, then the subalgebra of $A(\mathcal{M})$ generated by I and Z is free.

Proof. For each word $w=x_{1} \cdots x_{n} \in \mathcal{W}$, let Q_{w} denote the product $M_{x_{1}} \cdots M_{x_{n}}$ in $A(\mathcal{M})$. Since $\mathcal{F} \subseteq \mathcal{M}$, the algebra $A(\mathcal{F})$ is a quotient of $A(\mathcal{M})$, where the canonical homomorphism $\pi: A(\mathcal{M}) \mapsto A(\mathcal{F})$ maps every freedom matroid in \mathcal{M} to itself and every nonfreedom matroid to zero. Since $\pi\left(Q_{w}\right)=P_{w}$, for all $w \in \mathcal{W}$ and, by Theorem 8.1, the P_{w} are linearly independent in $A(\mathcal{F})$, it follows that the Q_{w} are linearly independent in $A(\mathcal{M})$. Hence the subalgebra of $A(\mathcal{M})$ generated by I and Z is free.

Example 8.4. If $S=\{a, b, c, d\}$, then the basis $\left\{M_{w}: w \in \mathcal{W}_{4,2}\right\}$ of $A_{2,2}(\mathcal{F})$ consists of the following matroids:

$M_{1100}=U_{2,4}$	a, b, c, d collinear
M_{1010}	$\{a, b\}$ a double-point, collinear with points c and d
$M_{1001}=P_{3} \oplus I$	$\{a, b, c\}$ a triple-point,d a distinct point
$M_{0110}=Z \oplus U_{2,3}$	a a loop, b, c, d collinear
$M_{0101}=I \oplus P_{2} \oplus Z$	a a loop, $\{b, c\}$ a double-point, d a distinct point
$M_{0011}=Z_{2} \oplus I_{2}$	a and b loops, c and d distinct points.

Listing $\mathcal{W}_{4,2}$ in opposite lexicographic order, $\mathcal{W}_{4,2}=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}=$ $\{1100,1010,1001,0110,0101,0011\}$, the matrix C of multisection coefficients $c_{i j}$ is given by

1100
1010
1001
0110
0101
0011

24 \& 20 \& 12 \& 12 \& 8 \& 4

0 \& 4 \& 6 \& 6 \& 6 \& 4

0 \& 0 \& 6 \& 0 \& 4 \& 4

0 \& 0 \& 0 \& 6 \& 4 \& 4

0 \& 0 \& 0 \& 0 \& 2 \& 4

0 \& 0 \& 0 \& 0 \& 0 \& 4\end{array}\right)\).

So, for example, $P_{1001}=I \cdot Z \cdot Z \cdot I$ is equal to $6 M_{1001}+4 M_{0101}+4 M_{0011}$ in $A(\mathcal{F})$. Observe that c_{34} is the only zero entry above the main diagonal C, which corresponds to the fact that $w_{3}=1001$ and $w_{4}=0110$ are the only two noncomparable elements of the lattice $\mathcal{W}_{4,2}$. Also note that, since the matrix entry $c(v, w)$ is equal to the number of orderings of the underlying set of M_{w} with corresponding word equal to v, the sum of the entries in each column of C is equal to 4 !.

Example 8.5. Suppose that \mathcal{M} is any minor-closed class containing all freedom matroids and the smallest nonfreedom matroid $D=P_{2} \oplus P_{2}$, consisting of two doublepoints, and let $P L(\mathcal{M})$ be the subalgebra of $A(\mathcal{M})$ generated by I and Z. The matrix expressing the basis $\left\{Q_{w}: w \in \mathcal{W}_{4,2}\right\}$ of $P L(\mathcal{M}) \cap A_{2,2}(\mathcal{M})$ in terms of the basis $\widetilde{\mathcal{M}}_{2,2}=\{D\} \cup\left\{M_{w}: w \in \mathcal{W}_{4,2}\right\}$ of $A_{2,2}(\mathcal{M})$ is given by

1100
1010
1001
0110
0101
0011

24 \& 20 \& 16 \& 12 \& 12 \& 8 \& 4

0 \& 4 \& 8 \& 6 \& 6 \& 6 \& 4

0 \& 0 \& 0 \& 6 \& 0 \& 4 \& 4

0 \& 0 \& 0 \& 0 \& 6 \& 4 \& 4

0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 4

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 4\end{array}\right)\).

In this context, Corollary 8.3 amounts to the observation that this matrix contains as a submatrix the nonsingular matrix C in the previous example, and thus has independent rows.

We now turn our attention to the coalgebra $C(\mathcal{F})$ of freedom matroids. Recall from Section 2 that $C(\mathcal{F})$ has as basis the set $\tilde{\mathcal{F}}=\left\{M_{w}: w \in \mathcal{W}\right\}$ of all isomorphism classes of freedom matroids, and has coproduct determined by Eq. (2.8), so that

$$
\delta\left(M_{w}\right)=\sum_{u, v \in \mathcal{W}}\binom{w}{u, v} M_{u} \otimes M_{v},
$$

for all $w \in \mathcal{W}$. Hence if we define a coproduct on the vector space $K\{\mathcal{W}\}$, having all 0,1 -words as basis, by $\delta(w)=\sum_{u, v}\binom{w}{u, v} u \otimes v$, then $K\{\mathcal{W}\}$ and $C(\mathcal{F})$ are isomorphic coalgebras via the mapping $M_{w} \mapsto w$. For example,

$$
\begin{aligned}
\delta(1010)= & 1010 \otimes \emptyset+2(101 \otimes 0)+2(110 \otimes 0)+10 \otimes 10 \\
& +5(11 \otimes 00)+2(1 \otimes 100)+2(1 \otimes 010)+\emptyset \otimes 1010
\end{aligned}
$$

It is then an interesting exercise to give a description of this coproduct solely in terms of the combinatorics of words.

Let $\left\{P_{w}^{\prime}: w \in \mathcal{W}\right\}$ be the basis of $C(\mathcal{F})$ which is dual to the basis $\left\{P_{w}: w \in \mathcal{W}\right\}$ of $A(\mathcal{F})$ via the pairing defined in the beginning of Section 3, that is, such that $\left\langle P_{w}^{\prime}, P_{v}\right\rangle=$ $\delta_{w, v}$, for all $v, w \in \mathcal{W}$. Eq. (8.2) means that $\left\langle M_{v}, P_{w}\right\rangle=c(w, v)$, for all $v, w \in \mathcal{W}$, and so we have

$$
M_{w}=\sum_{v \in \mathcal{W}}\left\langle M_{w}, P_{v}\right\rangle P_{v}^{\prime}=\sum_{v \leq w} c(v, w) P_{v}^{\prime}
$$

for all $w \in \mathcal{W}$. Hence if $|w|=n$, and we write λ for $\lambda_{M_{w}}$, we have

$$
M_{w}=\sum_{\sigma \in \Sigma_{n}} P_{\lambda(\sigma)}^{\prime}
$$

For example, referring to the matrix C in Example 8.4, we see that $M_{0110}=12 P_{1100}^{\prime}+$ $6 P_{1010}^{\prime}+6 P_{0110}^{\prime}$ in $C(\mathcal{F})$.

Corollary 8.6. The coalgebra $C(\mathcal{F})$ has basis $\left\{P_{w}^{\prime}: w \in \mathcal{W}\right\}$ and coproduct given by

$$
\delta\left(P_{w}^{\prime}\right)=\sum_{u v=w} P_{u}^{\prime} \otimes P_{v}^{\prime}
$$

for all $w \in \mathcal{W}$.
Proof. The result follows immediately from Theorem 8.1 by duality.
Corollary 8.6 can be restated as saying that the map determined by $P_{w}^{\prime} \mapsto w$ is a coalgebra isomorphism from $C(\mathcal{F})$ onto the cofree coalgebra $K\{\mathcal{W}\}$, which has the deconcatenation coproduct $\delta(w)=\sum_{u v=w} u \otimes v$.

Acknowledgement

Schmitt was partially supported by NSA grant 02G-134.

References

[1] F. Ardila, The Catalan matroid, Journal of Combinatorial Theory A 104 (2003) 49-62.
[2] J. Bonin, A. de Mier, Lattice path matroids: structural properties, preprint arxiv:math.co/043337, March, 2004.
[3] J. Bonin, A. de Mier, M. Noy, Lattice path matroids: enumerative aspects and Tutte polynomials, Journal of Combinatorial Theory A 104 (2003) 63-94.
[4] J. Bonin, O. Gimenez, Multi-path matroids (in preparation).
[5] D. Broadhurst, D. Kreimer, Renormalization automated by Hopf algebra, Journal of Symbolic Computation 27 (6) (1999) 581-600.
[6] S.V. Chmutov, S.V. Duzhin, S.K. Lando, Vassiliev knot invariants I. Introduction, Advances in Soviet Mathematics 21 (1994) 117-126.
[7] S.V. Chmutov, S.V. Duzhin, S.K. Lando, Vassiliev knot invariants II. Intersection graph conjecture for trees, Advances in Soviet Mathematics 21 (1994) 127-134.
[8] S.V. Chmutov, S.V. Duzhin, S.K. Lando, Vassiliev knot invariants III. Forest algebra and weighted graphs, Advances in Soviet Mathematics 21 (1994) 135-145.
[9] A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem, Communications in Mathematical Physics 210 (1) (2000) 249-273.
[10] H. Crapo, Single-element extensions of matroids, Journal of Research National Bureau of Standards 69B (1965) 55-66.
[11] J. Ellis-Monaghan, New results for the Martin polynomial, Journal of Combinatorial Theory B 74 (1998) 326-352.
[12] S.A. Joni, G.-C. Rota, Coalgebras and bialgebras in combinatorics, Studies in Applied Mathematics 61 (1979) 93-139.
[13] M. Kontsevich, Vassiliev's knot invariants, Advances in Soviet Mathematics 16 (1993) 137-150.
[14] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Advances in Theoretical and Mathematical Physics 2 (2) (1998) 303-334.
[15] J. Oxley, K. Prendergast, D. Row, Matroids whose ground sets are domains of functions, Journal of the Australian Mathematical Society A 32 (3) (1982) 380-387.
[16] U.S. Representatives, W. Jones (R-N.C.), B. Ney (R-Ohio), Committee on House Administration, Press release, http://www.house.gov/ney/freedomfriespr.htm, 2003, March.
[17] I. Sarmiento, Hopf algebras and the Penrose polynomial, Freie Universität, Berlin, 1999 (preprint).
[18] W. Schmitt, Incidence Hopf algebras, Journal of Pure and Applied Algebra 96 (1994) 299-330.
[19] D.J.A. Welsh, A bound for the number of matroids, Journal of Combinatorial Theory 6 (1969) 313-316.
[20] W. Kook, V. Reiner, O. Stanton, A convolution formula for the Tutte polynomial, Journal of Combinatorial Theory B 76 (1999) 297-300.
[21] J.P.S. Kung, A multiplication identity for characteristic polynomials of matroids, Advances in Applied Mathematics 32 (2004) 319-326.

[^0]: E-mail addresses: crapo@ehess.fr (H. Crapo), wschmitt@gwu.edu (W. Schmitt).

