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Abstract

This paper is an initial inquiry into the structure of the Hopf algebra of matroids with
restriction–contraction coproduct. Using a family of matroids introduced by Crapo in 1965, we show
that the subalgebra generated by a single point and a single loop in the dual of this Hopf algebra is
free.
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1. Introduction

Major advances in combinatorial theory during recent decades rely upon algebraic
structures associated to combinatorial objects, and indeed, often involve studies of
combinatorial properties of algebraic systems themselves. In particular, Hopf algebras
based on families of combinatorial structures such as posets, graphs, permutations and
tableaux play an increasingly prominent role in contemporary combinatorial theory and
have been applied to a wide variety of fields. A major exception to this trend occurs
in matroid theory, where little attention has been paid to naturally occurring algebraic
structures. One such structure, introduced by one of the present authors in [18], is a
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Hopf algebra that may be associated to any family of matroids that is closed under
formation of minors and direct sums. This Hopf algebra has as basis the set of isomorphism
classes of matroids belonging to the given family, with product induced by the direct
sum operation, and coproduct of a matroidM = M(S) given by

∑
A⊆S M|A ⊗ M/A,

whereM|A is the submatroid obtained by restriction toA andM/A is the complementary
contraction. A closely related Hopf algebra was constructed by Joni and Rota in [12], as the
incidence coalgebra of a hereditary family of geometric lattices. In this case, attention is
restricted to simple matroids, and the subsetsA appearing in the coproduct are taken to be
flats. These Hopf algebras were also briefly considered in connection with the characteristic
and Tutte polynomials of matroids in [20] and [21].

Similar constructions have arisen with increasing frequency in recent years, as Hopf
algebra techniques have been brought to bear on the study of Feynman diagrams
and renormalization processes in Physics [9,14,5], Vassiliev’s knot invariants [6–8,13]
and graph invariants [11,17]. All of this work has been carried out in the context of
graphs, which form an extremely restricted class of matroids, and which have a grossly
different classification by isomorphism, save when attention is restricted to 3-connected
graphs.

The present article is an initial inquiry into the structure of the matroid Hopf algebra
given in [18]. We prove that the subalgebra of the dual algebra generated by “point”
and “loop” (the two one-element matroids) is free. (The question of whether of not the
corresponding subalgebra, in the context of graphs, is free, which was posed by Lowell
Abrams, remainsopen.) We manage this proof by restricting attention to a class of 2n

mutually nonisomorphic matroids on ann element set which we call “freedom matroids”.
These matroids are obtained, starting from the empty matroid, by successively adding
points, at each stage either in a new dimension or in general position in the top rank.
Freedom matroids were introduced by the other present author, in [10], in order to prove
that there are at least 2n nonisomorphic matroids onn elements. The same matroids,
presented as transversal matroids, were used in [19] to give a simplified proof of the same
result. Several characterizations of freedom matroids were given in [15], where it was
also shown that the family of all freedom matroids is closed under formation of minors
and duals. In the present paper, we adduce a number of new combinatorial properties of
freedom matroids. This work is thus a useful adjunct to recent work that has modeled these,
and generalizations of these, matroids in terms of Dyck paths [1] and lattice paths [3], and
other work, soon to appear [2,4].

2. Coalgebras of matroids

Throughout this paper, we work over some commutative ringK with unit. All modules,
algebras and coalgebras are overK , all mapsbetween such objects are assumed to beK -
linear, and all tensor products are taken overK . Given any family of matroidsM, we
write M̃ for the set of isomorphism classes of matroids belonging toM, anddenote by
K {M̃} the free K -module havingM̃ as basis. For any matroidM = M(S), andA ⊆ S,
we writeM|A for the restriction ofM to A, andM/A for the matroid onS\A obtained by
contractingA from M.
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The following result appeared in [18], as an example of the more general construction
of incidence Hopf algebras:

Proposition 2.1. If M is a minor-closed family of matroids then K{M̃} is a coalgebra,
with coproductδ and counitε determined by

δ(M) =
∑
A⊆S

M|A ⊗ M/A and ε(M) =
{

1, if S = ∅,

0, otherwise,

for all M = M(S) ∈ M. If, furthermore, the familyM is closed under formation of direct
sums, then K{M̃} is a Hopf algebra, with product induced by direct sum.

WheneverM is minor-closed, we shall writeC(M) for the moduleK {M̃} equipped
with the above coalgebra structure.

We remark that in the statement ofProposition 2.1, and in all that follows, we do not
distinguish notationally between matroids and their isomorphism classes; it will always be
clear from the context which is meant. For the purposes of this article, we are interested
primarily in the case in whichM is minor-closed and not necessarily closed under direct
sums and hence C(M) is only a coalgebra. We do not give a complete proof of the
proposition here, but only mention that coassociativity ofδ follows directly from the basic
identities(M|T)|U = M|U , (M/U)/(T \U) = M/T and(M/U)|(T \U) = (M|T)/U ,
whichhold for any matroidM = M(S) andU ⊆ T ⊆ S.

In the case thatM is closed under formation of direct sums, a formula for the antipode
of M may be deduced from the formula for the antipode of an arbitrary incidence Hopf
algebra given in [18].

We will use the followingnotation for some specific matroids:

In = Un,n thefree matroidof sizen
Zn = U0,n thezero matroidof sizen
Pn = U1,n then-point
Cn = Un−1,n then-circuit
I = I1 point
Z = Z1 loop,

where, as usual,Ur,n denotes the uniform matroid of rankr onn points.

Example 2.2. Let L be the matroid shown inFig. 1, consisting of pointsa, b, c, d, e in the
plane, with{a, b, c} and{a, d, e} collinear. IfM is any minor-closed family containingL,
then the coproduct ofL in C(M) is given by

δ(L) = L ⊗ ∅ + 4(C3 ⊕ I ) ⊗ Z + C4 ⊗ Z + 2C3 ⊗ P2 + 8I3 ⊗ Z2

+ 6I2 ⊗ (P2 ⊕ Z) + 4I2 ⊗ P3 + 4I ⊗ N + I ⊗ (P2 ⊕ P2) + ∅ ⊗ L,

where⊕ denotes the direct sum operation on matroids, andN is the three-point line with
one of its points doubled.

Example 2.3. The family I = {In : n ≥ 0} of all free matroids is minor-closed, and
the coalgebraC(I) is the free moduleK {I0, I1, . . .}, with coproduct and counit given by
δ(In) = ∑n

k=0

(n
k

)
Ik ⊗ In−k andε(In) = δn,0, for all n ≥ 0. BecauseI is also closed
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Fig. 1. The matroid ‘L ’ for Example 2.2.

under formation of direct sums,C(I) is in fact a Hopf algebra. SinceIn is equal to the
direct sum ofn copies ofI , we haveIn = I n in C(I), andthusC(I) is the polynomial
Hopf algebraK [I ], with coproduct determined byδ(I ) = I ⊗ 1 + 1 ⊗ I .

Similarly, the familyZ = {Zn : n ≥ 0} of all zero matroids is closed under formation
of minors and direct sums, andC(Z) is equal to the polynomial Hopf algebraK [Z], with
δ(Z) = Z ⊗ 1 + 1 ⊗ Z.

Note that the coproducts inExample 2.3are cocommutative. This is because the
operations of deletion and contraction onfree and zero matroids happen to coincide.
In fact, these are the only matroids on which these operations coincide; ifM is any
minor-closed family that contains matroids outside ofI ∪ Z, then the coalgebraC(M)

is noncocommutative.

Example 2.4. The classU of all uniform matroids is minor-closed, and the coproduct on
C(U) is given by

δ(Ur,n) =
r∑

i=0

(n

i

)
Ui,i ⊗ Ur−i,n−i +

n∑
i=r+1

(n

i

)
Ur,i ⊗ U0,n−i ,

for all n ≥ r ≥ 0. If we adopt the convention thatUk,m = U0,m, for k < 0 and
Uk,m = Um,m, for k > m, then the coproduct onC(U) takes the form

δ(Ur,n) =
n∑

i=0

(n

i

)
Ur,i ⊗ Ur−i,n−i ,

for all n ≥ r ≥ 0.

Example 2.5. The subclassC of U consisting of all circuits and free matroids is
minor-closed. The coalgebraC(C) is equal to K {I0, I1, . . . , C1, C2, . . .}, with coproduct
determined by δ(In) = ∑n

k=0

(n
k

)
Ik ⊗ In−k, for n ≥ 0, andδ(Cm) = Cm ⊗ I0 +∑m−1

k=0

(m
k

)
Ik ⊗ Cm−k, for all m ≥ 1.

Given a familyM, andn ≥ 0, we denote byMn the set of all matroids belonging toM
whose underlying sets have cardinalityn; and fork, r ≥ 0, we denote byMr,k the set of
all matroids belonging toM that have rankr and nullityk. Writing Cn(M) andCr,k(M),
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respectively, for the free modulesK {M̃n} andK {M̃r,k}, we have

C(M) =
⊕
n≥0

Cn(M) =
⊕
r,k≥0

Cr,k(M).

Proposition 2.6. If M is minor-closed, the families of submodules{Cn(M) : n ≥ 0} and
{Cr,k(M) : r, k ≥ 0} of C(M), respectively, equip C(M) with the structure of a graded,
and bigraded, coalgebra. IfM is also closed under formation of direct sums then C(M)

is also thus graded, and bigraded, as a Hopf algebra.

Proof. The first claim follows immediatelyfrom the fact that, for any matroidM = M(S),
andA ⊆ S, the rank of M is equal to the sum of the ranks ofM|A andM/A, and similarly
for nullities. The second claim follows from the fact that rank and nullity are additive
functions with respectto the disjoint sum operation on matroids.�

Proposition 2.7. If M is a minor-closed family andM∗ = {M∗ : M ∈ M} then
the map DM : C(M) → C(M∗), determined by M 
→ M∗, for all M ∈ M̃, is a
coalgebra antiisomorphism. In particular, ifM is closed under duality, then DM is an
antiautomorphism of C(M).

Proof. The mapDM has inverseDM∗ , and isthus bijective.For any matroidM = M(S),
and A ⊆ S, we have the identities(M|A)∗ = M∗/(S\ A), and(M/A)∗ = M∗|(S\ A),
from which it follows immediately thatδ(DM(M)) = (DM ⊗ DM) · τ · δ(M), where
τ : C(M)⊗C(M) → C(M)⊗C(M) is the twist map, determined byM ⊗N 
→ N⊗M,
for all M, N ∈ M. �

For all matroids N1, N2 andM = M(S), thesection coefficient
(

M
N1,N2

)
is defined as

the number of subsetsA of S suchthat M|A ∼= N1 and M/A ∼= N2; hence if M is a
minor-closed family, the coproduct onC(M) is determined by

δ(M) =
∑

N1,N2

(
M

N1, N2

)
N1 ⊗ N2, (2.8)

for all M ∈ M, where the sum is taken over all (isomorphism classes of) matroidsN1 and
N2. We remark that there is no need to restrict the sum in Eq. (2.8) to matroidsN1 andN2

belonging toM; because the familyM is minor-closed, the section coefficient
(

M
N1,N2

)
is

zero wheneverN1 or N2 is outside ofM. Another way of viewing this is the following: if
A is the classof all matroids, then the coproduct inC(A) is given by Eq. (2.8); and ifM
is any minor-closed class thenC(M) is a subcoalgebra ofC(A) and thus the coproduct on
C(M) is given by the same formula as that for the coproduct onC(A).

Example 2.9. Suppose thatM(S) is the matroid shown inFig. 2, and thatN = P2 ⊕ P2

is the matroid consisting of two double points. The section coefficient
(

M
U2,3,N

)
is equal to

one (rather than two, as one might first guess) because, although there are two subsetsA
of S suchthat M|A ∼= U2,3, only for A = {a, b, c} do we haveM/A ∼= N; the contraction
M/{a, d, e}, is athree point line with one point doubled.
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Fig. 2. The matroid ‘M ’ for Example 2.9.

More generally, for matroidsN1, . . . , Nk andM = M(S), themultisection coefficient(
M

N1,...,Nk

)
is defined asthe number of sequences(S0, . . . , Sk) such that ∅ = S0 ⊆

· · · ⊆ Sk = S and (M|Si )/Si−1 ∼= Ni , for 1 ≤ i ≤ k. Hence the iterated coproduct
δk : C(M) → C(M) ⊗ · · · ⊗ C(M) is determined by

δk(M) =
∑

N1,...,Nk

(
M

N1, . . . , Nk

)
N1 ⊗ · · · ⊗ Nk,

for all M ∈ M.

3. Algebras of matroids

For any family of matroidsM, we definea pairing〈·, ·〉 : K {M̃} × K {M̃} → K
by setting〈M, N〉 equal to the Kronecker deltaδM,N , for all M, N ∈ M. This pairing
determines a pairing ofK {M̃}⊗ K {M̃} with itself, by〈M1 ⊗ M2, N1 ⊗ N2〉 = 〈M1, N1〉 ·
〈M2, N2〉, for all M1, M2, N1, N2 ∈ M. If M is minor-closed, we may thus define a
product onK {M̃}, dual to the coproduct onC(M), by setting

〈N1 · N2, M〉 = 〈N1 ⊗ N2, δ(M)〉, (3.1)

for all M, N1, N2 ∈ M, thus makingK {M̃} an associativeK -algebra, with unit equal to
the empty matroid. We denoteK {M̃}, equipped with this algebra structure, byA(M), and
note thatA(M) is isomorphic to the graded dual algebra ofC(M).

Writing An(M) andAr,k(M) for the submodules ofA(M) generated, respectively, by
matroids inM havingn-elements, and those having rankr and nullityk, we have the direct
sum decompositions:

A(M) =
⊕
n≥0

An(M) =
⊕
r,k≥0

Ar,k(M),

and it follows fromProposition 2.6that A(M) is thusboth a graded and bigraded algebra.
We also have the following result, dual toProposition 2.7.

Proposition 3.2. If M is a minor-closed family andM∗ = {M∗ : M ∈ M} then
the map D : A(M) → A(M∗), determined by M 
→ M∗, for all M ∈ M̃, is an
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algebra antiisomorphism. In particular, ifM is closed under duality, then D is an
antiautomorphism of A(M).

By the definition of the pairing, the right-hand side of Eq. (3.1) is the coefficient of the
basis elementN1 ⊗ N2 in the coproductδ(M) which,as noted in Eq. (2.8), is given by the

section coefficient
(

M
N1,N2

)
. Sincethe left-hand side of (3.1) is the coefficient of the basis

elementM in the productN1 · N2, it follows that

N1 · N2 =
∑

M∈M̃

(
M

N1, N2

)
M, (3.3)

for all N1, N2 ∈ M. We emphasize that, in Eq. (3.3), it is necessary to limit the summation
to elements of̃M; becauseC(M) is a subcoalgebra ofC(A), whereA is the family of all
matroids, it follows thatA(M) is a quotient of the algebraA(A). Hence the product ofN1
andN2 in A(M) is the image of their product inA(A) under the projection homomorphism
A(A) → A(M), which maps all matroidsM �∈ M̃ to zero.

Example 3.4. Suppose thatM is a minor-closed family containing point I and loopZ.
ThenZ · I = I ⊕ Z in A(M). If M contains the double pointP2 thenI · Z = I ⊕ Z +2P2;
otherwise,I · Z = I ⊕ Z. If M contains the free matroidIn then I n = n!In, and ifM
contains the zero matroidZn, we haveZn = n!Zn in A(M).

Example 3.5. Suppose thatL is the matroid shown inFig. 1 and thatM is the matroid
consisting of five pointsa, b, c, d, e in the plane, witha, b, c collinear. IfM is any minor-
closed family that containsL, M and the direct sumU2,3 ⊕ P2 of the three-point line with
a double point, then we haveU2,3 · P2 = M + 2L + (U2,3 ⊕ P2) in A(M).

Example 3.6. If M contains the free matroidIr and zero matroidZk, then the product
Ir · Zk in A(M) is given by

Ir · Zk =
∑

(# of bases ofM) · M,

where the sum isover all matroidsM ∈ M̃ having rankr and nullityk. On theother hand,

for anyM ∈ M andk ≥ 0, the productZk · M is equal to
(

k+�
k

)
Zk ⊕ M, where� is the

number of loops ofM if Zk ⊕ M ∈ M, and is equal to zero otherwise; so in particular,
Zk · Ir = Zk ⊕ Ir if M containsZk ⊕ Ir , andZk · Ir = 0, otherwise.

Example 3.7. Let C be the minor-closed family consisting of all free matroidsIn and
circuitsCk, for n ≥ 0 andk ≥ 1. It follows from the coproduct formulas inExample 2.5
that the product inA(C) = K [I0, I1, . . . , C1, C2, . . .] is determined by

In · Im =
(

n + m

n

)
In+m, Ck · C� = 0,

In · Ck =
(

n + k

n

)
Cn+k, Ck · In =

{
Ck if n = 0,

0 otherwise,

for all m, n ≥ 0 andk, � ≥ 1. The dual familyC∗ consists of all zero matroidsZn and
multiple points Pk, for n ≥ 0 andk ≥ 1. By Proposition 3.2, the product inA(C∗) is
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determined byZn · Zm = ( n+m
n

)
Zn+m,

Pk · Zn =
(

n + k

n

)
Pn+k, Zn · Pk =

{
Pk if n = 0,

0 otherwise,

andPk · P� = 0, for all m, n ≥ 0 andk, � ≥ 1.

4. Orderings of subsets and words

For any setS and r ≥ 0, we denote byB(S) andBr (S), respectively, the set of all
subsets and the set of allr -element subsets ofS. In particular, for all n ≥ 0, we write
B(n) andBr (n), respectively, forB([n]) andBr ([n]), where[n] denotes the set{1, . . . , n}.
Whenever we write a subset of a linearly ordered setS by listing its elements, we shall
assume that the list is written in the order induced byS; that is, if S is linearly ordered, and
A = {a1, . . . , ar } ⊆ S, thena1 < · · · < ar in S. Throughout this paper we shall always
assume thatS, whetherlinearly ordered or not, is a finite set.

For anylinearly orderedS andr ≥ 0, we define a partial order onBr (S) by setting
{a1, . . . , ar } ≤ {b1, . . . , br } if andonly if ai ≤ bi in S, for all i ∈ [r ]. Under this ordering,
Br (S) is a sublattice of ther -fold direct product of linearly ordered setsS× · · · × S, and
is thus a distributive lattice. The Hasse diagram ofB2({a, b, c, d, e}) is shown inFig. 3.

We extendthe ordering onBr (S) to all of B(S) by setting B ≥ A in B(S) if and
only if B ≥ A′ in someBr (S), for somesubsetA′ of A. Hence, if A = {a1, . . . , ak}
and B = {b1, . . . , br }, then A ≤ B if and only if r ≤ k andai ≤ bi , for 1 ≤ i ≤ r .
Equipped with this ordering,B(S) is a distributive lattice that contains eachBr (S) as a
sublattice.

Lemma 4.1. For any linearly ordered set S, the mapB(S) → B(S) taking A ⊆ S toits
complement in S is a lattice antiautomorphism.

Proof. Suppose thatA = {a1, . . . , ak} and B = {b1, . . . , br } are subsets of the linearly
ordered setS suchthat A ≤ B in B(S), that is,suchthatr ≤ k andai ≤ bi , for all i ∈ [r ].
If A′ = {s1, . . . , sn−k} andB′ = {t1, . . . , tn−r } are the complements ofA andB in S, then
n − r ≥ n − k, andsj = j + |{i : ai < j }| andt j = j + |{i : bi < j }|, for all j . Since
ai ≤ bi , for all i ∈ [r ], it follows that |{i : ai < j }| ≥ |{i : bi < j }|, for all j . Hence
sj ≥ t j , for 1 ≤ j ≤ n − k, and soA′ ≥ B′ in B(S). �

For anylinearly ordered setS, we denote bySϕ the reversalof S, that is, the setS
equipped with the opposite ordering:a ≤ b in Sϕ if andonly if a ≥ b in S.

Lemma 4.2. For anylinearly ordered set S, the identity map is a lattice antiisomorphism
Br (S) → Br (Sϕ).

Proof. It is immediate from the definition of the ordering onBr (S) that A ≤ B in Br (S)

if andonly if A ≥ B in Br (Sϕ). �

Given a wordw on the alphabet{0, 1}, andi ∈ {0, 1}, we denote by|w|i thenumber
of occurrences of the letteri in w. For all n ≥ 0, wewrite Wn for the set of all words on
{0, 1} having lengthn, and letWn,r = {w ∈ Wn : |w|1 = r }, for 0 ≤ r ≤ n. For any
linearly ordered setS = {e1, . . . , en}, let χ : B(S) → Wn be the function which maps
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Fig. 3. The latticesB2(a, b, c, d, e) andW5,2.

A ⊆ S to the wordx1 . . . xn, where

xi =
{

1, if ei ∈ A,

0, otherwise.

Note thatχ maps eachBr (S) bijectively ontoWn,r and that, under the natural identification
of Wn with the setof functionsS → {0, 1}, the functionχ simply maps subsets ofS to
their characteristic functions.

Define mapsπk : Wn,r → [n], for 1 ≤ k ≤ r , by letting πk(w) be the position of
thekth 1 in w ∈ Wn,r . It follows that, forS = {e1, . . . , en}, the mapπ : Wn,r → Br (S)

which is inverse toχ is given byπ(w) = {eπ1(w), . . . , eπr (w)}, for all w ∈ Wn,r . We define
a partial order onWn,r by settingv ≤ w if andonly if πk(v) ≤ πk(w), for 1 ≤ k ≤ r . For
example, the Hasse diagram of the latticeW5,2 is given inFig. 3.

Lemma 4.3. For any linearly ordered set S, and1 ≤ r ≤ n = |S|, the mapχ : Br (S) →
Wn,r is a lattice isomorphism.

Proof. It is immediate from the definition ofχ that A ≤ B in Br (S) if and only if
πk(χ(A)) ≤ πk(χ(B)), for 1 ≤ k ≤ r . �

Lemma 4.4. For all v = x1 · · · xr andw = y1 · · · yr in Wn,r , theinequalityv ≤ w holds
if and only if|x1 · · · xk|1 ≥ |y1 · · · yk|1, for 1 ≤ k ≤ r .

Proof. The proof is immediate from the definitions. �

5. Freedom matroids

By a flag on a finite setS we shall mean a sequence(S0, . . . , Sr ) of subsets ofS such
that Sr = S andSi−1 is a proper subset ofSi , for 1 ≤ i ≤ r . We donot requireS0 to be
empty.
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Proposition 5.1. For any flag(S0, . . . , Sr ) on a set S, the family

I = {I ⊆ S : |I ∩ Si | ≤ i , for all i }
is the collection of independent sets of a matroid M(S0, . . . , Sr ), of rank r , on S.

Proof. It is clear thatI contains the empty set and is closed under formation of subsets.
Now suppose thatI , J ∈ I with |I | < |J|. If |I ∩ Si | < i for all i , then for anyx ∈ J\ I
we have|(I ∪ x) ∩ Si | ≤ i for all i , andhenceI ∪ x ∈ I. So we suppose that there exists
somei suchthat |I ∩ Si | = i , and letm be the maximal suchi . Note thatm < r , since
m = |I ∩ Sm| ≤ |I | < |J| = |J ∩ Sr | ≤ r .

Now, since|J ∩ Sm| ≤ m = |I ∩ Sm|, and|J| > |I |, we must have|J ∩ S′
m| > |I ∩ S′

m|,
whereS′

m denotes the complement ofSm in S, andhence the set(J\ I ) ∩ S′
m is nonempty.

Let x be any element of(J \ I ) ∩ S′
m. For m < i ≤ r , we have|I ∩ Si | < i , andthus

|(I ∪ x) ∩ Si | ≤ i . Sincex �∈ Sm we have(I ∪ x) ∩ Si = I ∩ Si , and so|(I ∪ x) ∩ Si | ≤ i ,
for all i ≤ m. Thus I ∪ x ∈ I. �

We refer to the matroidM(S0, . . . , Sr ) as thefreedom matroid(see [16]) defined by the
flag (S0, . . . , Sr ). Note that it follows immediately from the definition that eachSk is a flat
of rankk in M(S0, . . . , Sr ).

If M is a matroid onS ande ∈ S, we denote byM \e andM/e the matroids obtained
from M by, respectively, deleting and contractinge.

Proposition 5.2. For any freedom matroid M= M(S0, . . . , Sr ) and e∈ S, the deletion
M\e and contraction M/e are given by

M\e = M(T0, . . . , Tr ) and M/e = M(T0, . . . , Tk−2, Tk, . . . , Tr ),

where Ti = Si \e, for all i , and k= min{i : x ∈ Si }.
Proof. The independent sets ofM \ e are the subsets ofS that do not containe and
contain no more thani elements of eachSi , whichare precisely the independent subsets of
M(T0, . . . , Tr ).

If e is a loop in M, then M/e = M \ e = M(T0, . . . , Tr ), which agrees with the
expression forM/e given in the proposition, sincek = 0 in this case. Ife is not a loop,
then A is independent inM/e if and only if e �∈ A and A ∪ e is independent inM, that is
|(A ∪ e) ∩ Si | ≤ i , for all i ; in other words,|A ∩ Ti | ≤ i , for i < k, and|A ∩ Ti | ≤ i − 1,
for i ≥ k. SinceTk−1 ⊆ Tk, thecondition|A∩ Tk| ≤ k−1 implies that|A∩ Tk−1| ≤ k−1
and hence the latter inequality is redundant. ThusA is independent inM/e if and only if
|A ∩ Ti | ≤ i for 0 ≤ i ≤ k − 2 and|A ∩ Ti | ≤ i − 1, for k ≤ i ≤ r ; equivalently, if and
only if A is independent inM(T0, . . . , Tk−2, Tk, . . . , Tr ). �

Corollary 5.3 ([15] ). The class of freedom matroids is minor-closed.

We now characterize the closure operators and closed sets of freedom matroids. We
begin with the following proposition.

Proposition 5.4. The closure ofan independent set A in a freedom matroid M=
M(S0, . . . , Sr ) is givenby c�M (A) = A ∪ Sm, where m= max{i : |A ∩ Si | = i }.
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Proof. First note that|A ∩ S0| = 0, becauseA is independent, and thus suchm exists.
Now, since|A ∩ Sm| = m, the setA ∪ x is dependent for allx ∈ Sm \ A, and thus
Sm ⊆ c�M (A). On theother hand, for anyy �∈ A ∪ Sm, the setA ∪ y is independent,
since|(A ∪ y) ∩ Si | = |A ∩ Si | ≤ i , for i ≤ m and|(A ∪ y) ∩ Si | ≤ 1 + |A ∩ Si | ≤ i , for
i > m; hencec�M (A) ⊆ A ∪ Sm. �

We may thus find the closure of an arbitrary setA in a freedom matroid by applying
Proposition 5.4to any maximal independent subsetB of A and using the fact thatc�(B) =
c�(A).

Proposition 5.5. A set F⊆ S is closed in M(S0, . . . , Sr ) if and only if F = A ∪ Sm, for
some m≥ 0 and A⊆ S\Sm suchthat |A ∩ Si | < i − m, for all i > m; in which case the
rank of F is m+ |A|.
Proof. Suppose thatF is closed and thatB is a basis forF . By Proposition 5.4, F =
c�(B) = B ∪ Sm for somem suchthat |B ∩ Sm| = m and|B ∩ Si | < i , for all i > m.
Letting A = B\Sm, we thus haveF = A ∪ Sm and|A ∪ Si | < i − m, for all i > m.

Onthe other hand, suppose thatF = A∪ Sm for somem ≥ 0 andA ⊆ S\Sm, such that
|A ∪ Si | < i − m, for all i > m. Let B be a basis forSm. SinceA is disjoint from Sm, and
thus also fromB, and|B| = m, it follows from the above inequality that|(A∪ B)∩Si | ≤ i ,
for i > m, andhence thatA ∪ B is independent. Sincem = max{i : |(A ∪ B) ∩ Si | = i },
it follows from Proposition 5.4that A ∪ Sm = c�(A ∪ B), and isthus closed. �

Note that if we are given a closed setF in M(S0, . . . , Sr ), wecan expressF asA∪ Sm,
according toProposition 5.5, by lettingm = max{i : Si ⊆ F}, and taking A = F \Sm.

Corollary 5.6. If F is any flat of rank k in M(S0, . . . , Sr ), then|F | ≤ |Sk|.
Proof. By Proposition 5.5, if F is a flatof rankk in M(S0, . . . , Sr ) thenF = Sm ∪ A, for
somem and A ⊆ S\ Sm with |A| = k − m. Since|Sk| − |Sm| ≥ k − m, it follows that
|F | = |Sm| + |A| = |Sm| + k − m ≤ |Sk|. �

6. Freedom matroids on ordered sets

In the case thatS is linearly ordered it is convenient to consider flags(S0, . . . , Sr ) such
that eachSi is an initial segment in the ordering ofS. In this case, the flag(S0, . . . , Sr ) is
determined byS together with the set{1 + maxSi : 0 ≤ i ≤ r − 1}. Hence if S is linearly
ordered and we are given a subsetT = {t1, . . . , tr } of S, we mayobtain a flag(T0, . . . , Tr )

on S by settingTr = S andTi = {s ∈ S : s < ti+1}, for 0 ≤ i ≤ r − 1. We denote the
freedom matroidM(T0, . . . , Tr ) by MT (S), or simply MT , when the setS is understood.
If T ⊆ [n] andS = {e1, . . . , en}, we also write MT (S) for the matroidMα(T)(S), where
α : B(n) → B(S) is the natural bijectioni 
→ ei .

Proposition 6.1. If S is linearly ordered and T⊆ S, thenthe family of independent sets
of MT = MT (S) is given by{A ⊆ S : A ≥ T inB(S)}. If |T | = r , thenthe familyof bases
of MT is given by{B : B ≥ T inBr (S)}.
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Proof. Suppose thatT = {t1, . . . , tr } and A = {a1, . . . , ak} in B(S). SinceTr = S, we
haveA = A ∩ Tr , andthus|A ∩ Tr | ≤ r if andonly if k ≤ r . Now for 0≤ i ≤ r , we have
A ∩ Ti = {aj ∈ A : aj < ti+1 in S}; therefore, sincea1 < · · · < ak andt1 < · · · < tr , it
follows that|A ∩ Ti | ≤ i if and only if ai+1 ≥ ti+1. Hence A is independent inMT if and
only if A ≥ T in B(S). �

Example 6.2. Suppose thatS = {a, b, c, d, e, f, g} and T = {b, e, f }. Then MT =
M(T0, T1, T2, T3), whereT0 = {a}, T1 = {a, b, c, d}, T2 = {a, b, c, d, e} andT3 = S.
The bases ofMT are the sets{b, e, f }, {c, e, f }, {d, e, f }, {b, e, g}, {c, e, g}, {d, e, g},
{b, f, g}, {c, f, g}, {d, f, g} and{e, f, g}.
Proposition 6.3. For any linearly ordered S, and T⊆ S,the dual MT (S)∗ of the matroid
MT (S) is equal to MT ′(Sϕ), where T′ is the complement of T in Sand Sϕ is the reversal
of S. In particular, the class of freedom matroids is closed under duality.

Proof. Suppose that|S| = n and|T | = r . It follows from Proposition 6.1that the set of
bases ofMT (S)∗ is given by{B′ : B ≥ T in Br (S)}, which, according toLemma 4.1, is
equal to{C : C ≤ T ′ in Bn−r (S)}. By Lemma 4.2, we haveC ≤ T ′ in Bn−r (S) if andonly
C ≥ T ′ in Bn−r (Sϕ), andhence the result follows fromProposition 6.1. �

The following Lemma, which is a corollary ofProposition 6.1, will be used in the next
section.

Lemma 6.4. Suppose that M(S) = M(S0, . . . , Sr ) is a freedom matroid, where S is
linearly ordered and each Si is an initial segment in S, and let A⊆ S and a ∈ A. If
b ∈ S\ A satisfies b> a in S, thenρ((A\a) ∪ b) ≥ ρ(A).

Proof. Let B be a maximal independent subset ofA that containsa. Sinceb > a in S,
it follows that (B\a) ∪ b > B in B(S). Hence, byProposition 6.1, the set(B\a) ∪ b is
independent inM, and soρ((A\a) ∪ b) ≥ ρ(A). �

Recall fromSection 4that, given a wordw ∈ Wn,r , and 1≤ k ≤ r , we denote byπk(w)

the position of thekth 1 in w, and forS = {e1, . . . , en}, thebijection π : Wn,r → Br (S)

is given byπ(w) = {eπ1(w), . . . , eπr (w)}. We thus may define a mappingw 
→ Mw from
Wn,r to the set of rankr freedom matroids onS by setting Mw = Mπ(w)(S), for all
w ∈ Wn,r .

Example 6.5. If S = {a, b, c, d, e, f, g, h, i , j , k, l } and w = 001011001000, then
π(w) = {c, e, f, i }. The setsSi may be read off from the following table:

w : 0 0 1 0 1 1 0 0 1 0 0 0
S0 : a b
S1 : a b c d
S2 : a b c d e
S3 : a b c d e f g h
S4 : a b c d e f g h i j k l,

andMw = M{c,e, f,i } is the freedom matroidM(S0, S1, S2, S3, S4).



1078 H. Crapo, W. Schmitt / European Journal of Combinatorics 26 (2005) 1066–1085

When freedom matroids were first introduced, in [10], they were given the following
recursive construction by single-element extensions: Ifw is the empty word, thenMw is
the empty matroid, and forw = vx, where|x| = 1, Mw is obtained fromMv as follows:

(i) If x = 1, add a point independently toMv in a new dimension, that is, letMw =
Mv ⊕ I .

(ii) If x = 0, add a pointe to Mv in general position in the top rank, that is, letMw be the
free extension ofMv by e.

Example 6.6. If w = 001001010010 andS = {a, b, c, d, e, f, g, h, i , j , k, l }, then Mw

consists of loopsa andb, together with a triple point{c, d, e}, collinear with distinct points
f andg, this line being coplanar with general pointsh, i , j , with two additional pointsk
andl in general position in 3-space.

7. Matroids and words

Suppose thatM is a matroid of rankr on ann-element setS, having rank functionρ.
We associate to any maximal chain∅ = A0 ⊂ · · · ⊂ An = S in the Booleanalgebra
2S the word x1 · · · xn ∈ Wn,r defined byxi = ρ(Ai ) − ρ(Ai−1), for all i ∈ [n].
If the set S = {e1, . . . , en} is linearly ordered, then there is a distinguished maximal
chain A0 ⊂ · · · ⊂ An in 2S, given by Ai = {e1, . . . , ei }, for all i ∈ [n]. The word
wM(S) = x1 · · · xn associated to this chain is thus determined by

xi =
{

0, if ei ∈ c�({e1, . . . , ei−1}),
1, otherwise,

for all i ∈ [n]. We refer towM(S) as thedistinguished wordof M(S). Note thatwM(S) is also
determined by the equality|x1 · · · xi |1 = ρ({e1, . . . , ei }), for all i ∈ [n].
Lemma 7.1. For any matroid M(S) of rank r , with S linearly ordered of cardinality n,
the wordw = wM(S) is determined by the condition thatπ(w) = min{B ∈ Br (S) :
B is abasisfor M}.
Proof. SupposeS = {e1, . . . , en}, and thatthe 1’s inw occur in positionsi1, . . . , i r , so
thatπ(w) = {ei1, . . . , eir }. Sinceeik is not in the closure of{e1, . . . , eik−1}, for all k ∈ [r ],
it follows thatπ(w) is independent, and thus is a basis forM. If B = {b1, . . . , br } ⊆ S
is such thatk ≤ i k, for somek ∈ [r ], then{b1, . . . , bk} ⊆ {e1, . . . , eik−1}, whichhas rank
k − 1, and soB is not a basis forM. Hence any basisB of M satisfiesB ≥ π(w) in
Br (S). �

If S = {e1, . . . , en} is linearly ordered, then the symmetric groupΣn acts naturally on
S by σ(ei ) = eσ(i ), for all i ∈ [n], and thus we can identifyΣn with the groupΣS of
permutations ofS. For anyσ in ΣS (or in Σn), we denote bySσ the underlying set ofS
equipped with the linear order (orreorder) given byσ(e1) < · · · < σ(en). Hence,a ≤ b
in S if and only if σ(a) ≤ σ(b) in Sσ , and soσ : S → Sσ is aposet isomorphism. The
natural mapB(S) → B(Sσ ), given byA 
→ σ(A), for all A ⊆ S, and alsodenoted byσ ,
is also a posetisomorphism. We denote byπσ the mapWn,r → Br (Sσ ), which takes a
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word tothe subset ofSσ corresponding to positions of its 1’s. Note thatπσ is equal to the
compositionσπ .

Given A, B ⊆ S of equal cardinality, with complementsA′ and B′ in [n], theshuffle
σA,B ∈ ΣS is the unique permutation ofS which mapsB onto A, and thus alsoB′ onto
A′, whose restrictions to B and B′ are order-preserving. For example, ifA = {4, 7} and
B = {1, 5} in S = [7], thenσA,B = 4123756 (whereσ = σ1 · · · σn ∈ Σn is the usual
word notation for permutations, indicating thatσ(i ) = σi , for all i ), or in cycle notation,
σA,B = (1432)(576).

Lemma 7.2. Suppose that S is linearly ordered, and that A≥ B inB(S), where|A| = |B|,
and letσ = σA,B ∈ ΣS be the shuffle. If C⊆ S satisfies C≥ A in B(S), then C≥ A in
B(Sσ ).

Proof. Suppose that the complements ofA = {a1, . . . , ar } andB = {b1, . . . , br } in S are
A′ = {a′

1, . . . , a′
k} and B′ = {b′

1, . . . , b′
k}, respectively, so that the shuffleσ = σA,B is

given bybi 
→ ai andb′
j 
→ a′

j , for all i ∈ [r ] and j ∈ [k]. Sinceσ : B(S) → B(Sσ ) is
an isomorphism, it follows that for anyC ⊆ S, we haveC ≥ A in B(Sσ ) if and only if
σ−1(C) ≥ σ−1(A) = B in B(S). Now suppose thatC = {c1, . . . , cm} ≥ A in B(S), so
thatm ≤ r andci ≥ ai , for all i ∈ [m]. SinceA ≥ B in B(S), it follows fromLemma 4.1
that A′ ≤ B′ in B(S). Henceσ−1(a) ≤ a, for all a ∈ A, andσ−1(a′) ≥ a′, for all a′ ∈ A′.
Considerci ∈ C. If ci ∈ A′, thenσ−1(ci ) ≥ ci ≥ ai ≥ bi . On theother hand, ifci ∈ A,
thenci = aj , for some j ≥ i (sinceci ≥ ai ), and soσ−1(ci ) = σ−1(aj ) = bj ≥ bi .
Henceσ−1(C) ≥ B in B(S), and thereforeC ≥ A in B(Sσ ). �

For any matroidM(S) of rankr , whereS is linearly ordered of cardinalityn, we define a
mappingλM : ΣS → Wn,r (or equivalently,λM : Σn → Wn,r ) by settingλM (σ ) = wM(Sσ ),
for all σ ∈ ΣS. Note that, in particular, if ι ∈ ΣS is the identity permutation, then
λM (ι) = wM(S) is the distinguished word ofM(S). We emphasize that the mapλM depends
not only on the matroidM = M(S), buton the linear ordering ofS.

For example, ifM is the matroid onS= {a, b, c, d, e, f, g} shown inFig. 2, andσ ∈ Σ7
is the permutation 6237154, thenλM (σ ) = 1110010.

Proposition 7.3. Suppose that M(S) is a rank r matroid, with S an n-element linearly
ordered set. Ifv ≤ wM(S) in Wn,r , thenλM(σA,B) = v, where A= π(wM(S)) and B= π(v).

Proof. By Lemma 7.1, A = π(wM(S)) is the minimum basis ofM in Br (S). Since
A ≥ B = π(v) in Br (S), it follows from Lemma 7.2that A is also the minimum basis
of M in Br (Sσ ), whereσ is the shuffleσA,B. SinceA = σ(B) = σ(π(v)) = πσ (v), it thus
follows fromLemma 7.1thatv = wM(Sσ ), that is,λM(σ ) = v. �
Corollary 7.4. For any rank r matroid M on an n-elementlinearly ordered set, the image
of λM is anorder ideal inWn,r .

Proof. The proof is immediate fromProposition 7.3. �
It was shown in [10] (Theorem:“Existence of a matroid with a given first word”) that in

the case in whichM = Mw is a freedom matroid, the wordw is the maximum among words
associated toM by the mapλM . The following theorem is a strengthening of this result,
giving a characterization of the words in the image ofλM wheneverM is a freedom matroid.
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Theorem 7.5. If M is the freedom matroid Mw for somew ∈ Wn,r , then the image of
λM : Σn → Wn,r is the principal order ideal{v ∈ Wn,r : v ≤ w}.
Proof. Suppose thatM = M(S) = Mw, whereS = {e1, . . . , en} andw = x1 · · · xn

belongs toWn,r . It follows that M = M(S0, . . . , Sr ), where Sr = S, and Sk−1 =
{e1, . . . , eπk(w)−1}, for 1 ≤ k ≤ r . For anyσ ∈ Σn, the wordλM(σ ) = y1 · · · yn is
determined by the condition that|y1 · · · yi |1 = ({eσ(1), . . . , eσ(i )}), for 1 ≤ i ≤ n, and
by Corollary 5.6, if ρ({eσ(1), . . . , eσ(i )}) = k, for somei , theni ≤ |Sk| = πk+1(w) − 1.
Sinceπk+1(w) is the position of the(k + 1)st one inw, it follows that|x1 · · · xi |1 ≤ k =
|y1 · · · yi |1. Hence, byLemma 4.4, we haveλM(σ ) ≤ w. The result thus follows from
Corollary 7.4. �

Example 7.6. Suppose thatM(S) = U2,4 ⊕ P2 is the matroid consisting of a four-point
line and a double point. The image ofλM in W6,3 (given any linear ordering onS) is the
order ideal{111000, 110100, 101100, 110010}, which has maximal elements 110010 and
101100, and thus is not principal. Hence, it follows fromTheorem 7.5that M is not a
freedom matroid.

Corollary 7.7 ([10] ). There are precisely2n nonisomorphic freedom matroids (and thus
at least2n nonisomorphic matroids) on an n-element set.

Proof. Given a matroidM on S, thedefinition of λM depends on a choice of ordering ofS,
but the image ofλM depends only on the isomorphism class ofM. Hence, byTheorem 7.5,
if v �= w, then the freedom matroidsMv andMw are not isomorphic. �

Recall that theBruhat order (or strong Bruhat order) on Σn is determined by the
condition thatσ coversτ = τ1 · · · τn in Σn if and only if σ may be obtained fromτ by
reversing a single pair(τi , τ j ), such that i < j andτi < τ j and the number of inversions
of σ is one greater than thenumber of inversions ofτ . Under the assumptionsi < j and
τi < τ j , the exchange(τi , τ j ) increases the number of inversions by one if and only if, for
all k with i < k < j , either τk < τi or τk > τ j , which, in particular, is the case if either
j = i + 1 or τ j = τi + 1. For example, in the Bruhat order onΣ4, the permutation 1423
is covered by 4123, 2413 and 1432. Reversing the pair (1, 3) in 1423 creates three new
inversions, so that, even though 3421 is greater than 1423, it is not a cover. The identity
permutation is the minimum element ofΣn, and the flip mapϕ = n(n − 1) · · · 1 is the
maximum element.

Proposition 7.8. If M = Mw for anyw ∈ Wn,r , andΣn is given the Bruhat order, then
λM : Σn → Wn,r is anorder-reversing map.

Proof. Suppose thatMw = M(S) = M(S0, . . . , Sr ), whereS is linearly ordered and each
Si is an initial segment inS. Suppose thatτ coversσ in the Bruhat order onΣn and letSσ =
{e1, . . . , en} andSτ = { f1, . . . , fn}, so thatek = fk for all but two indicesi and j , where

i < j , ei < ej , f j = ei , and fi = ej .

Letting Ek = {e1, . . . , ek} and Fk = { f1, . . . , fk}, for all k ∈ [n], we haveEk = Fk,
for 1 ≤ k < i and j < k ≤ n, and since ej > ei in S, it follows from Lemma 6.4
thatρ(Fk) ≥ ρ(Ek), for i ≤ k ≤ j . LettingλM (σ ) = x1 · · · xn andλM (τ ) = y1 · · · yn,
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we thus have|x1 · · · xk|1 = ρ(Ek) ≤ ρ(Fk) = |y1 · · · yk|1, for all k ∈ [n], andhence
λM (σ ) ≥ λM (τ ), by Lemma 4.4. �

Example 7.9. Suppose thatS = {a, b, c, d} and M(S) = M0101, so thata is a loop,
{b, c} a double point andd an isthmus inM. The image ofλM : Σ4 → W4,2 is the
order ideal{1100, 0110, 1001, 1010}, and underλM , the two permutations in the interval
[1234, 1324] ofΣ4 map to 0101, the four permutations in the interval [1243, 1432]
map to 0110, the four permutations in the interval [2134, 3214] map to 1001, the set
{σ : σ ≥ 2143 and eitherσ ≤ 3241 orσ ≤ 4132} maps to 1010, and the interval [2413,
4321] maps to 1100.

8. The algebra of freedom matroids

We now considerthe algebraA(F) corresponding to the minor-closed classF of
freedom matroids. Throughout this section we shall assume that the ringK is a field of
characteristic zero. The set{Mw : w ∈ W}, whereW is the set ofall words on{0, 1}, is a
K -vector space basis forA(F), and the product is given by

Mu · Mv =
∑

w∈W

(
w

u, v

)
Mw,

where
(

w
u,v

)
denotes the section coefficient

(
Mw

Mu,Mv

)
. As is the case for any matroid

algebra,A(F) is bigraded by rank and nullity, and soA(F) = ⊕
r,k≥0 Ar,k(F), where

Ar,k(F) has basis{Mw : w ∈ Wr+k,r }, and the section coefficient
(

w
u,v

)
is zero whenever

w �∈ W|u|+|v|,|u|1+|v|1.
In the proof of our main theorem below, we make use of theincidence algebraof the

latticeWn,r . In general, the incidence algebraI (P) of a locally finite posetP is the K -
vector space of all functionsf : P × P → K suchthat f (x, y) = 0, wheneverx �≤ y,
equipped with theconvolutionproduct:

( f g)(x, z) =
∑

x≤y≤z

f (x, y)g(y, z),

for all f, g ∈ I (P), andx ≤ z in P. The convolution identityδ ∈ I (P) is given by
δ(x, y) = δx,y, for all x ≤ y in P. An element f ∈ I (P) is invertible if and only
if f (x, x) is a unit in K , for all x ∈ P, in which case the convolution inversef −1 is
determined recursively byf −1(x, x) = f (x, x)−1, for all x ∈ P, and

f −1(x, z) = f (z, z)−1
∑

x≤y<z

f −1(x, y) f (y, z)

= f (x, x)−1
∑

x<y≤z

f (x, y) f −1(y, z),

for all x < z in P.
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Recall that the matroids consisting of a single point and a single loop are denoted by
I and Z, respectively, and note thatI = M1 and Z = M0 are the freedom matroids
corresponding to words of length one.

Theorem 8.1. The algebra A(F) is free, generated by I and Z.

Proof. For any wordw = x1 · · · xn in W , we denote byPw the productMx1 · · · Mxn in
A(F). SinceA(F) is graded it suffices to show that the set{Pw : w ∈ Wn,r } is a basis for
Ar,n−r (F), for all n ≥ r ≥ 0. Given wordsw, v ∈ Wn,r , with w = x1 · · · xn, we write

c(w, v) for the multisection coefficient
(

v
x1,...,xn

)
. Observe thatc(w, v) is equal to the

number of permutationsσ ∈ Σn suchthatλMv (σ ) = w, andhenceTheorem 7.5implies
that c(w, v) is nonzero if and only ifw ≤ v in the lattice ordering ofWn,r . We thus
have

Pw =
∑
v≥w

c(w, v)Mv , (8.2)

for all w ∈ Wn,r , where all coefficients are nonzero. Becausec(w, v) = 0, whenever
w �≤ v, the functionc belongs to the incidence algebra ofWn,r . Sincec(w,w) �= 0 for all
w, andK is a field of characteristic zero, it follows thatc has a convolution inversec−1,
and therefore

Mw =
∑
v≥w

c−1(w, v)Pv,

for all w ∈ Wn,r . Hence the linear endomorphism ofAr,n−r (F) determined byMw 
→ Pw,
for all w ∈ Wn,r , is invertible, and so{Pw : w ∈ Wn,r } is a basis forAr,n−r (F). �

Note that, sincePv · Pw = Pvw in A(F), for all v,w ∈ W , Theorem 8.1can be restated
as the fact that the mapPw 
→ w defines an isomorphism fromA(F) onto the free algebra
K {W} = K 〈{0, 1}〉, which has concatenation of words as product.

The use of incidence algebras in the proof ofTheorem 8.1can be avoided as follows:
Choose an orderingw1, . . . , wm of Wn,r suchthati ≤ j , wheneverwi ≤ w j in Wn,r (such
as the opposite of lexicographic order) and setci j = c(wi , w j ), for all i ≤ j in [m]. Then
Pwi = ∑m

j =1 ci j Mw j , for all i , andby Theorem 7.5, the matrix C = (ci j )1≤i, j ≤m is upper-
triangular, with nonzero entries along the main diagonal. SinceK is a characteristic zero
field, C is thus invertible, andhence the set{Pwi : 1 ≤ i ≤ m} is a basis forAr,n−r (F).

Corollary 8.3. If M is any minor-closed family that contains the classF of freedom
matroids, then the subalgebra of A(M) generated by Iand Z is free.

Proof. For each wordw = x1 · · · xn ∈ W , let Qw denote the productMx1 · · · Mxn in
A(M). SinceF ⊆ M, the algebraA(F) is a quotient of A(M), where the canonical
homomorphismπ : A(M) 
→ A(F) maps every freedom matroid inM to itself and every
nonfreedom matroid to zero. Sinceπ(Qw) = Pw, for all w ∈ W and, byTheorem 8.1, the
Pw are linearly independent inA(F), it follows that theQw are linearly independent in
A(M). Hence the subalgebra ofA(M) generated byI andZ is free. �
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Example 8.4. If S = {a, b, c, d}, then the basis{Mw : w ∈ W4,2} of A2,2(F) consists of
the following matroids:

M1100 = U2,4 a, b, c, d collinear
M1010 {a, b} a double-point, collinear with pointsc andd
M1001 = P3 ⊕ I {a, b, c} a triple-point, d a distinct point
M0110 = Z ⊕ U2,3 a a loop, b, c, d collinear
M0101 = I ⊕ P2 ⊕ Z a a loop, {b, c} a double-point, d a distinct point
M0011 = Z2 ⊕ I2 a andb loops, c andd distinct points.

Listing W4,2 in opposite lexicographic order,W4,2 = {w1, w2, w3, w4, w5, w6} =
{1100, 1010, 1001, 0110, 0101, 0011}, the matrix C of multisection coefficientsci j is
given by




1100 1010 1001 0110 0101 0011

1100 24 20 12 12 8 4
1010 0 4 6 6 6 4
1001 0 0 6 0 4 4
0110 0 0 0 6 4 4
0101 0 0 0 0 2 4
0011 0 0 0 0 0 4




.

So, for example,P1001 = I · Z · Z · I is equal to 6M1001+ 4M0101+ 4M0011 in A(F).
Observe thatc34 is the only zero entry above the main diagonalC, which corresponds to
the fact thatw3 = 1001 andw4 = 0110 are the only two noncomparable elements of
the latticeW4,2. Also note that, since the matrix entryc(v,w) is equal to the number of
orderings of the underlying set ofMw with corresponding word equal tov, the sum of the
entries in each column ofC is equal to 4!.

Example 8.5. Suppose thatM is any minor-closed class containing all freedom ma-
troids and the smallest nonfreedom matroidD = P2 ⊕ P2, consisting of two double-
points, and letPL(M) be the subalgebra ofA(M) generated byI and Z. The matrix
expressing the basis{Qw : w ∈ W4,2} of PL(M) ∩ A2,2(M) in terms of the basis
M̃2,2 = {D} ∪ {Mw : w ∈ W4,2} of A2,2(M) is given by




1100 1010 D 1001 0110 0101 0011

1100 24 20 16 12 12 8 4
1010 0 4 8 6 6 6 4
1001 0 0 0 6 0 4 4
0110 0 0 0 0 6 4 4
0101 0 0 0 0 0 2 4
0011 0 0 0 0 0 0 4




.

In this context,Corollary 8.3amounts to the observation that this matrix contains as a sub-
matrix the nonsingular matrixC in the previous example, and thus has independent rows.

We now turn our attention to the coalgebraC(F) of freedom matroids. Recall from
Section 2thatC(F) has as basis the setF̃ = {Mw : w ∈ W} of all isomorphism classes
of freedom matroids, and has coproduct determined by Eq. (2.8), so that
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δ(Mw) =
∑

u,v∈W

(
w

u, v

)
Mu ⊗ Mv,

for all w ∈ W . Hence if we define a coproduct on the vector spaceK {W}, having all

0,1-words as basis, byδ(w) = ∑
u,v

(
w

u,v

)
u ⊗ v, thenK {W} andC(F) are isomorphic

coalgebras via the mappingMw 
→ w. For example,

δ(1010) = 1010⊗ ∅ + 2(101⊗ 0) + 2(110⊗ 0) + 10⊗ 10

+ 5(11⊗ 00) + 2(1 ⊗ 100) + 2(1 ⊗ 010) + ∅ ⊗ 1010.

It is then an interesting exercise to give a description of this coproduct solely in terms of
the combinatorics of words.

Let {P′
w : w ∈ W} be the basis ofC(F) which isdual to the basis{Pw : w ∈ W} of

A(F) via the pairing defined in the beginning ofSection 3, that is,suchthat 〈P′
w, Pv〉 =

δw,v , for all v,w ∈ W . Eq. (8.2) means that〈Mv, Pw〉 = c(w, v), for all v,w ∈ W , and
so we have

Mw =
∑
v∈W

〈Mw, Pv〉P′
v =

∑
v≤w

c(v,w)P′
v

for all w ∈ W . Hence if |w| = n, and wewrite λ for λMw , we have

Mw =
∑

σ∈Σn

P′
λ(σ ).

For example, referring to the matrixC in Example 8.4, we seethat M0110 = 12P′
1100+

6P′
1010+ 6P′

0110 in C(F).

Corollary 8.6. The coalgebra C(F) has basis{P′
w : w ∈ W} and coproduct given by

δ(P′
w) =

∑
uv=w

P′
u ⊗ P′

v,

for all w ∈ W .

Proof. The result follows immediately fromTheorem 8.1by duality. �

Corollary 8.6 can be restated as saying that the map determined byP′
w 
→ w is

a coalgebra isomorphism fromC(F) onto the cofree coalgebraK {W}, which has the
deconcatenation coproductδ(w) = ∑

uv=w u ⊗ v.
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